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Abstract
This study first presents accuracy assessments of two default models proposed in two popular soil nail wall design

specifications and their calibrated versions for estimation of maximum soil nail loads under operational conditions. The

assessments are based on a general nail load database reported in the literature. Evaluation results showed that predictions

using the default and calibrated models are unsatisfactory as the dispersions are high to extremely high. Simple calibration

terms are introduced to the calibrated models for performance enhancement. The recalibrated models are shown to be

accurate on average, and the prediction dispersions are significantly reduced. The model biases for the above six models are

demonstrated to be lognormal random variables. Individual reliability-based designs for the nail pullout and nail-in-tension

limit states using the six models are carried out. System reliability of nails against internal failures is also explored. The

correlation between the two limit states is investigated, and its influences on system reliability evaluation are discussed.

The practical value of model calibration is demonstrated as using the recalibrated models for nail designs leads to the most

cost-effective design outcomes. This study represents a solid step toward development of reliability-based design

framework for soil nail walls.

Keywords Internal limit states � Maximum nail load � Model calibration � Model uncertainty � Soil nail wall �
System reliability

1 Introduction

Estimation of the maximum tensile load that a soil nail

would sustain during its service life is an important step for

design of soil nail walls against internal failures, including

nail pullout and nail-in-tension limit states. In China, soil

nail walls are usually designed according to either one of

the two national specifications: Technical Specification for

Retaining and Protection of Building Foundation Excava-

tions by China Academy of Building Research (CABR) [7]

or Specifications for Soil Nailing in Foundation Excava-

tions by China Association for Engineering Construction

Standardization (CECS) [10]. Each specification proposes

a default model for estimation of soil nail loads. In this

study, the nail load models in the two specifications are

referred to as the default CABR and CECS models,

respectively.

The current design practice for soil nail walls is still

based on deterministic allowable stress methods, e.g.,
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[7, 10, 19, 33]. However, reliability-based design approa-

ches have been advocated in recent years, e.g.,

[13, 18, 21, 23, 38, 50, 52, 55]. Characterizing nail load

model uncertainty is a precursor for reliability-based

design of soil nail walls against internal failures. Model

uncertainty has been widely recognized as one of the pri-

mary sources of uncertainty in geotechnical reliability-

based designs, e.g., [12, 14, 15, 35]. Usually, the model

uncertainty of a model can be quantitatively characterized

by comparing measured values against its predicted values.

By defining the ratio of measured to predicted value as

model bias, the mean and coefficient of variation (COV) of

a model bias represent the on-average prediction accuracy

and prediction dispersion of the model, respectively.

Obviously, it is preferred to have as many measured values

as possible for estimating the statistics of a model bias.

That is to say, as more measured values are cumulated,

statistics of a model bias should be updated from time to

time.

The prediction accuracy of the default CABR and CECS

nail load models was evaluated by Yuan et al. [45] using

144 measured nail loads they collected from the literature.

They concluded that overall the default CABR and CECS

are conservative as they would overestimate nail loads by

about 40% on average. In addition, the dispersion in pre-

diction using the two default models is very high. They

then proposed empirical correction terms to the two default

models for accuracy improvement. In this study, their

corrected models are referred to as the calibrated CABR

and CECS models, respectively. Recently, Lin et al. [28]

compiled a general nail load database containing a total of

312 measured nail load data they collected from the liter-

ature, including the 144 data reported by Yuan et al. [45].

They first utilized the broad database to both evaluate and

calibrate the default Federal Highway Administration

(FHWA) simplified soil nail model. Then, they developed

an artificial neural network model for mapping soil nail

loads. Through that, the opportunity of applying machine

learning approaches in design of soil nail walls was

demonstrated. Reviews of prediction models for soil nail

loads can be found in Yuan et al. [45] and Lin et al. [28].

The first research task this study takes on is to reevaluate

the accuracies of the default and calibrated CABR and

CECS models using the general nail load database estab-

lished by Lin et al. [28]. It is found that both the default and

calibrated models are unsatisfactory due to excessively

high dispersions in prediction. Simple empirical correction

terms are then introduced to the calibrated models for

performance enhancement. The recalibrated models are

shown to be accurate on average and have much less pre-

diction dispersions.

As the model uncertainty on the load side is character-

ized, the second research task in this study is to perform

thorough reliability analysis and design of soil nail walls

against internal failures (i.e., nail pullout and nail-in-ten-

sion limit states) using the default, calibrated, and recali-

brated models. Reliability analyses of individual internal

limit states of soil nail walls and similar reinforced soil

walls have been extensively reported, for example Cha-

lermyanont and Benson [11], Low [30], Basha and

Sivakumar Babu [2], and Kim and Salgado [16, 17].

Nevertheless, none has used the CABR and CECS nail load

models for reliability analyses. Hence, previous results

may not be straightforwardly indicative to soil nail wall

design engineers in China. In addition, only a few previous

studies considered model uncertainty in the analyses.

Another point of interest is the system reliability of nail

internal stability. Here, system reliability is defined as the

reliability that neither of the nail pullout and nail-in-tension

failures occurs. This definition is consistent with those by

Zevgolis and Daffas [50], and Yuan and Lin [44]. Zevgolis

and Daffas [50] presented system reliability analyses of

soil nail walls; however, model uncertainty was not

addressed in their study. Yuan and Lin [44] investigated the

internal system reliability of nails designed in USA, where

the nail load model is very different from the CABR and

CECS models used in China. System reliability analyses

were also reported for other reinforced soil walls, e.g.,

Zevgolis and Bourdeau [47–49]. In this study, the system

reliability of nail internal stability using the CABR and

CECS models is investigated. The two internal limit states

are shown to be correlated as their performance functions

share same nail load terms. The correlation is presented in

detail based on an example wall, including its magnitude

and influences on evaluation of system reliability. Through

the example analysis, the practical value of using the

recalibrated CABR and CECS models for soil nail design is

demonstrated.

2 Performance functions for internal
stabilities of soil nails

A soil nail wall system typically consists of three main

components, including nails, in situ soils, and the wall

facing. Figure 1 shows the cross-sectional profile of a

typical soil nail wall, which is usually divided into two

zones, i.e., a passive zone and an active zone, by a potential

slip surface. In the two soil nail wall design specifications

in China [7, 10], the potential slip surface is assumed to be

planar. The same assumption is adopted in the Federal

Highway Administration (FHWA) soil nail wall design

manual [19] and many studies (e.g., [21, 25, 36, 38, 44])

reported in the literature. The soil mass in the active zone

tends to slide along the slip surface, which exerts active

earth pressure to the facing of the wall. As nails are
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structurally connected to the facing, the earth pressure

acting on the facing propagates to nails, resulting in tensile

loads along soil nails under operational conditions. As

such, two limit states must be considered for the internal

stability of soil nails, as described in the following.

2.1 Nail pullout limit state

When the maximum tensile load that a nail carries exceeds

its ultimate pullout capacity, the nail fails due to pullout.

Suppose a nail is subjected to both dead load and live load,

then the performance function for the pullout limit state,

gp, can be formulated as (e.g., [44]):

gp ¼ kpPn � kDTD � kLTL ð1Þ

where Pn, TD, and TL are predicted pullout capacity, dead

load, and live load of a nail, respectively, and kp, kD, and
kL are model biases accounting for discrepancies in Pn, TD,

and TL from their true values, respectively. Commonly,

model bias is defined as the ratio of measured to predicted

value of the variable of interest.

For the ultimate pullout capacity, it can be computed as

[7, 10, 19, 33]:

Pn ¼ pDLequ ð2Þ

where D is nail drill hole diameter; Le is effective nail

length as shown in Fig. 1, and qu is ultimate bond strength

at the nail–soil interface. Both the CABR and CECS soil

nailing design specifications suggest preliminary values for

qu based on soil type and provide guidance on how to select

the qu value for nail design.

For nail dead load, TD, different default computation

models are adopted in the CABR and CECS design spec-

ifications. For CABR, the default nail load model is

expressed as [7]:

TD ¼ fgPaShSv= cos i ð3Þ

where f is a load reduction factor accounting for wall

facing inclination and overall soil stiffness; g is a load

adjustment factor accounting for the overall effect of wall

height, nail depth, nail tributary area, and total number of

nail rows; Pa is active earth pressure using Rankine’s

theory; Sh and Sv are horizontal and vertical nail spacing,

respectively, and i is nail inclination angle. For the load

reduction factor, f, it is computed as

f ¼
tan 45� � aþ/m

2

� �
1

tan 45��a�/m
2ð Þ �

1
cot að Þ

� �

tan2 45� � /m

2

� � ð4Þ

where a is wall face batter angle from the vertical and

/m ¼
Pj¼k

j¼1 hj/j=
Pj¼k

j¼1 hj is the weighted average soil

friction angle for soil layers within the height of the wall.

