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Abstract
Bentonite pellet mixtures are considered as one of the candidate sealing materials for deep geological disposals of

radioactive waste. One of the particularities of this material is the initial heterogeneous distribution of pellets and porosity

within the mixture, leading to complex hydro-mechanical behaviour. In this paper, the hydro-mechanical properties of

GMZ bentonite pellet mixtures were investigated in the laboratory by carrying out water retention tests on pellet mixtures

under constant-volume condition and single pellets under free swelling condition, as well as a infiltration test on a column

specimen of pellet mixture. In the infiltration test, the relative humidity and radial swelling pressure were monitored at five

heights, the axial swelling pressure was also recorded. The instantaneous profile method was applied to determine the

unsaturated hydraulic conductivities. Results show that, in high suction range ([ 10 MPa) the water retention curve of

pellet mixture under constant-volume condition was comparable to that of a single pellet under free swelling condition,

while in low suction range (\ 10 MPa) the latter exhibits a much higher water retention capacity. Due to clogging of large

pores, the unsaturated hydraulic conductivity decreases as suction decreases to around 25 MPa. However, with further

suction decrease, the hydraulic conductivity increases continuously until the value at saturated state, as in the case of most

unsaturated soils. The radial swelling pressure at different heights develops with local sudden increase and decrease, which

was attributed to local rearrangement of pellets upon wetting. By contrast, as the axial swelling pressure was measured on

the global surface of the specimen, it develops in a more regular fashion.

Keywords Bentonite pellets � Hydraulic conductivity � Instantaneous profile method � Relative humidity �
Swelling pressure � Water retention

1 Introduction

Granular mixtures of high-density bentonite pellets are

considered as one of the candidate sealing materials for

deep underground repository of high-level radioactive

waste (HLW), where any openings (deposition galleries,

access galleries and shafts, etc.) created during the con-

struction of the repository should be effectively sealed to

prevent potential preferential pathways for water, gas and

radionuclide migration. In addition to its low permeability,

high swelling capacity and high radionuclide migration

retardation properties, this material has also obvious

operational advantages: the pellets can be easily manu-

factured and emplaced [20, 21].

The use of pellets was proposed decades ago [25, 31]

and the feasibility was examined through several field and

laboratory tests, such as the RESEAL experiment [14, 29],
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the prototype repository project test [15], the EB (engi-

neered barrier) experiment [12], the SEALEX (SEALing

performance Experiments) project [20, 21], the China-

mock-up test [5] and the shot-clay test [11]. In these tests,

pellets and pellet/powder mixtures were used to filling

either the narrow gaps between buffer and host rock or the

annular space between canister and host rock.

Once emplaced in the gallery, the pellet mixture would

be subjected to a re-saturation process due to the infiltration

of underground water from the host rock. During this

process, pellets within the mixture would be progressively

wetted and swell under almost confined conditions to fill

the inter-pellet voids, decreasing the rate of further water

infiltration. Owing to the strong initial heterogeneous

porosity [12, 13, 20], the hydro-mechanical behaviour of

such material could be much different from that of con-

ventional compacted bentonite blocks. Considering the

significant roles of this material in ensuring the overall

repository safety, it is essential to understand its hydro-

mechanical behaviour.

van Geet et al. [29] studied the hydration process of a

column specimen of 50/50 pellet/powder FoCa bentonite

mixture by X-ray-computed tomography and showed the

progressive decrease in the density of pellets and the

apparent homogenization after saturation. Imbert and Villar

[14] conducted a series of infiltration tests on 50/50 pellet/

powder FoCa bentonite compacted at different dry densi-

ties and dimensions and identified a common pattern of

swelling pressure development: the swelling pressure

increases sharply, then decreases slightly and finally

increases again to reach a steady final value. The swelling

pressure was found comparable to that of bentonite blocks

with the same dry density. Hoffmann et al. [13] investi-

gated the hydro-mechanical response of FEBEX bentonite

pellet mixtures and reported that the saturated permeability

and the swelling pressure are mainly controlled by the

overall dry density rather than the initial grain size distri-

bution. Karnland et al. [16] measured the swelling pressure

and saturated hydraulic conductivity of pellets and 70/30

pellet/sand mixtures of MX-80 bentonite using 0.2 M NaCl

solution. The results indicated that as the dry density

increases, the final swelling pressure increases exponen-

tially while the saturated hydraulic conductivity decreases

exponentially. For the pellet mixtures, most of the previous

studies were focused on the axial swelling pressure and

saturated hydraulic conductivity. Few investigations have

been carried out on the radial swelling pressure and the

unsaturated hydraulic conductivity [21].

In this study, the hydro-mechanical behaviour of GMZ

bentonite pellet mixtures were investigated through water

retention tests and an infiltration test on column specimen.

The water retention tests involved both the pellet mixture

under constant-volume condition and a single pellet under

free swelling condition. In the infiltration test, the evolu-

tions of relative humidity and radial swelling pressure with

time at different heights of the specimen as well as the

evolution of axial swelling pressure with time were mon-

itored. The instantaneous profile method was applied to

determine the unsaturated hydraulic conductivity of the

mixture. The results obtained allowed the particular hydro-

mechanical behaviour of pellet mixture to be clarified.

