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Abstract
The bidirectional long short-term memory (Bi-LSTM) network is an innovative computation paradigm that learns bidi-

rectional long-term dependencies between time steps and sequence data to predict future occurrences. This study proposes

a framework to incorporate Bi-LSTM and data sequencing to predict diameter of jet grouted columns in soft soil in real

time. The models are tested using a case study of jet grouting treatment of soft soil. The results show that the proposed

strategies can efficiently predict the variation in column diameter with the depth. A comparative performance analysis

among the Bi-LSTM, original long short-term memory (LSTM) and support vector regression (SVR) approaches is also

conducted. The Bi-LSTM performs better than both the LSTM and SVR in root-mean-square error. This result substan-

tiates the efficacy of modeling sequential step-by-step jet grouting process using the Bi-LSTM. Based on the analyzed

results, some recommendations for improving the current design of jet grout columns are proposed.
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1 Introduction

The jet grouting is a popular soil stabilization technology

widely used in the construction industry to cope with

various geotechnical challenges, such as liquefaction [1],

front soil improvement of entrance shaft during shield

tunneling [39, 50] and sealing the potential leakage of

diaphragm wall [51], which can decrease potential risks in

engineering practice [26–29]. The method consists of

loosening the soil with high-velocity jet in a predrilled

borehole and mixing it with cement slurry to create rigid

bodies from a predefined depth to the ground surface

[38, 40, 45, 48, 54]. Various jet grouting methods including

single, double and triple fluids systems are usually utilized

to achieve the jet grouted bodies, whose properties are

influenced by the implementation conditions [46]. Field

observations have demonstrated that the diameter of jet

grout columns mainly depends on the resistance of in situ

soil and jetting energy [2, 3]. The maximum distance

achievable by the cutting jet in general determines the

diameter of a column. Experimental investigations [6] and

theoretical study [20, 32] have been adopted to scrutinize

and interpret these general observations on the jet grouted

bodies.
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Indeed, one of the major issues associated with the

practice of jet grouting is the column diameter prediction,

which has attracted a considerable research interest. Pre-

diction of the diameter of jet grout columns is very chal-

lenging because it needs to consider both soil parameters

and jetting parameters. Prediction models are continuously

developed and improved over the years. These methods can

be in general grouped into four categories, namely empir-

ical, conceptual, theoretical and machine learning-based

models. Ribeiro and Cardoso [37] provided a comprehen-

sive review on these prediction methods. It has been

acknowledged that although very efficient under some

conditions, the most sophisticated analytical models to date

[12, 38, 40, 41] still have a few limitations. To overcome

these shortcomings, some studies adopted machine learn-

ing algorithms such as neural networks [34] and support

vector machines (SVMs) [42, 43] to predict jet grout col-

umn diameters. In general, their performances were found

satisfactory; nonetheless, improvements are still in

demand, in particular, with regard to the ‘‘real-time

assessment.’’

The existing machine learning models can only predict

the final (or average) diameters of jet grout columns based

on the given data. Their intrinsic structures cannot vary

dynamically to align with the variation in input data with

time. As a result, they cannot consider that the jet grouting

columns are constructed by lifting the nozzle upwardly

from a specified depth in a given speed. In other words, the

variation in jet grout column with depth is not considered.

Due to the change in the soil resistance between the soil

layers, the diameter of the jet grouting column is varying

along with the depth. Consequently, in the case of complex

geological profiles [8, 36, 46], adopting the average

diameter for a jet grouting column as key metric can be

misleading and vulnerable for the real design [47]. Recent

efforts to tackle this issue have resulted in the development

of probabilistic models [30, 31, 35], which, although rel-

atively effective for some applications, lack strong physical

meaning regarding the diameter prediction. A dynamic

prediction model is thus in high demand, which can

improve the precision in prediction by providing a ‘‘real-

time assessment’’ on the diameter of columns. It should be

noted that this assessment is contingent on the precise

sequencing of subsoil and jet grout column profiles; on the

other hand, it enables operators to reach the desired goal of

adjusting treatment parameters. In fact, taking advantage of

the tremendous ability of artificial intelligence-based

models to deal with nonlinear problems, a dynamic pre-

diction allows capturing the random variability of jet

grouting columns with depth via suitably integrating the

soil properties, depth and injection parameters. Further-

more, traditional machine learning models require guid-

ance to learn a task and/or perform efficiently [49, 55].