Here, hj and /j are thickness and soil friction angle of the

jth soil layer, respectively, and k is the number of soil

layers within the wall height. Yuan et al. [45] showed that

for vertical walls where a ¼ 0�, f is equal to 1, irrespective

of /m, while for inclined walls where a[ 0�, the more

inclined the wall, the stiffer the soil, the smaller the f value.
The load adjustment factor, g, is a nail-specific param-

eter. For nails in the jth row from the top of the wall, the

load adjustment factor, gj, is computed as

gj ¼ ga � ga � gbð Þ zj
H

ð5Þ

where gb is an empirical constant that can be selected

between 0.6 and 1.0 by the design engineer; zj is the depth

of the jth row nails; H is wall height; and ga is another

empirical factor calculated as:

ga ¼
Pj¼N

j¼1 H � gbzj
� �

PajAjPj¼N
j¼1 H � zj

� �
PajAj

ð6Þ

where Aj is the tributary area of the jth nail and N is the

total number of nail rows. In practice, for simplification

purposes, gb is commonly taken as 1.0 [45]. This results in

ga ¼ 1:0 and thus g ¼ 1:0. In this study, g ¼ 1:0 is

adopted.

In the CECS specification, the default model to calculate

the nail load TD is:

TD ¼
ZzþSv=2

z�Sv=2

PzShdzþ KaqsShSv ð7Þ

where Pz is the empirical earth pressure at depth z; Ka is the

active earth pressure coefficient; and qs is the surcharge

dead load if exists. For 0� z� 0:25H, Pz ¼ z
0:25H Pm,

whereas for z[ 0:25H, Pz ¼ Pm. Parameter Pm is an

Fig. 1 Cross-sectional profile of a typical soil nail wall
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empirical term relating to soil types (i.e., cohesive or

cohesionless) that are classified based on c=cH with c

being soil cohesion. If c=cH[ 0:05, the soil is conceived

as ‘‘cohesive’’ and Pm is calculated as

0:2dcH�Pm ¼ dKa 1� 2c

cH
ffiffiffiffiffiffi
Ka

p
	 


cH� 0:55dKacH ð8Þ

where d is a depth factor equal to z=0:25H if z\0:25H, and

1 if z� 0:25H. On the other hand, if c=cH� 0:05, the soil

is conceived as ‘‘cohesionless’’ and the corresponding Pm is

Pm ¼ 0:55dKacH ð9Þ

Yuan et al. [45] compiled a database containing 147

measured maximum nail loads from fully instrumented soil

nail walls built and monitored in China. They then evalu-

ated the accuracies of the default CABR [Eq. (3)] and

CECS [Eq. (7)] models based on their database. The two

default models were shown to overestimate the maximum

nail loads by about 40% on average with high to very high

dispersions in the predictions. Here, the level of dispersion

is based on the four-tier classification scheme proposed by

Phoon and Tang [35]. To improve the prediction accuracy,

Yuan et al. [45] introduced correction factors, M1, to each

of the two default models for calibration. For the CABR

model, the correction factor is M1 ¼ C0 ln z=Hð Þ þ Cz,

while for the CECS model,

M1 ¼ C0 exp Czz=H þ Caa=a0ð Þ. Here, C0, Cz, and Ca are

all empirical constants, which can be determined through

optimization using the compiled database and a0 is a

constant used to normalize wall face batter angle a. As
such, their calibrated CABR and CECS models are,

respectively, expressed as [45]:

TD ¼ M1fgPaShSv= cos i

¼ C0 ln
z

H

� �
þ Cz

h i
fgPaShSv= cos i ð10Þ

TD ¼M1

ZzþSv=2

z�Sv=2

PzShdzþ KaqsShSv

¼ C0 exp Czz=H þ Caa=a0ð Þ½ �
ZzþSv=2

z�Sv=2

PzShdzþ KaqsShSv

ð11Þ

When a soil nail wall is subjected to uniformly distributed

surcharge live load, qL, on the top of the wall in addition to

gravitational dead loads, the term TL in Eq. (1) can be

computed as [7, 10]:

TL ¼ KaqLShSv ð12Þ

It is re-clarified here that Eqs. (3) and (10) are referred

to as the default and calibrated CABR models,

respectively; Eqs. (7) and (11) are referred to as the default

and calibrated CECS models, respectively, for the estima-

tion of maximum nail loads under operational conditions.

2.2 Nail-in-tension limit state

The same load terms apply to the nail-in-tension limit state.

When the maximum tensile load in a nail exceeds its ten-

sile yielding capacity, the nail is said to fail due to tension.

The performance function for nail-in-tension limit state, gt,

is written as (e.g., [44]):

gt ¼ ktTt � kDTD � kLTL ð13Þ

where Tt is nail tensile yielding capacity; kt is model bias

for Tt; and TD, TL, kD, and kL are the same as those in

Eq. (1) for the pullout limit state. The term Tt can be

computed as (e.g., [7, 10, 19, 21]):

Tt ¼ pd2fy=4 ð14Þ

where d is nail bar diameter and fy is tensile yielding

strength of the steel bar. Note that the grout column also

contributes to the total tensile yielding capacity of a nail;

nevertheless, the contribution from the grout column is far

less than that from the steel bar (nail tendon), and as a

result, it is commonly neglected in practice [21].

2.3 System reliability of internal stability

A nail is said to fail due to pullout when the maximum

tensile load exceeds the ultimate pullout capacity. In this

case, we have gp\0. Therefore, the probability of failure

due to pullout is the probability of gp smaller than 0, which

is denoted as Prðgp\0Þ in this study. Correspondingly, the

reliability index for the nail pullout limit state can be cal-

culated as bp ¼ �U�1 Prðgp\0Þ
� �

, where U�1ðÞ is the

inverse of the standard normal cumulative distribution

function. Similarly, with performance function Eq. (13),

we can define the probability of failure and the reliability

index for the nail-in-tension limit state as Prðgt\0Þ and

bt ¼ �U�1 Prðgt\0Þð Þ.
For system reliability of nail internal stability, it requires

that neither nail pullout nor nail-in-tensile failures take place.

As such, the system reliability index can be computed as:

bsys ¼ �U�1 1� Prðgp [ 0 \ gt [ 0Þ
� �

ð15Þ

Note that the same definition of soil nail internal system

reliability was adopted by Zevgolis and Daffas [50], and

Yuan and Lin [44]. As the performance functions gp
(Eq. 1) and gt (Eq. 13) share the same load terms, they are

expected to correlate with each other. This correlation

might have an influence on bsys, which will be investigated

later in this study.
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Fig. 2 Cumulative percentage distributions of design parameters in the nail load database compiled by Lin et al. [28]
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3 Databases of measured nail loads

The section presents a brief review of a large database of

measured nail loads compiled by Lin et al. [28]. Their

database is used in this study for twofold: (1) to reassess

the accuracies of both the default and calibrated CABR and

CECS nail load models and (2) to recalibrate these models

for accuracy improvement.

The database by Lin et al. [28] contains a total of 312

measured maximum nail load data they collected from fully

instrumented soil nail walls reported in the literature. Note

that the load data were for nails under working conditions,

rather than failure conditions. Also contained in the data-

base are design parameters such as soil type, wall geometry,

soil shear strength property, nail configuration, and external

loading condition. The wall geometry mainly refers to wall

height (H), face batter angle (a), and back slope angle (h).
The soil shear strength property data include soil friction

angle (/), soil cohesion (c), and soil unit weight (c). The
nail configuration data are nail length (L), drill hole diam-

eter (D), nail depth (z), nail horizontal and vertical spacing

(Sh and Sv), and nail inclination angle (i). The external

loading condition mainly refers to the surcharge load (qs) on

the top of a wall. The cumulative percentage distributions of

these parameters are shown in Fig. 2. Table 1 summarizes

the minimum, mean, median, maximum, and typical values

of the above 12 design parameters.

In the database, nails were installed in a wide variety of

soils, including sand, silty sand, silt, silty clay, clayey soils,

and even soft clays and pebble boulders or weathered

sandstones. For wall geometry, most of the walls were

from 6 to 15 m high with steep or vertical facing structures

and horizontal back slopes. For soil strength properties, the

soil friction angles ranged widely from 0� to 40� with both

the mean and median about 30�. The soil cohesions were

typically less than 20 kPa; few were up to 40 kPa. For nail

design configurations, the normalized nail length (L=H)

ranged from 0.13 to 2.0, with a typical range of 0.7 to 1.2.