Experienced engineer needs to step in and conduct tunings

if the machine learning algorithm returns an erroneous

prediction. On the contrary, deep learning models can

perform these adjustments on their own, as they are able to

learn high-level features from data. It can be regarded as a

very distinctive advance of deep learning over the con-

ventional machine learning techniques. Another prominent

advantage of the deep learning models, compared with the

conventional machine learning, is that the deep learning

models are able to deal with time series problems. In other

words, they are capable of predicting future values based

on previous observations [16, 19, 22, 24, 44, 57].

In this paper, a novel framework based on Bi-LSTM

method has been proposed to provide a possible way to

achieve a real-time prediction of the varying diameter

during the entire jet grout process. Compared with tradi-

tional machine learning algorithms (Neural Networks,

SVM, etc.) that cannot handle sequential data (or learn

hierarchical representation of a time series), the LSTM

approaches have the advantage of learning and predicting a

sequence of future data based on previous observations.

The Bi-LSTM, particularly, integrates the notion of order

of time by performing its learning process in two directions

(from the past to the future, then from the future to the

past). We adapted the Bi-LSTM model to make it suit-

able for the dynamic modeling of jet grouting. This was

achieved via defining a framework to incorporate Bi-

LSTM and data sequencing so as to be able in any point in

time to preserve information of a jet grout column from

both previous and future measurements. The proposed

model can predict the variation in a diameter with depth,

particularly considering the time lag between each lifting

step and the soil properties at the specific depth. This paper

consecutively dissects the Bi-LSTM and data sequencing

strategies necessary to fulfill this task and then systemati-

cally compares the predictive performance of the Bi-

LSTM, LSTM and SVR methods. Ultimately, some rec-

ommendations for improving the current design routine of

jet grout columns are elaborated.

2 Methodology

The sequential nature of the jet grouting treatment leads to

a continuous variation in column diameters with depth.

Hence, modeling the interrelationship among chronological

data points is crucial to accurately forecast this variation.

This section describes the computation strategies and data

sequencing methods for real-time assessment of jet grout-

ing columns diameter based on artificial intelligence and

optimizing computation technologies

[8–10, 13, 23, 52, 53]. In particular, the bidirectional

LSTM which is a variant of the traditional LSTM is
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discussed, as well as two different sequence patterns

adopted for assessing its performance.

2.1 Bidirectional LSTM networks

To comprehend the functioning of Bi-LSTM, it is crucial to

firstly understand that of LSTM [21]. LSTM architecture

learns long-term dependencies between time steps and

sequence data to predict future occurrences. Compared

with the feedforward networks [15, 55, 56] that cannot

handle the notion of order in time, or recurrent neural

networks (RNNs) [11] that are hampered by the issue of

vanishing gradient, the LSTM models are more robust

alternatives. The sequential data are usually presented as

vectors in a sequence that are not independent of each other

but appear in a given order. Moreover, LSTM architectures

tackle the issue of inefficient weights updating during the

training process (vanishing gradient) via achieving long-

range dependency.

The core concept of LSTM involves a cell state and its

various gates. The cell state works as a transport highway

which conveys relative information throughout the pro-

cessing of the sequence. It is, in theory, considered as the

‘‘memory’’ of the network. Along with the cell state

transport procedure, gates are utilized to add or remove

information to the cell state. These gates are simplified

neural networks that can learn which data in a sequence are

crucial to keep or forget. By achieving that, the gates

continuously transfer relevant information through the

sequences chain to make predictions. Being simplified

neural networks, gates generally integrate either a sigmoid

(sigmoid) or hyperbolic tangent (tanh) activation function.

The former transforms the values to fall between the range

of 0 and 1, where 1 means important and 0 means not

important. On the other hand, the tanh function is used to

regulate the network by squishing the values between - 1

and 1. As a matter of illustration, Fig. 1 gives a dis-

cretization of a LSTM memory cell through which the

functioning of LSTM can be visualized. The cell state

working process usually involves three major operations

(steps) achieved by the gates. (1) Considering the output of

the previous cell (hidden unit at the time t - 1) ht-1 and

input data at a given time t, xt, the first step (forget gate)

consists of removing information that are irrelevant to the

cell state (Fig. 1a). The sigmoid squashing function is used

to define the value of that decision ft (Eq. 1). (2) The

second operation consists of input gate (it) and input node

(gt) (see Fig. 1b) that are mainly responsible of the cell

state updating. Therefore, this operation involves selecting

which values to store in the cell state. Specifically, the

sigmoid function is firstly employed to decide which value

to pass through by using Eq. 2. Then, the tanh function is

adopted to decide the level of importance of values that

entered the cell via using Eq. 3. (3) The last operation

(output gate, Fig. 1c) consists of gauging what is adequate

to be output at a certain time. In other words, it decides

what the next hidden state should be. The sigmoid is firstly

operated to find out what parts of the cell state reach the

output (Eq. 4). Then, tanh is employed to give a weightage

of the cell state, which will be multiplied by the output of

the sigmoid gate (Eq. 5). Ultimately, the hidden state is

obtained as a result of this operation, and subsequently, the

new cell state and new hidden state are carried over to the

next time step. In the equations below, W and b represent

the values of weights and biases of the above-mentioned

basic neural networks:

ft ¼ rðWxf xt þWhf ht�1 þ bf Þ ð1Þ

it ¼ rðWxixt þWhiht�1 þ biÞ ð2Þ
gt ¼ tanhðWxgxt þWhght�1 þ bgÞ ð3Þ

ot ¼ rðWxoxt þWhoht�1 þ boÞ ð4Þ
ht ¼ ot tanhðCtÞ ð5Þ

Bi-LSTM is an extension of the conventional LSTM

[18]. It learns bidirectional long-term dependencies

between time steps of time series or sequence data. These

dependencies can be useful in improving model perfor-

mance as the network learns from the complete time series

at each time step. As illustrated in Fig. 2, the Bi-LSTM can

be discretized into two hidden layer networks, one working

in forward direction and the other in the backward direc-

tion. These forward and backward propagations are anal-

ogous to the ordinary feedforward and back-propagation

networks, except that the hidden states for all time steps are

unfolded [17]. Therefore, the main difference between the

Bi-LSTM and the LSTM is that the latter only preserves

information of the past, whereas using the two hidden

states combined, both past and future information can be

preserved at any point in time in Bi-LSTM. In this study,

the bidirectional LSTM scheme was trained using back-

propagation through time (BPTT) [14].

2.2 Sequence patterns definition

As previously mentioned, sequences are a nonindependent

order in the input data; it is thus critical to find a way to

leverage this valuable information to the Bi-LSTM model.

As a main objective of this work was to provide a robust

and accurate dynamic model, two data sequencing schemes

were adopted to comprehensively investigate the aptitude

of both LSTM and Bi-LSTM networks to dynamically

forecast the diameters of jet grouting columns. Let us recall

that the dynamic nature of this prediction stems from the

fact that each time a new vertical measurement is obtained,

it can be used to update the previous state. Specifically, a
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sequence-to-one and sequence-to-sequence systems were

defined (as shown in Fig. 3) and integrated in the LSTM

algorithms. The sequence-to-sequence learning consists of

training the model to convert sequences from one domain

to sequences in another domain. In this case, the output of

the LSTM layer is a sequence, fed into a fully connected

layer. The state of the LSTM consumes each point in the

sequence and considers its previous state. Conversely, in

the sequence-to-one leaning, it is assumed that the output

of the LSTM layer is the last element of the sequence, fed

into a fully connected layer. In other words, it involves

only dealing with the final result after integrating the whole

sequence of a time series.