The nail drill hole diameters (D), nail tributary areas (ShSv),

and nail inclination angles (i) typically ranged from

100 mm to 150 mm, 1.5 m2 to 2.5 m2, and 10� to 15�,
respectively. A few walls were subjected to surcharge loads

larger than 60 kPa; the rest were under self-weight loading

conditions, i.e., qs ¼ 0 kPa. In addition, the database also

specifies the wall type, i.e., traditional or hybrid soil nail

walls. Traditional soil nail walls refer to walls with soil

nails as the sole reinforcing elements, whereas hybrid walls

jointly use soil nails and other reinforcing elements such as

geosynthetics or ground anchors for reinforcement.

It is possible to split the entire dataset into several data

subsets based on wall working conditions, i.e., traditional or

hybrid wall types, cohesionless or cohesive soils, and with

surcharge or without surcharge. Nevertheless, Yuan et al.

[45] examined the accuracy of the default and calibrated

CABR and CECS nail load models under different wall

working conditions and concluded that overall the predic-

tion accuracy of these models is not significantly influenced

by wall working conditions. Therefore, this study takes all

the nail load data as one dataset for the reassessment and

recalibration of the CABR and CECS models. This oppor-

tunity is left for future study. Readers are directed to Lin

et al. [28] for detailed description of the nail load database.

4 Reassessment and recalibration of current
models

In this study, the accuracy of a model is characterized as a

model bias, which is defined as the ratio of measured to

predicted maximum nail load, i.e., kD ¼ Tm=TD. The

Table 1 Summary of the minimum, mean, median, maximum, and typical values of the soil nail wall design parameters in the general database

compiled by Lin et al. [28]

Category Parameter Minimum Mean Median Maximum Typical

Wall geometry H (m) 4 9.9 9 22.4 6–15

a (�) 0 6.4 6 22 0

h (�) 0 2.7 0 33 0

Soil strength property / (�) 0 27.0 30.7 40 28–38

c (kPa) 0 11.4 9 40 0–20

c (kN/m3) 16 19.3 19.6 21 18–20

Nail configuration L=H 0.13 0.93 0.89 2.00 0.7–1.2

D (mm) 63 131.6 130 305 100–150

z=H 0.1 0.5 0.5 1.0 N/A

ShSv (m
2) 0.56 1.98 1.96 3.42 1.5–2.5

i (�) 0 12.2 12 25 10–15

Surcharge qs (kPa) 0 11.1 0 127 0
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measured nail load (Tm) is directly taken from the database

by Lin et al. [28], while the predicted nail load (TD) is

computed using the CABR and CECS models. The accu-

racy of the default and calibrated CABR and CECS models

is firstly reassessed in Sect. 4.1, followed by recalibration

of the models in Sect. 4.2. Section 4.3 characterizes the

statistical distributions of the model biases.

4.1 Model reassessment

The measured nail loads, Tm, are plotted against predicted

loads, TD, in Fig. 3a and b using the default CABR and

CECS models, respectively. Overall, the data points in the

figures scatter widely from less than Tm=TD ¼ 0:1 to over

Tm=TD ¼ 10. The majority fall between Tm=TD ¼ 0:2 and

Tm=TD ¼ 2. This suggests that predictions using both

models are dispersive. The second visual observation is

that the scattering of predictions using the default CECS

model is less than that using the default CABR.

The means and coefficients of variation (COV) of model

biases (kD) are computed as 1.26 and 1.453 for the default

CABR model, respectively, and 0.97 and 0.846 for the

default CECS model, respectively. This is interpreted as

that the default CABR model underestimates the maximum

nail load by about 26% on average; moreover, the disper-

sion in its predictions is extremely high (i.e., bias COV

equal to 1.453[ 0.9) according to the ranking

scheme proposed by Phoon and Tang [35]. However, for

the default CECS model, it is slightly conservative on

average and the prediction dispersion is high (i.e., bias

COV between 0.6 and 0.9). These computation outcomes

quantitatively confirm the earlier visual observation that

the default CECS model has a better prediction accuracy

than that of the default CABR model.

The very high dispersion in predictions using the two

default models is neither unexpected nor uncommon. Allen

and Bathurst [1] showed that the default AASHTO sim-

plified method for estimation of geosynthetic loads has a

bias COV ranging from 0.919 to 1.46, depending on soil

type. Note that for mechanically stabilized earth walls, the

soil to be reinforced is engineered and thus can be expected

to have much less variability than the case for soil nail

walls where the soil is in natural conditions. In general, as

have been pointed out by Lin et al. [24, 28] and Yuan et al.

[45, 46], the dispersion could be attributed to underlying

model uncertainty, wide variety of soil types, in situ soil

spatial and temporal variability, state of in situ soils,

variation in time to collect the load data, workmanships in

wall construction and monitoring instrument setup,

designed margins of safety, etc.

Figure 4 shows the plots of kD versus TD using the two

default models. Visually, kD tends to decrease as TD
increases. The same observation is made for both models.

Typically, the default models tend to underestimate

ðkD [ 1Þ the nail load if TD is small, but overestimate

ðkD\1Þ it if TD is large. Spearman’s rank correlation tests

are applied to the datasets in Fig. 4. The results show that

the Spearman’s q and the p values are - 0.714 and 0.000,

respectively, for the default CABR model, and- 0.355 and

0.000, respectively, for the default CECS model. Both the p

values are less than 0.05, indicating that at a level of sig-

nificance of 0.05, kD is negatively correlated with TD. This

type of correlation has been widely reported for various

geotechnical models, e.g., [26, 27, 32, 34, 39–42, 45, 46].

Lin and Bathurst [22] and Yuan and Lin [44] demonstrated

that ignoring the negative correlation between kD and TD
will result in underestimation of the design reliability, and

thus the error is on the safe side.

(a)

(b)

Fig. 3 Measured nail load (Tm) versus predicted nail load (TD) using
default, calibrated, and recalibrated models: a CABR, and b CECS
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The same database is used to reassess the accuracy of

the previously calibrated CABR and CECS models, i.e.,

Equations (10) and (11), respectively. Although the values

of the constants (C0, Cz, and Ca) that appear in the equa-

tions were reported by Yuan et al. [45], those values were

determined using 144 measured nail load data that are now

a part of the general database that is adopted in this study.

To allow fair assessments and comparisons, the values of

the constants are first re-determined using the general

database; then, with the re-determined constants,

accuracies of Eqs. (10) and (11) are evaluated. The re-

determination of the values for C0, Cz, and Ca is carried out

to simultaneously meet two requirements: (1) mean of kD is

equal to 1 and (2) COV of kD is minimized. The optimal

values are found to be C0 ¼ �1:267 and Cz ¼ 0:138 for the

CABR model [Eq. (10)], and C0 ¼ 2:104, Cz ¼ �1:326,

and Ca ¼ �2:601 for the CECS model [Eq. (11)]. Note

that a0 in Eq. (11) is taken to be 10�.
With these optimal values for the constants, Eqs. (10)

and (11) are then used to compute the TD values. For

comparison purposes, the Tm versus TD plots using the two

calibrated models are also shown in Fig. 3a and b. Visu-

ally, in the figures, the data points by the two calibrated

models are moved toward the 1:1 correspondence lines and

thus the spreads are much less than those by the two default

models. Quantitatively, the mean and COV of kD are cal-

culated to be 1.00 and 0.843, respectively, for the cali-

brated CABR, and 1.00 and 0.678, respectively, for the

calibrated CECS. Both the calibrated CABR and CECS

models are now accurate on average. Moreover, the pre-

diction dispersions of both calibrated models are greatly

reduced, especially for the CABR models, i.e., 1.453 (de-

fault) versus 0.846 (calibrated). These outcomes demon-

strate that introducing a simple calibration could

remarkably enhance the prediction accuracy of a model.

Again, Spearman’s rank correlation tests are applied to

investigate the statistical correlations between kD and TD
datasets for the two calibrated models. The Spearman’s q
and p values are - 0.535 and 0.000 for the calibrated

CABR model, respectively, and - 0.177 and 0.002 for the

calibrated CECS model, respectively. The correlation

between kD and TD still exists for both calibrated models.

This is an undesirable calibration outcome.

The reassessment outcomes for the default and cali-

brated CABR and CECS models are summarized in

Table 2. Both models, regardless of default or calibrated,

are concluded to be unsatisfactory due to biased on-average

prediction accuracy, high to very high prediction disper-

sion, and presence of correlation between model bias and

predicted value. A further calibration is thus warranted.