ht ht

ht

ot

ht-1 ht

Ct

it

ht-1ht-1

Ct-1

(a) (b)

(c)

f

: hyperbolic tangent function

: sigmoid function

: element-by-element multiplication

: element-by-element addition

: memory from the previous state
: forget gate 
: input gate

Ct-1

: output gate

ft
it
ot

xxt

Fig. 1 Descriptive diagram of the functioning of LSTM: a step 1, b step 2 and c step 3
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Fig. 2 Comparison between LSTM and Bi-LSTM networks (recreated after [33]
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3 Case study

3.1 Data acquisition

As previously mentioned, the jet grouting data commonly

used in machine learning are fixed data and not suitable for

time series prediction. However, the field investigation of

jet grouting in Pyroclastic soils performed by [5] represents

an exceptional case to test our models. Their investigation

mainly focused on the effect of single fluid jet grouting on

the soil. To this end, several vertical columns were con-

structed over a depth of 10 m and regularly spaced by a

center-to-center distance of 1.20 m. The columns were

constructed with a constant injection pressure of 45 MPa

and a lifting step of 40 mm. As shown in Table 1, the other

treatment parameters varied from one column to another.

Furthermore, field and laboratory testing programs

revealed that the soil at the construction site was mainly

sandy–silty ashes, rather heterogeneous, with a mean

cohesion of c’ = 54.6 kPa and a mean friction angle of

/’ = 35.4�. The soil compression index was found to have

an average value of 0.223, while the degree of saturation

over the treatment depth ranged from 0.83 to 0.98.

To dynamically account for the variation in soil prop-

erties with depth in this particular case, the original soil

porosity (input variable) was computed at each monitoring

depth using the formula below (Eq. 6). This equation is

derived from the continuity condition applied to the vol-

ume of jet grout column per unit length via considering the

mechanical effects of grouting as well as mixture harden-

ing process [4]. The assessment of this variable is sub-

stantiated by the fact that the soil porosity varies noticeably

with depth [7]. Another reason is to involve the jet–soil

interaction mechanism [32] in the prediction. Given that in

the jet grouting method, each column is a snapshot of the

interaction between the jetting parameters and the soil

properties:

V ¼ ka
nð1� bÞ þ b� nsc

Vj ð6Þ

where V ¼ pD2=4 is the volume of jet column pet unit

length, Vj is the volume of grout injected per unit length,

n is the porosity of the original soil and nsc is the soil

cement mixture porosity. k is the volumetric ratio between

hydrated cement and retained grout (during the jetting

process), which is equal to 0.37. a is the volumetric per-

centage of cement slurry absorbed by the soil, which is set

h(t-1) h(t+1)

x(t-1)

h(t)

x(t) x(t+1)

y

......

Output:

Input:

y(t-1)

h(t-1) h(t+1)

x(t-1)

h(t)

x(t) x(t+1)

y(t) y(t+1)

......

Output:

Input:

(a) (b)

Fig. 3 Schematic illustration of a sequence-to-one and b sequence-to-sequence models

Table 1 Summary of jet columns’ injection parameters

Columns Rot: num.

rotation per

lifting step

Q: flow rate

(10–3 m3/s)

N:
number of

nozzles

d: diameter

of nozzles

(mm)

Dt: injection
time per lifting

step

w: average
rot speed

(rad/s)

Vj: injected volume

grout/unit length (m3/

m)

v: lifting
speed

(mm/s)

C0 1.75** 1.38* 2** 2.00* 7 1.57 0.242* 5.71

C1 1.00* 2.50 1* 3.80** 8 0.79* 0.500 5.00

C2 1.50 2.35 2 2.60 6* 1.57** 0.353 6.67

C3 1.50 2.50** 1 3.80 8 1.18 0.500 5.00

C4 1.00 2.35 2 2.60 6 1.05 0.353 6.67**

C5 1.00 2.50 1 3.80 10** 0.63 0.625** 4.00*

C6 1.50 2.50 1 3.80 10 0.94 0.625 4.00

*Minimum

**Maximum values of each parameters
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to be 0.775. b is the volumetric percentage of soil exca-

vated by the jet action, and the value of b is equal to 0.45.