4.2 Model recalibration

Two methods have been widely adopted for model cali-

bration in the geotechnical literature. Both introduce a

correction factor to the model. The first approach, referred

to as the general model factor approach, is to regress the

model bias against the final predicted value, while the

second approach is to regress the model bias against each

model input parameter. This study adopts the second

approach for recalibration of the previously calibrated

CABR and CECS models. Technical details of these two

calibration methods can be referenced to, e.g., Dithinde

(a)

(b)

Fig. 4 Plots of model bias, kD, against predicted nail load, TD, using
default, calibrated, and recalibrated nail load models: a CABR and

b CECS
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et al. [12]. With a broad nail load database, we can test the

bias of a model equation not only against its input

parameters, but also against those that do not appear in the

equation formulation. This provides us a precious oppor-

tunity to go beyond the existing model structure and look at

the model accuracy within a broader context.

Figures 5 and 6 show the plots of model bias versus 12

design parameters (i.e., H, a, h, /, c, c, L, D, z, i, ShSv, and
qs) for the calibrated CABR and CECS models, respec-

tively. Spearman’s rank correlation tests are applied to the

data in the figures. The test outcomes are summarized in

Table 3. For the calibrated CABR model case, the model

bias, kD, is statistically correlated to design parameters

such as H, h, /, c, c, L, D, i, and ShSv at a level of sig-

nificance of 0.05. However, for the calibrated CECS model

case, kD is correlated with design parameters such as h, /,
c, and i at the same level of significance. Therefore, extra

correction factors, M2 ¼ f H; h;/; c; c; L;D; i; ShSvð Þ and

M2 ¼ f h;/; c; ið Þ, can be introduced to the calibrated

CABR (Eq. 10) and CECS (Eq. 11) models, respectively,

for accuracy improvements.

Three further steps are taken in this study to avoid

developing overly complicated formulations for M2. First,

it is assumed that M2 can be simplified as M2 ¼ f Hð Þf hð Þ
f /ð Þf cð Þf cð Þf Lð Þf Dð Þf ið Þf ShSvð Þ and M2 ¼ f hð Þf /ð Þf cð Þ
f ið Þ for the calibrated CABR and CECS models, respec-

tively. Second, the form of each f xð Þ is taken as one of the

following four simple equations, including exponential

(f xð Þ ¼ aebx), linear (f xð Þ ¼ axþ b), logarithm (f xð Þ ¼
alnxþ b), and power (f xð Þ ¼ axb). Third, model bias kD is

regressed against each correlated design parameter using

the above four simple equations. The coefficient of deter-

mination, R2, for each regression is computed; the result is

summarized in Table 3. As shown, for the calibrated

CABR case, the R2 values are 0.35 (Linear) and 0.13

(Exponential) for kD against back slope angle h and soil

cohesion c, respectively; both are greater than 0.10.

However, the R2 values for other scenarios are small. This

indicates that M2 in this case can be further simplified as

M2 ¼ f hð Þf cð Þ without losing significant correction preci-

sion practically, where f hð Þ and f cð Þ are the simple linear

and exponential functions, respectively. Similarly, M2 for

the calibrated CECS model case can be taken as M2 ¼ f hð Þ
where f hð Þ in this case is also the simple linear function.

Taking M ¼ M1 �M2, the recalibrated CABR and CECS

models can be, respectively, formulated as:

TD ¼MfgPaShSv
cos i

¼ C0 ln
z

H

� �
þ Cz

h i h
h0

þ Ch

	 

exp

Ccc

c0

	 


fgPaShSv= cos i

ð16Þ

TD ¼M

ZzþSv=2

z�Sv=2

PzShdzþ KaqsShSv

¼C0

h
h0

þ Ch

	 

exp

Czz

H
þ Caa

a0

	 
 ZzþSv=2

z�Sv=2

PzShdz

þ KaqsShSv

ð17Þ

where C0, Cz, Ch, Cc, and Ca are model parameters to be

determined, and a0 ¼ 10�, h0 ¼ 10�, and c0 ¼ 10 kPa are

empirical constants used to make the correction term M

dimensionless.

Following the same criteria as clarified earlier, the

empirical model parameters in Eqs. (16) and (17) are

determined as those minimizing the COVs of kD while

maintaining means of kD of one. All the 312 nail load data

are randomly divided into two data groups: a training data

group and a validation data group. The training data group

is used to calibrate the model parameters in Eqs. (16) and

(17), while the validation data group is used to validate the

recalibrated models. Figure 7 shows the plots of Tm versus

TD for both data groups where the training data group takes

up 70% of the total data and the remaining 30% are for the

validation data group. Note that TD for the validation data

case is computed using Eqs. (16) and (17) with model

parameters determined using the training data group. The

scatter plots in Fig. 7 for both data groups visually follow

the same trends and are highly comparable; thus, the

recalibrated models are visually validated. To further val-

idate the recalibrated models, kD values based on the

training and validation data groups are compared. For the

recalibrated CABR model, the mean and COV of kD are

computed to be 1.00 and 0.636, respectively, based on the

training data group, and 0.96 and 0.844, respectively, based

on the validation data group. For the recalibrated CECS

model, these values are 1.00 and 0.691, and 1.08 and 0.486.

The Mann–Whitney tests are applied to the training and

validation bias datasets, and the results show that the two

datasets do not significantly differ from each other at a

level of significance of 0.05. Therefore, the two recali-

brated models are quantitatively validated.

Figure 7 only represents one realization of randomly

splitting the measured data. Now, the analyses are extended

in two aspects. First, four data-splitting scenarios are

considered, i.e., training versus validation data percentages

are, respectively, set to be 60% versus 40%, 70% versus

30%, 80% versus 20%, and 100% versus 0%. Second, for

each data-splitting scenario, one thousand realizations are

carried out. The analysis results of the determined model

parameters and the corresponding biases with respect to

different training and validation data scenarios are sum-

marized in Tables 4 and 5, respectively, for both the
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Fig. 5 Plots of model bias kD for the calibrated CABR model against different design parameters
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Fig. 6 Plots of model bias kD for the calibrated CECS model against different design parameters
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recalibrated CABR and CECS models. The corresponding

histograms of the determined model parameters and the

biases are plotted in Figs. 8 and 9. Clearly, the means of

the determined model parameters and the biases for the

three data-splitting scenarios, i.e., 60% versus 40%, 70%

versus 30%, and 80% versus 20%, are very close to those

for the 100% versus 0% data scenario. This again validates

the two recalibrated models. Therefore, from hereafter,

only the model parameters based on the 100% versus 0%

data scenario are used for further analyses.

For the two recalibrated models, the optimal values are

determined as C0 ¼ �0:616, Cz ¼ 0:126, Ch ¼ 1:772, and

Cc ¼ �0:171 for the CABR case, and C0 ¼ 0:807,

Cz ¼ �1:199, Ch ¼ 2:143, and Ca ¼ �0:260 for the CECS

case. With these values, the recalibrated CABR and CECS

models are used to predict the nail loads TD, which are

plotted against the measured values Tm in Fig. 3. Visually,

the recalibrated models have the least dispersions among

all models. The means and COVs of kD are 1.00 and 0.689

for the recalibrated CABR model (Eq. 16), respectively,

and 1.00 and 0.630 for the recalibrated CECS model

(Eq. 17), respectively. For the convenience of compar-

isons, the recalibration outcomes are also shown in

Table 2. The COVs of kD are significantly reduced, espe-

cially for the CABR case. Figure 4 shows the plots of kD
versus TD using the two recalibrated models. Again,

Spearman’s rank correlation tests are carried out and the

results show that the Spearman’s q and p values between

kD and TD are - 0.284 and 0.03 for the recalibrated CABR

model, respectively, and - 0.070 and 0.22 for the recali-

brated CECS model, respectively. The statistical correla-

tion between kD and TD is removed for the recalibrated

CECS model, but is still present for the recalibrated CABR

model. Nevertheless, in that case, the p value is 0.03, which

is close to 0.05 and thus a recalibration of the CABR model

by introducing more design parameters into the formula-

tion is not conducted in this study. Obviously, from

Table 2, it is concluded that the recalibrated models are

superior to the default and calibrated models.

4.3 Distribution of model bias

The means and COVs of kD for the default, calibrated, and

recalibrated CABR and CECS models have been charac-

terized in previous sections. In this section, we investigate

the statistical distribution of kD for each model. Figure 10a

and b plots the cumulative distributions for the CABR and

CECS models, respectively. The vertical axis is the stan-

dard normal variable; the horizontal axis is on log scale.

The cumulative distributions appear to be linear, implying

that they follow lognormal distributions. Kolmogorov–

Smirnov (K–S) tests are applied to the datasets, and the

results show that the p values are 0.81, 0.98, and 0.46 for

the default, calibrated, and recalibrated CABR model

cases, respectively, and 0.49, 0.63, and 0.66 for the default,

calibrated, and recalibrated CECS model cases, respec-

tively. All far exceed 0.05. As a result, kD for the six

models can be taken as lognormal random variables.