After the treatment, the operation area was excavated,

and the column diameters were measured at every 0.5 m

depth. This information is crucial because it gives the

variation in column diameters with depth. Moreover, using

the lifting step and lifting speed, the incremental time of

the jet grouting construction at each depth can be deter-

mined, which allows the real-time assessment by using

LSTM architectures. Table 2 provides synoptic statistics of

the jet grout columns diameters investigated.

3.2 Implementation

Considering the two prediction schemes introduced in

Sect. 2.2, a total of 11 input variables were considered for

the simulation, which include the injection parameters

(number of rotations per lifting step (Rot), flow rate (Q),

number of nozzles (N), diameter of nozzles (d), injection

time per lifting step (Dt), average rotation speed (w),

injected volume grout (Vj’), lifting speed (v)), the incre-

mental time, the soil depth and porosity. The output was

the column diameters at specific depths. For the first model

(sequence-to-one regression), all the diameter values

gathered from the first six columns were arranged as a

sequence to predict the diameter of the seventh column

over the implementation depth. For the second model

(sequence-to-sequence regression), the main objective was

to predict the last six values (considering that the data

sequence is regularly defined upwardly following the

monitoring depth of 0.5 m) of the diameter for each of the

seven columns.

Both models were simulated by using MATLAB pack-

ages. The LSTM and Bi-LSTM networks consisted of 300

hidden layers, and both were trained for 300 epochs. This

configuration was selected through a comprehensive pre-

liminary experimentation. The algorithm Adam [25] was

adopted as optimizer. It is a first-order gradient-based

optimization approach that is strongly efficient in mini-

mizing validation loss and RMSE. The initial learning rate

was set to 0.01. Also, the gradient threshold was taken

equal to 1 for preventing the gradients from exploding.

4 Modeling results

4.1 Performance metric

The root-mean-square error (RMSE) is the standard devi-

ation of the prediction errors, which was used as a standard

metric for measuring the performance of the proposed

models:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

ðYobs�YpredÞ2
v

u

u

t ð7Þ

where N is number of data points, Yobs is the observed

value and Ypred is the predicted values by models. This

RMSE is commonly used in forecasting, climatology and

regression analysis to verify experimental results. Mathe-

matically, the RMSE is the square root of the mean square

error (MSE), which is the average squared difference

between the observed values and the values predicted by

the model. The square root is introduced to make scale of

the errors to be the same as the scale of targets. The lower

value of the RMSE implies a better model performance.

4.2 Training process

Indeed, the training processes of LSTM algorithms

embodying either a sequence-to-one or sequence-to-se-

quence systems are quite analogous. Figure 4 shows the

training progress curves pertaining to the sequence-to-se-

quence learning pattern for both LSTM and Bi-LSTM

algorithms. There are no significant differences between

the two approaches regarding either the training loss or the

RMSE of the training process. The loss curves show that

the Bi-LSTM learned slower at the beginning of the

training process but tended to improve and stabilize faster

with time. It is supposed that the Bi-LSTM did not have

access to enough future values at the initiation of the

training, but as this issue progressively resolved, its per-

formance increased accordingly. Overall, it was observed

that the Bi-LTSM performs slightly better than the LSTM.

4.3 Model predictions

This section presents the prediction results achieved by

both the LSTM and Bi-LSTM approaches, which were

simulated considering the sequence-to-one and sequence-

to-sequence patterns. It should be mentioned that originally

the column C6 had four missing values, which were

recovered by the prediction schemes. As can be seen from

Fig. 5, using both the LSTM and Bi-LSTM approaches, the

sequence-to-one model achieved a good prediction to

experimental results, with a RMSE errors (in mm) equal to

Table 2 Range of diameter values per column

Depth (mm) Diameter (mm)