5 Reliability-based design of internal limit
states

The application of the six models to reliability-based

design of soil nail walls against internal limit states is

presented in this section. Reliability analyses are conducted

first for individual limit states, i.e., nail pullout and nail-in-

(a)

(b)

Fig. 7 Measured nail loads Tm versus predicted nail loads TD using

the training and validation data groups: a the recalibrated CABR

model and b the recalibrated CECS model
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tension limit states; then, the system reliability of nail

internal stability is studied, with consideration of the cor-

relation between the two limit states.

5.1 Basics of the design example

The example wall in [28] is adopted here for reliability-

based design of soil nail internal stabilities. The basic

information of the wall is summarized in Table 6. The wall

is 10 m in height with a horizontal back slope and a ver-

tical facing. Nails are installed in a homogenous soil, which

has a friction angle of / ¼ 33� (mean value) and a unit

weight of c ¼ 18 kN/m3 (mean value). The variations in /
and c are 0.10 and 0.05, respectively, in terms of COV. For

nail configuration, in total seven rows of nails are placed, at

depths of z = 0.5, 2.0, 3.5, 5.0, 6.5, 8.0, and 9.5 m. The

nails are inclined at an angle of 15� to the horizontal and

spaced 1.5 m horizontally and vertically, with drill hole

diameter of 150 mm. The bond strength at the nail–soil

interface is taken as qu ¼ 100 kPa. The tensile yield

strength of nail bar is taken as fy ¼ 520 MPa. The wall is

assumed to be subjected to a surcharge live load of qL ¼ 12

kPa at the top. The nail length (L) and bar diameter (d) are

the two primary design parameters.

The model biases include kp in prediction of nail ulti-

mate pullout capacity Pn, kt in prediction of nail bar tensile

yielding strength Tt, kD in prediction of nail dead load

component TD, and kL in prediction of nail live load

component TL. The means and COVs are, respectively,

assumed to be 1.05 and 0.24 for kp, 1.10 and 0.10 for kt,
and 1.20 and 0.205 for kL. The justification of these

statistics can be found in, e.g., [13, 16–18, 21, 44]. The

statistics of kD can be seen in Table 2. All random vari-

ables are taken to be lognormally distributed.

Figure 11 shows the means and 95% prediction intervals

of the total nail loads (kDTD þ kLTL) computed using dif-

ferent models. For the default CABR model case, both the

mean and 95% prediction intervals of the predicted nail

Table 4 Calibrated outcomes of the optimal model constants with respect to different training and validation data scenarios

Model Data scenario C0 Cz Ch Cc or Ca

Training (%) Validation (%) Mean COV Mean COV Mean COV Mean COV

Recali. CABR 60 40 - 0.650 0.281 0.137 0.423 1.783 0.256 - 0.170 0.261

70 30 - 0.633 0.195 0.133 0.323 1.782 0.195 - 0.170 0.199

80 20 - 0.629 0.143 0.130 0.239 1.772 0.155 - 0.170 0.157

100 0 - 0.616 0 0.126 0 1.772 0 - 0.171 0

Recali. CECS 60 40 0.752 0.782 - 1.072 0.290 2.803 0.338 - 0.279 0.218

70 30 0.777 0.477 - 1.138 0.229 2.556 0.330 - 0.269 0.178

80 20 0.816 0.329 - 1.162 0.168 2.320 0.308 - 0.264 0.139

100 0 0.807 0 - 1.199 0 2.143 0 - 0.260 0

aCc for the recalibrated CABR model and Ca for the recalibrated CECS model

Table 5 Bias statistics estimated using the training and validation datasets under different data percentage scenarios with the recalibrated CABR

and CECS models

Model Data Scenario Bias based on training data Bias based on validation data

Bias mean Bias COV Bias mean Bias COV

Training (%) Validation (%) Mean COV Mean COV Mean COV Mean COV

Recali. CABR 60 40 1 0 0.679 0.056 1.015 0.088 0.715 0.083

70 30 1 0 0.683 0.046 1.006 0.090 0.706 0.105

80 20 1 0 0.688 0.034 1.004 0.103 0.691 0.133

100 0 1 0 0.689 0 N/A N/A N/A N/A

Recali. CECS 60 40 1 0 0.598 0.065 1.023 0.073 0.699 0.090

70 30 1 0 0.612 0.060 1.014 0.080 0.683 0.135

80 20 1 0 0.623 0.046 1.005 0.096 0.660 0.178

100 0 1 0 0.630 0 N/A N/A N/A N/A
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(a)

(b)

Fig. 8 Histogram plots of the determined model parameters for different data-splitting scenarios: a the recalibrated CABR model and b the

recalibrated CECS model
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(a)

(b)

Fig. 9 Histogram plots of the biases for different data-splitting scenarios: a the recalibrated CABR model and b the recalibrated CECS model
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load increase monotonically with increasing depth. For

example, the mean of (kDTD þ kLTL) is about 20 kN for the

first row of nails, but increases to about 160 kN for nails at

the last row. For the default CECS model case, the mean

and the 95% intervals increase first and then keep constant

for nails at depths greater than z=H ¼ 0:25. For example,

the mean in this case stays at about 75 kN from the third

row of nails and after. Nail loads computed by the two

default models exhibit monotonic trends with depth.

However, for the calibrated and recalibrated model cases,

the nail load (kDTD þ kLTL) exhibits a nonmonotonic trend,

i.e., first increases until reaching a certain depth and then

decreases thereafter. Figure 11 demonstrates that calibrat-

ing a default model would change not only the predicted

magnitude of nail load, but also the trend in prediction.

5.2 Nail pullout limit state

The nonuniform nail length pattern is considered for this

design example. The Monte Carlo simulation technique is

adopted for reliability analysis. Nails at each depth are

designed to have a length (L) satisfying a prescribed target

pullout reliability, bp. In this study, bp values are chosen to

be 2.33, 3.09, and 3.54, corresponding to probabilities of

failure of 1/100, 1/1000, and 1/5000, respectively. Note

that bp ¼ 2:33 is the most commonly adopted target pull-

out reliability index in the literature for reinforced soil

walls, e.g., [4, 5, 13, 21, 23, 44]. Table 7 summarizes the

determined nail lengths (L=H) at different depths satisfying

target reliability of bp = 2.33, 3.09, and 3.54 using default,

calibrated, and recalibrated CABR and CECS models. The

case of bp ¼ 2:33 is plotted in Fig. 12 for visual conve-

nience of discussion.

Figure 12 shows that, on the one hand, for the default

CABR model case, the length of nails should increase with

nail depth in order to maintain the same pullout reliability

(bp ¼ 2:33) throughout the entire wall height. For example,

the length is about L=H ¼ 0:63 for nails at the first row

z=H ¼ 0:05, but increases to L=H ¼ 2:34 for nails at the

bottom z=H ¼ 0:95. This suggests that if a uniform nail

length pattern is used, then the most critical nail will be the

one at the bottom. On the other hand, for the calibrated and

recalibrated CABR model cases, nails at the second and

third rows have the largest lengths, whereas those at the

bottom have the shortest lengths. This suggests that under

the uniform nail length pattern, nails at a certain depth will

be the most critical ones while nails at the bottom are the

safest ones. This is a completely different conclusion from

the one drawn for the default CABR model case. This

finding highlights the importance of model calibration in

reliability-based analysis and design of soil nail walls. It

could also be true for other geotechnical structures.

For the CECS cases, overall nail lengths by the default,

calibrated, and recalibrated models do not differ largely

from each other. Given the same bp, the three models give

the same trend for nail lengths along depth, i.e., first

increases and then decreases. In addition, from Fig. 12 and

Table 7, it is found that nail lengths computed using the

calibrated and recalibrated CABR and CECS models are

comparable, regardless of nail depths.

Figure 13 shows that the total nail length,
P

L=H,

increases with increasing target bp, which is as expected.

The
P

L=H using the recalibrated model, regardless of

CABR or CECS, is always the least. This highlights the

practical benefits of model recalibration since using the

recalibrated models for nail pullout design results in the

most cost-effective design outcomes in terms of
P

L=H.

(a)

(b)

Fig. 10 Cumulative distribution plots of model bias kD for the

default, calibrated, and recalibrated models: a CABR and b CECS
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Last, from Table 7, it is found for larger bp such as 3.09

and 3.54, the computed nail lengths using the default

CABR appear to be extremely large, which could be

nonsensical. The excessively large L=H is mainly due to

the extremely high COV of kD for the default CABR.

Indeed, the kD statistics summarized in Table 2 should be

interpreted as ‘‘general’’ rather than project-specific. For

specific projects, prior information can be extracted from

engineering experience and site tests and then applied to

refine the kD statistics (e.g., using Bayesian updating

technique[8, 9]). As such, the COV of kD could be reduced,

which would lead to shorter nails for design.

5.3 Nail-in-tension limit state

Similarly, the target reliability index for the nail-in-tension

limit state is selected to be bt ¼ 2:33, 3.09, and 3.54.

Table 8 summarizes the corresponding nail bar diameter

(d) at different depths satisfying these target bt using the

default, calibrated, and recalibrated CABR and CECS

models. The case for bt ¼ 2:33 is plotted in Fig. 14.

Similar trends as those for the pullout limit state (c.f.

Figure 13) can be observed. For nails at the first row, the

bar diameter satisfying bt ¼ 2:33 is d ¼ 12 mm using both

default CABR and CECS models. For nails at the bottom, d

has to be increased to 49 and 26 mm, respectively, to reach

the same bt. The bar diameter d increases monotonically as

z=H increases. For both calibrated and recalibrated models,

regardless of CABR or CECS, the peak value of d is

reached at the third row. Along depth, d first increases and

then decreases.

Using the default CABR model in this example would

result in nonsensically large bar diameter for higher bt. As
explained earlier, the culprit is the extremely large COV of

the kD. Table 8 also points out the maximum d value for

each design scenario. In practice, bars with the same

diameter are commonly used throughout the wall height. If

so, in this design example, the most critical nails for the

tensile limit state would be those at the bottom row if based

on the default models, and be those at the third row if based

on the calibrated and recalibrated models. The influence of

model selection on design outcomes and interpretations is

again demonstrated.

5.4 Linking factor of safety to reliability

The current CABR [7] and CECS [10] design manuals for

soil nail walls are still based on deterministic allow stress

methods, where the margin of safety is characterized by

factor of safety (FS). Therefore, it would be interesting to

show the link between FS and reliability in this design

example. Tables 9 and 10 summarize the computed bp and
bt corresponding to FS = 1, 2, 3, 4, and 5 for nails at

different depths using default, calibrated, and recalibrated

Table 6 Summary of values of parameters in the performance functions Eqs. (1) and (13) used for the example design of nail pullout and nail-in-

tension limit states (after [28])

Category Parameter Value

Wall geometry Wall height, H (m) 10

Wall facing angle, a (�) 0 (Vertical)

Back slope angle, h (�) 0 (Horizontal)

Soil strength property Soil friction angle, / (�) Mean = 33, COV = 0.10, LN

Soil unit weight, c (kN/m3) Mean = 18, COV = 0.05, LN

Nail configuration Nail length, L (m) Primary design parameter

Drill hole diameter, D (mm) 150

Nail bar diameter, d (mm) Primary design parameter

Nail bond strength, qu (kPa) 100

Nail bar tensile yield strength, fy (MPa) 520

Nail depth, z (m) 0.5, 2.0, 3.5, 5.0, 6.5, 8.0, and 9.5

Nail tributary area, ShSv (m
2) 1.5 9 1.5 = 2.25

Nail inclination angle, i (�) 15

External load Surcharge live load, qL (kPa) 12

Model uncertainty Bias for Pn, kp Mean = 1.05, COV = 0.24, LN

Bias for Tt, kt Mean = 1.10, COV = 0.10, LN

Bias for TD, kD Refer to Table 2

Bias for TL, kL Mean = 1.20, COV = 0.205, LN

LN lognormal
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CABR and CECS nail load models for the pullout and nail-

in-tension limit states, respectively. The cases for nails at

depth z=H ¼ 0:5 are shown in Figs. 15 and 16.

For this design example for the pullout limit state, to

reach bp ¼ 2:33, nails at depth z=H ¼ 0:5 must have a FS

value equal to 6.0, 4.5, and 3.8 if using the default, cali-

brated, and recalibrated CABR models, respectively. These

FS values are 4.5, 3.8, and 3.6 if using the default, cali-

brated, and recalibrated CECS models, respectively. The

minimum FS values dictated by the CABR and CECS

manuals are 1.2 to 1.6 for nail pullout and tensile limit

states. These minimum FS values correspond to bp and bt
that are far less than 2.33. Hence, nail designs based on the

minimum FS required in the manuals could be inadequate

for this design case. Nevertheless, it should be pointed out

that in practice the designed nail lengths should meet the

safety requirements not only for the nail pullout limit state,

but also for the wall overall stability limit state. Therefore,

the final nail lengths could be longer than those determined

solely based on the minimum pullout FS. Also, a factor of

1.1 to 1.2 would be applied to the design to account for the

structure importance of the wall. This would increase the

nail lengths in another fold. As a result, the final FSs

against nail pullout failure could be much higher than the

minimum values dictated by the manuals. Accordingly, the

final bp would be much higher than those listed in Table 9.

Fig. 11 Means and 95% prediction intervals for total predicted nail load (kDTD þ kLTL) using different CABR and CECS models
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Table 7 Summary of nail lengths (L=H) at different depths satisfying target reliability of bp = 2.33, 3.09, and 3.54 using default, calibrated, and

recalibrated CABR and CECS models

Reliability, bp Depth, z/H Nail length, L=H, using CABR Nail length, L=H, using CECS

Default Calibrated Recalibrated Default Calibrated Recalibrated

2.33 0.05 0.63 0.75 0.70 0.64 0.73 0.68

0.20 0.90 0.97 0.85 0.93 1.14 0.99

0.35 1.19 0.98 0.85 0.98 1.08 0.94

0.50 1.48 0.90 0.79 0.91 0.87 0.77

0.65 1.77 0.75 0.67 0.83 0.69 0.61

0.80 2.04 0.54 0.52 0.76 0.53 0.47

0.95 2.34 0.29 0.33 0.68 0.38 0.34

Total length,
P

L=H 10.35 5.18 4.70 5.74 5.40 4.81

3.09 0.05 0.79 0.95 0.82 0.75 0.88 0.80

0.20 1.55 1.40 1.13 1.35 1.62 1.35

0.35 2.30 1.50 1.19 1.49 1.56 1.31

0.50 3.04 1.40 1.14 1.44 1.27 1.08

0.65 3.84 1.19 0.99 1.36 1.02 0.87

0.80 4.54 0.88 0.77 1.27 0.80 0.68

0.95 5.31 0.48 0.52 1.19 0.60 0.52

Total length,
P

L=H 21.37 7.81 6.56 8.84 7.74 6.59

3.54 0.05 0.97 1.13 0.93 0.85 1.00 0.88

0.20 2.29 1.84 1.36 1.73 2.00 1.67

0.35 3.54 1.99 1.47 2.00 2.00 1.61

0.50 4.88 1.83 1.45 1.94 1.60 1.35

0.65 6.00 1.60 1.27 1.82 1.32 1.09

0.80 7.33 1.19 0.99 1.76 1.02 0.86

0.95 8.68 0.66 0.69 1.70 0.79 0.68

Total length,
P

L=H 33.67 10.25 8.17 11.81 9.73 8.15

Fig. 12 Nail lengths L=H at different depths satisfying target

reliability bp ¼ 2:33 using the default, calibrated, and recalibrated

CABR and CECS models for the pullout limit state
Fig. 13 Plots of total nail length

P
L=H versus target design

reliability bp for the pullout limit state using different CABR and

CECS models
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For the nail-in-tension limit state, nails at z=H ¼ 0:5

would need to have FS = 6.0, 4.1, and 3.4 to reach bt ¼
2:33 with respect to the default, calibrated, and recalibrated

CABR models. If the CECS models are used, then these FS

values would be 4.1, 3.4, and 3.2, respectively. Again,

these FS values are much higher than the minimum FS

values required in the CABR and CECS soil nail wall

design manuals. The discussion for the nail pullout case

also applies here and thus is not repeated.

From Tables 9 and 10, several other observations can be

made. By the same model, the same FS would result in

different bp and bt. This means that designing a nail to the

same FS would not necessarily have consistent margins of

safety when margin of safety is measured by reliability (or

probability of failure). This is also true for the case of same

FS by different models. It is also found that if nails are

designed to achieve the same FS value for both pullout and

tensile limit states, the bp is generally lower than the bt. In
this case, nails are more prone to fail due to pullout than

tensile yielding.