C0 C1 C2 C3 C4 C5 C6

Min 2500 610 890 710 910 680 860 860

Max 8000 780 1040 820 1020 730 1320 1050

Mean – 660 960 750 970 710 1110 950
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15.2585 (Bi-LSTM) and 18.7202 (LSTM). Figure 5a also

depicts the variation in the missing values of column

diameters with depth. Interestingly, for the Bi-LSTM

method, these values are bounded by relatively small error

values, which allows inferring that these predictions are

more reliable in comparison with the LSTM approach. As

the injection parameters remained unchanged throughout

the construction of this column, it can also be speculated

that within the range (depth) concerned by these missing

values, the soil properties varied slightly. However, with

regard to the direction of error variation (see Fig. 5b), it

seems that although having a larger RMSE, the LSTM

approach seems to be more stable.

Figure 6 shows the prediction results of columns

diameters performed using sequence-to-sequence model.

Here also, both the LSTM and Bi-LSTM approaches pro-

vided well predictions to the variation in column diameter

with depth observed by [5]. Figure 7 shows the statistical

analysis of the prediction performance of two models. As

shown in Fig. 7, the average RMSE (in mm) achieved by

the LSTM approach is 27.04198, while that of Bi-LSTM is

21.80673. Furthermore, Fig. 7a, b shows that: (1) in terms

of the LSTM and Bi-LSTM methods, the most accurate

prediction was achieved for columns C3 and C4, respec-

tively; (2) the most centered errors by using LSTM and Bi-

LSTM were observed for columns C0 and C2, respectively;

and (3) column C5 presents the largest error variability

outside the upper and lower quartiles for both methods.

These results demonstrate that the diameter of jet grouting

column can be accurately predicted based on specific input

parameters and using the sequence-to-sequence models.

Both computation schemes (LSTM and Bi-LSTM) are

capable of assessing the variation in jet grouting column
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diameter with depth considering the time lag between each

step. The comparison between LSTM and Bi-LSTM and

physical meaning of the predictions will be discussed in the

following section.

5 Discussion

5.1 Comparison of the performances
between LSTM and Bi-LSTM

From the results abovementioned, it can be clearly seen

that the Bi-LSTM layer performed better than the LSTM.

Table 3 shows an assessment of the predictive performance

of the proposed models using different metrics. The RMSE

and mean absolute error (MAE) values substantiate the

advantage of the Bi-LSTM approach over the LSTM

approach, especially for sequence-to-sequence tasks. But

importantly, the forecast bias metric brings about important

insight into the forecasting process. It should be recalled

that this metric is not able to assess the precision of a

model as it is just an indicator of its predicting quality. As

shown in Table 3, the results of the forecast bias suggest

that the LSTM approach has a tendency to provide

underestimated predictions, while the Bi-LSTM approach

has a tendency to provide overestimated predictions. In

particular, in the sequence-to-sequence scheme, the LSTM

failed to accurately predict (underestimated) the actual

diameter values and yielded relatively larger error com-

pared to the overestimation of the Bi-LSTM. This com-

parison clearly substantiates the advantage of the Bi-LSTM

over the LSTM methods for the sequence-to-sequence

tasks. However, as pointed out earlier, the LSTM method

tended to be more stable throughout the experimentation

process.

To further demonstrate the prominent ability of LSTM-

based models to achieve the real-time assessment of jet

grouting columns diameter in comparison with traditional

methods (machine learning-based), a support vector

regression (SVR) model was selected as a demonstration

for traditional machine learning methods. From Fig. 8, it

can be seen that compared to the SVR that achieved rela-

tively unsatisfactory prediction accuracy, LSTM and Bi-

LSTM models handle sequential data in this case very well.

As shown in Fig. 8, it can be seen that the Bi-LSTM per-

forms better than both the LSTM and SVR in RMSE

prediction, with the respective enhancement being

7.86 mm (21.93%) and 63.86 mm (69.65%). These results

are consistent with the conclusions by [56]. The compar-

ison underpins that the sequential step-by-step jet grouting

process can be well modeled by using the Bi-LSTM

network.