Table 8 Summary of nail bar diameter (d) at different depths satisfying target reliability of bt = 2.33, 3.09, and 3.54 using default, calibrated,

and recalibrated CABR and CECS models

Reliability, bt Depth, z/H Bar diameter, d (mm), using CABR Bar diameter, d (mm), using CECS

Default Calibrated Recalibrated Default Calibrated Recalibrated

2.33 0.05 12 16 14 12 15 14

0.20 23 24 21 23 27 24

0.35 30 26 23 26 27 25

0.50 35 25 23 26 25 23

0.65 40 24 22 26 22 21

0.80 44 21 20 26 20 19

0.95 49 16 17 26 19 18

max dð Þ 49 26 23 26 27 25

3.09 0.05 18 21 18 16 19 17

0.20 34 31 26 30 34 30

0.35 45 34 29 34 34 31

0.50 53 33 29 34 31 28

0.65 60 31 28 34 28 26

0.80 67 28 25 34 26 24

0.95 72 21 22 34 23 22

max dð Þ 72 34 29 34 34 31

3.54 0.05 22 25 20 19 22 19

0.20 43 37 30 36 39 34

0.35 56 40 33 40 40 35

0.50 67 40 33 40 36 32

0.65 76 37 32 40 33 29

0.80 87 33 29 40 30 27

0.95 93 24 25 40 27 25

max dð Þ 93 40 33 40 40 35

Fig. 14 Nail bar diameter d at different depths satisfying target

reliability bt ¼ 2:33 using the default, calibrated, and recalibrated

CABR and CECS models for the nail tensile limit state
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5.5 System reliability

The system reliability index, bsys, for nails in this design

example can be computed using Eq. (15). Since the per-

formance functions for nail pullout and nail-in-tension limit

states share the same load terms, see Eqs. (1) and (13), gp
and gt can be expected to be statistically correlated. Fig-

ure 17 shows the plots of gt versus gp for nails at z=H ¼ 0:5

with bp ¼ bt ¼ 2:33 based on 10,000 simulations using the

default CABR and CECS models. First-order polynomials

are used to regress the datasets in the figures. Clearly, gp and

gt are positively correlated as they tend to increase or

decrease simultaneously. The Pearson’s correlation coeffi-

cients between gp and gt are qgp;gt ¼ 0:918 and 0.892 for the

default CABR and CECS models, respectively. Such strong

positive correlations could have a significant influence on

Table 9 Linking factor of safety (FS) to reliability index for nails at different depths using default, calibrated, and recalibrated CABR and CECS

nail load models for the pullout limit state

Model Depth,

z=H
bp using default model bp using calibrated model bp using recalibrated model

FS ¼ 1 2 3 4 5 FS ¼ 1 2 3 4 5 FS ¼ 1 2 3 4 5

CABR 0.05 0.012 0.965 1.700 2.151 2.443 0.105 1.216 1.869 2.309 2.635 0.046 1.239 2.008 2.532 2.902

0.20 0.355 1.191 1.625 1.919 2.138 0.256 1.252 1.820 2.211 2.515 0.181 1.319 1.977 2.436 2.790

0.35 0.456 1.183 1.581 1.859 2.072 0.279 1.259 1.815 2.204 2.506 0.215 1.329 1.970 2.415 2.757

0.50 0.484 1.172 1.561 1.835 2.041 0.291 1.266 1.817 2.205 2.500 0.228 1.341 1.978 2.421 2.764

0.65 0.494 1.167 1.549 1.818 2.026 0.291 1.280 1.841 2.230 2.530 0.233 1.356 1.999 2.443 2.781

0.80 0.498 1.160 1.542 1.808 2.016 0.286 1.311 1.879 2.274 2.571 0.231 1.379 2.023 2.475 2.825

0.95 0.504 1.157 1.537 1.804 2.009 0.264 1.392 1.993 2.399 2.705 0.225 1.430 2.097 2.553 2.904

CECS 0.05 0.006 1.088 1.882 2.398 2.776 0.065 1.261 2.002 2.507 2.887 0.023 1.242 2.060 2.625 3.044

0.20 0.251 1.253 1.821 2.213 2.510 0.223 1.317 1.949 2.391 2.729 0.190 1.349 2.019 2.495 2.868

0.35 0.284 1.252 1.808 2.193 2.495 0.234 1.321 1.954 2.400 2.745 0.201 1.358 2.030 2.502 2.875

0.50 0.292 1.261 1.811 2.196 2.489 0.229 1.337 1.970 2.424 2.773 0.201 1.377 2.052 2.523 2.884

0.65 0.302 1.270 1.821 2.201 2.491 0.227 1.355 1.999 2.452 2.806 0.206 1.398 2.078 2.547 2.914

0.80 0.310 1.279 1.826 2.207 2.503 0.232 1.380 2.031 2.480 2.827 0.203 1.421 2.112 2.588 2.946

0.95 0.315 1.281 1.827 2.209 2.496 0.232 1.415 2.070 2.523 2.879 0.202 1.460 2.159 2.647 3.020

Table 10 Linking factor of safety (FS) to reliability index for nails at different depths using default, calibrated, and recalibrated CABR and

CECS nail load models for the nail-in-tension limit state

Model Depth,

z=H
bt using default model bt using calibrated model bt using recalibrated model

FS ¼ 1 2 3 4 5 FS ¼ 1 2 3 4 5 FS ¼ 1 2 3 4 5

CABR 0.05 0.440 1.597 2.097 2.415 2.656 0.355 1.517 2.132 2.551 2.864 0.299 1.676 2.398 2.890 3.270

0.20 0.530 1.307 1.722 2.009 2.226 0.370 1.397 1.972 2.373 2.685 0.315 1.524 2.199 2.666 3.035

0.35 0.535 1.255 1.653 1.931 2.145 0.371 1.382 1.952 2.351 2.657 0.318 1.499 2.164 2.626 2.982

0.50 0.538 1.231 1.625 1.899 2.112 0.372 1.383 1.953 2.345 2.653 0.317 1.497 2.161 2.618 2.988

0.65 0.538 1.218 1.609 1.880 2.091 0.369 1.395 1.971 2.371 2.683 0.315 1.508 2.174 2.640 3.002

0.80 0.539 1.210 1.597 1.869 2.080 0.368 1.428 2.015 2.421 2.734 0.316 1.529 2.205 2.669 3.032

0.95 0.540 1.206 1.590 1.863 2.071 0.355 1.521 2.132 2.549 2.865 0.310 1.584 2.279 2.760 3.125

CECS 0.05 0.328 1.671 2.341 2.779 3.099 0.300 1.637 2.351 2.854 3.230 0.275 1.740 2.515 3.047 3.460

0.20 0.372 1.400 1.976 2.366 2.677 0.315 1.476 2.134 2.593 2.956 0.296 1.538 2.246 2.741 3.136

0.35 0.372 1.376 1.948 2.346 2.653 0.316 1.469 2.130 2.603 2.944 0.295 1.534 2.243 2.741 3.140

0.50 0.374 1.378 1.945 2.338 2.636 0.314 1.487 2.154 2.623 2.995 0.295 1.552 2.258 2.755 3.137

0.65 0.373 1.377 1.942 2.337 2.643 0.312 1.508 2.185 2.657 3.020 0.294 1.574 2.288 2.795 3.189

0.80 0.374 1.377 1.945 2.337 2.636 0.310 1.532 2.212 2.680 3.045 0.291 1.598 2.320 2.810 3.191

0.95 0.373 1.377 1.941 2.335 2.649 0.308 1.560 2.250 2.717 3.083 0.288 1.629 2.365 2.861 3.261

Acta Geotechnica (2020) 15:2941–2968 2963

123



bsys of nail internal stability. Note that only when satisfying

gp [ 0 and gt [ 0 that a nail is said to be internally stable.

The qgp;gt values with respect to different z=H, bp and bt,

and CABR and CECS models are computed. The results

are summarized in Table 11. The case for bp ¼ bt ¼ 2:33

is plotted in Fig. 18. Interestingly, the trends of qgp;gt along

z=H are found qualitatively similar to those of L=H and d

along z=H presented in Figs. 12 and 14. For the default

models, the correlations between gp and gt are strongest for

nails at the bottom, whereas for the calibrated and recali-

brated models, the largest qgp;gt values are reached for the

second or third rows of nails. Overall, qgp;gt ranges roughly

from 0.8 to 0.9; the variation is not very large. From

Table 11, it is also observed that qgp;gt computed using the

CABR and CECS models is practically the same and

independent of bp and bt.
By using Eq. (15), the system reliability indices, bsys,

are computed for nails with respect to different z=H, bp and
bt, and nail load models. The results are summarized in

Table 11. The case of bp ¼ bt ¼ 2:33 is plotted in Fig. 19.

The system reliability, bsys, appears to be about 2.20

(probability of failure equal to 1.4%), which is smaller than

bp ¼ bt ¼ 2:33 (probability of failure equal to 1.0%),

regardless of z=H and the nail load models. bsys is on the

same order of magnitude as that of bp and bt in terms of

probability of failure. If the correlation between gp and gt is

Fig. 15 Plots of reliability bp versus factor of safety (FS) for nails at a
depth of z=H ¼ 0:5 for the pullout limit state using different CABR

and CECS models

Fig. 16 Plots of reliability bt versus factor of safety (FS) for nails at a

depth of z=H ¼ 0:5 for the nail-in-tension limit state using different

CABR and CECS models

(a)

(b)

Fig. 17 Plots of gt versus gp for nails at a depth z=H ¼ 0:5 given

bp ¼ bt ¼ 2:33 (based on 10,000 Monte Carlo simulations) using:

a default CABR and b default CECS
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ignored, i.e., qgp;gt ¼ 0, then bsys will be computed as 2.06,

which corresponds to a probability of failure of 2.0%. This

means that ignoring qgp;gt would result in overestimation of

probability of failure or underestimation of bsys. Never-
theless, since qgp;gt is positive, ignoring it would not

practically cause significant errors in estimation of bsys.

Table 11 Summary of correlation coefficient between pullout and tensile limit states and system reliability index with respect to different nail

depths, bp and bt, and CABR and CECS models

Individual

reliability,

bp ¼ bt

Depth,

z=H
Correlation between pullout and tensile limit states, qgp ;gt

a System reliability, bsys

Default

CABR

Cali.

CABR

Recali.

CABR

Default

CECS

Cali.

CECS

Recali.

CECS

Default

CABR

Cali.

CABR

Recali.

CABR

Default

CECS

Cali.

CECS

Recali.

CECS

2.33 0.05 0.792 0.845 0.817 0.798 0.829 0.807 2.22 2.21 2.19 2.20 2.19 2.18

0.20 0.888 0.885 0.864 0.884 0.880 0.868 2.25 2.22 2.21 2.22 2.21 2.20

0.35 0.909 0.891 0.871 0.892 0.881 0.869 2.25 2.22 2.21 2.22 2.20 2.20

0.50 0.918 0.890 0.872 0.892 0.876 0.864 2.25 2.22 2.21 2.22 2.21 2.20

0.65 0.924 0.886 0.869 0.892 0.870 0.858 2.26 2.22 2.21 2.22 2.21 2.20

0.80 0.928 0.875 0.861 0.891 0.862 0.850 2.25 2.22 2.20 2.22 2.21 2.20

0.95 0.931 0.848 0.845 0.891 0.854 0.841 2.26 2.21 2.20 2.22 2.20 2.20

3.09 0.05 0.807 0.850 0.823 0.810 0.834 0.814 3.01 2.98 2.97 2.98 2.97 2.96

0.20 0.889 0.886 0.864 0.885 0.880 0.868 3.02 2.99 2.97 2.99 2.98 2.97

0.35 0.909 0.890 0.871 0.892 0.881 0.869 3.02 2.99 2.97 3.00 2.97 2.97

0.50 0.918 0.890 0.872 0.892 0.875 0.864 3.02 2.98 2.98 2.99 2.98 2.97

0.65 0.924 0.886 0.869 0.892 0.869 0.858 3.02 2.99 2.98 2.99 2.98 2.97

0.80 0.928 0.875 0.861 0.891 0.862 0.850 3.02 2.99 2.97 2.99 2.97 2.97

0.95 0.931 0.847 0.845 0.891 0.853 0.841 3.02 2.98 2.97 2.99 2.97 2.97

3.54 0.05 0.808 0.851 0.824 0.813 0.835 0.815 3.47 3.44 3.43 3.44 3.42 3.41

0.20 0.888 0.885 0.864 0.885 0.880 0.868 3.47 3.44 3.42 3.45 3.42 3.44

0.35 0.909 0.890 0.871 0.892 0.881 0.869 3.47 3.45 3.44 3.44 3.43 3.43

0.50 0.918 0.890 0.872 0.892 0.875 0.864 3.48 3.45 3.42 3.45 3.43 3.43

0.65 0.924 0.886 0.868 0.891 0.869 0.857 3.46 3.44 3.44 3.44 3.44 3.44

0.80 0.928 0.875 0.861 0.891 0.862 0.850 3.47 3.45 3.43 3.44 3.43 3.43

0.95 0.931 0.847 0.845 0.891 0.853 0.841 3.48 3.44 3.44 3.45 3.43 3.42

aqgp ;gt is the Pearson’s correlation coefficient between gp and gt

Fig. 18 Correlation coefficient between gp and gt, qgp ;gt , along nail

depths using different nail load models given bp ¼ bt ¼ 2:33

Fig. 19 System reliability, bsys, against nail depths given bp ¼ bt ¼
2:33 using difference CABR and CECS models
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5.6 Conclusions

This study presents accuracy assessments of two nail load

models proposed by two nationwide soil nail wall design

specifications in China and their calibrated versions

reported in the literature. The nationwide specifications are

Technical Specification for Retaining and Protection of

Building Foundation Excavations by China Academy of

Building Research (CABR) and Specifications for Soil

Nailing in Foundation Excavations by China Association

for Engineering Construction Standardization (CECS). The

prediction accuracies of the default and calibrated CABR

and CECS models are reevaluated using a total of 312

measured nail load data contained in a more general nail

load database compiled by Lin et al. [28]. Model accuracy

is characterized by model bias, which is defined as the ratio

of measured to predicted nail load. Simple empirical terms

are introduced to recalibrate the CABR and CECS models

for accuracy improvement. Reliability analysis and design

of soil nail walls against internal failures, including nail

pullout and nail-in-tension limit states, are performed using

the six nail load models. Nails are first designed to achieve

target reliabilities in terms of individual limit states. Then,

analyses are carried out to evaluate the system reliability of

nails against internal failures. The correlation between the

two limit states is explored. Its influences on the evaluation

outcomes of system reliability are discussed. The main

conclusions drawn from this study are as follows.

(1) Based on the adopted database, the mean and COV

of the model bias are 1.26 and 1.453 for the default

CABR model, respectively. The default CABR

model under-predicts nail loads by about 26% on

average, and the dispersion in prediction is extremely

high, while for the default CECS model, the bias

mean and bias COV are 0.97 and 0.846, respectively.

The default CECS model is more or less accurate on

average; however, the prediction dispersion is high.

(2) The calibrated CABR and CECS models are shown

to have biases with means and COVs equal to 1.00

and 0.843, and 1.00 and 0.678, respectively, under

the optimal condition. While both calibrated models

are accurate on average, the dispersions in prediction

are still large. In addition, the prediction accuracies

of the default and calibrated CABR and CECS

models are found to be correlated with their

predicted magnitudes of nail loads, as well as several

design parameters. Such correlations are undesirable

from the perspective of reliability-based design of

soil nail walls.

(3) The recalibrated CABR and CECS models are shown

to have much less dispersions in prediction, i.e.,

COVs of bias drop to 0.689 and 0.630, respectively.

Moreover, the model biases of the recalibrated

CABR and CECS models do not exhibit statistical

correlations with their predicted values or any design

parameters.

(4) The model biases of the six models, i.e., the default,

calibrated, and recalibrated CABR and CECS mod-

els, are demonstrated to be lognormal random

variables through Kolmogorov–Smirnov tests.

(5) Nail loads computed by the two default models

exhibit monotonic trends with depth. However, for

the calibrated and recalibrated model cases, nail

loads exhibit a nonmonotonic trend, i.e., first

increases until reaching a certain depth and then

decreases thereafter. The same trends are also true

for nail length and bar diameter along depth if

designed to achieve the same target reliability.

(6) When nails are designed to achieve the same factor

of safety for both pullout and nail-in-tension limit

states, the pullout reliability is generally lower than

the tensile reliability. In that case, nails are more

prone to fail due to pullout than tensile yielding.

(7) The correlation between nail pullout and nail-in-

tension limit states is positive, basically ranging from

0.8 to 0.9. The influences of depth, nail load model

(CABR or CECS), target reliability for individual

limit states (pullout or nail-in-tension) on the corre-

lation are practically insignificant.

(8) The system reliability of nail internal stability is

slightly lower than the individual nail pullout and

nail-in-tension reliabilities. Ignoring the positive

correlation between the two limit states would lead

to underestimation of system reliability; neverthe-

less, the underestimation is insignificant.

While the performance of the recalibrated CABR and

CECS models is greatly enhanced in prediction of nail

loads compared to that of the default and calibrated CABR

and CECS models, the dispersions in prediction are still

high, i.e., bias COVs exceeding 0.60. This suggests that

more complicated modeling techniques might be needed

for mapping soil nail loads, for example, response surface

methods, machine learning approaches, etc. Both types of

methods have been well demonstrated in geotechnical

engineering applications, e.g., [3, 20, 43, 51, 53, 54].

Mapping soil nail loads using artificial neural network

technique has been carried out by Lin et al. [28]. Other

opportunities are not explored in this study, but left for

future studies. Last, the quantified model biases can also be

used in the development of reliability-based partial factor

methods for soil nail walls in China. Studies on these

related topics can be referenced to, e.g.,

[4–6, 13, 16, 17, 21, 23, 29, 31, 37, 38, 50].
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