5.2 Physical meaning of the predictions

The physical meaning of the above prediction results is

illustrated by using the graphical illustration provided in

Fig. 9. This drawing was plotted by using the real config-

uration scale, and it can be seen that the predicted diame-

ters (in blue) well overlapped with the observed values.

The variation in diameter with depth (considering the time

lag between each depth/step) for a given column can be
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assessed using the information of columns constructed

entirely (Fig. 9a) or partly (Fig. 9b). As the assessment

predicts the diameter variation in the grouted column, it

can be exploited to tune the treatment parameters accord-

ingly. Indeed, as shown in Fig. 10, the relationship between

the volume of injected grout (Vj) and the column diameter

established using the Bi-LSTM (sequence-to-sequence)

approach was found to be in a good agreement with the

correlation proposed by [5]. In this case, the ability to

predict the relationship between the grout volume and

column diameter was found encouraging, since the

parameters for jet grouting apparatus can be suitably tuned

based on the relevant correlations to ensure the construc-

tion quality of jet grout in terms of the dimension and

profile of columns to be constructed. On the other hand, as

it is well acknowledged that the specific energy better

captures the effects of jet grouting, it is worthy to study a

relation with this parameter, instead of injected volume of

grout, in future study.

5.3 Recommendations

Figure 11 illustrates a simple canvas for the practical

implementation of the proposed approach for evaluating

the real-time diameters of jet grouting columns, which can

be divided into three main steps.

Step 1: collecting the input data. This procedure can be

divided into two phases representing the core facets of

the jet grouting method. (1) The first component involves

performing site investigations beforehand and gathering

relevant soil data. It is recommended to generate a

continuous subsoil characterization based on in situ test

techniques such as cone penetration test (CPT). This

geotechnical characterization approach is advantageous

because it conjugates practicality and effectiveness. (2)

The second component of the procedure refers to the
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Table 3 Performance evaluation using different metrics

Models Layers Metrics

RMSE MAE Forecast

bias

Sequence-to-one LSTM 18.7202 38.0899 - 49.4485

Bi-

LSTM

15.2585 14.4802 36.0810

Sequence-to-

sequence

LSTM 35.6487 23.9359 - 166.2728

Bi-
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27.8309 18.74760 8.0994
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traditional in situ jet grouting testing. This procedure is

important as it provides the initial jetting parameters and

the experimental diameters that will be used as target

variable during the Bi-LSTM training process.

Step 2: processing the input data using either the

sequence-to-one Bi-LSTM or sequence-to-sequence Bi-

LSTM depending on the design purpose, as discussed in

Sect. 5.2.

Step 3: adjusting the operational parameters based of the

results of step 2, accordingly obtaining an accurate

prediction of future values.

6 Conclusions

This study explored the capability of Bi-LSTM to provide

an accurate estimate of the diameter of jet grouting col-

umns. The specific goal was to dynamically predict the

variation in jet column with depth considering the time lag

between each step. Moreover, the performance of the Bi-

LSTM was compared against that of LSTM and SVR

methods. The following conclusion can be drawn:

1. In the proposed framework, two models including the

sequence-to-one and sequence-to-sequence were inves-

tigated and tested using a case study of the implemen-

tation of jet grouting in soft soil. The results showed

that the diameter of jet grout column can be accurately

forecast using the two models. Both the LSTM and Bi-

LSTM have the ability to efficiently evaluate the
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variation in jet grout column diameter with depth

considering sequential data.

2. The results among Bi-LSTM, LSTM and SVR methods

showed that Bi-LSTM performs better than both the

LSTM and SVR in RMSE prediction, with the

improvement being 9.8% and 24.3%, respectively.

This result substantiates the efficacy of modeling

sequential step-by-step jet grouting process using the

Bi-LSTM.

3. The proposed prediction schemes have proven to be

reliable and flexible. They can readily adapt to new

data and provide future occurrences of diameter

variation, which has the practical advantage to enable

the operational parameters tuning.

4. To further enhance the forecasting performance of the

proposed models, it is recommended to include more

parameters representative of the variation in soil

properties with depth (such as CPT values). The

continuous geotechnical characterization of the soil is

thus an imperative.
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