2 Materials and methods

2.1 Materials

GMZ bentonite was used in this study. It was extracted

from Inner Mongolia autonomous region of China. Some

of its basic properties are listed in Table 1 [38]. It is a

montmorillonite-dominant soil with high plasticity index

(239%), high adsorption capacity (SSA = 570 m2 g-1) and

high cation exchange capacity (77.30 meq/100 g).

The pellets of different sizes were prepared from GMZ

bentonite powder as follows: first, bentonite blocks at a

target dry density of 1.95 Mg/m3 were fabricated by stat-

ically compacting GMZ bentonite powder in a rigid

stainless steel cylindrical cell (50 mm in diameter). During

compaction, the axial displacement was monitored to

produce a target block height of 30 mm. Then, the com-

pacted block was extruded from the cell and crushed using

a jaw crusher, which has five gears holding different

maximum gaps between the two jaw plates, producing

pellets of different sizes. Finally, the crushed pellets were

sieved into seven size classes with particle sizes of

7–5 mm, 5–2 mm, 2–0.9 mm, 0.9–0.5 mm, 0.5–0.25 mm,

0.25–0.075 mm and\ 0.075 mm, respectively. For

Table 1 Basic properties of GMZ bentonite [38]

Property Description

Main minerals Montmorillonite (75.4%)

Quartz (11.7%)

Cristobalite (7.3%)

Feldspar (4.3%)

Specific gravity of solid 2.66

Liquid limit/(%) 276

Plastic limit/(%) 37

Total specific surface area (SSA)/

(m2g-1)

570

Cation exchange capacity/(meq/100 g) 77.30

Main exchanged cation/(meq/100 g) Na? (43.36), 1/2 Ca2?

(29.14)

1/2 Mg2? (12.33), K?

(2.51)

2866 Acta Geotechnica (2020) 15:2865–2875

123



convenience, they were denoted hereafter by P7, P5, P2,

P0.9, P0.5, P0.25 and P0.075, respectively. The classes

with pellets size larger than 2.0 mm were regarded as

coarse classes (P7 and P5), whereas the others were

regarded as fine classes (P2, P0.9, P0.5, P0.25 and P0.075).

They were individually stored in seven hermetic plastic

boxes in the laboratory at a constant temperature of 20 �C.
Specimens for both water retention and infiltration tests

were prepared by assembling pellets with the global pellet

size distribution (Fig. 1) obeying to the Andreasen equa-

tion [2]:

CPFT ¼ ðd=7Þ0:4 � 100 ð1Þ

where CPFT denotes the cumulative percentage of pellets

finer than diameter d (mm). This pellet size distribution

was adopted because it allows the densest packing dry

density around 1.45 Mg/m3 under vibration condition in

the laboratory [18, 39]. With a target dry density of

1.45 Mg/m3, according to the specimen sizes used in water

retention tests (Sect. 2.2) and infiltration test (Sect. 2.3),

pellets from each of the seven size classes were weighed at

an accuracy of 0.01 g to their target mass. Then, the coarse

pellets (P7 and P5) and fine pellets (P2, P0.9, P0.5, P0.25

and P0.075) were blended evenly in two trays, respectively.

The resultant coarse and fine mixtures were equally divided

into 3 parts when used in water retention tests or 12 parts

when used in infiltration test, respectively. Afterwards,

they were introduced into a cylindrical cell through a layer-

wise feeding method: the coarse sub-parts and fine sub-

parts were independently and alternately fed into the cell,

i.e., one layer of coarse sub-parts followed by one layer of

fine sub-parts. Finally, the cell together with the mixture in

it was vibrated for 180 s on a vibratory table which was

cam-driven and could vibrate vertically at a fixed fre-

quency of 50 Hz with an amplitude of 0.3–0.6 mm. The

global dry density of the as-vibrated specimen was mea-

sured to be around 1.45 Mg/m3, which could be repeatedly

achieved through the above-mentioned sampling protocol.

It is worth noting that though the adopted feeding method

produced initially a sandwich–structured specimen, a rel-

atively homogeneous mixture could be obtained after the

operation of vibration.

2.2 Water retention test

The water retention curve of pellet mixtures under con-

stant-volume condition was determined by controlling the

suction using both vapour equilibrium technique and

osmotic technique. Details of the two techniques can be

found in Delage et al. [8], Blatz et al. [4] and Delage and

Cui [9]. The vapour equilibrium technique was applied for

high suctions (s C 4.2 MPa) using a setup shown in Fig. 2.

The specimen in 50 mm diameter and 35 mm height was

constrained in a rigid stainless steel cell with the upper and

lower lids tightened by bolts. Vapour of different saturated

salt solutions (Table 2) was circulated around the specimen

using an air pump. The mass of the specimen was regularly

determined at an accuracy of 0.01 g. The equilibrium state
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Fig. 1 Pellet size distribution

Fig. 2 Experimental setup for suction control using vapour equilibrium technique
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was considered as reached when no further mass variation

was observed (i.e., less than 0.01 g/d). The specimen was

then divided into three parts along its height (upper, middle

and lower parts). The gravimetric water contents of each

part were determined by oven drying them at 105 �C for

24 h and the average value was taken as the equilibrium

gravimetric water content of the specimen.

The osmotic technique was applied for low suctions

(s\ 4.2 MPa) using the setup shown in Fig. 3. The spec-

imen in 50 mm diameter and 35 mm height was con-

strained in a stainless steel constant-volume cell with two

perforated covers joined by bolts. A semipermeable

membrane was placed between the porous stone (embed-

ded in the perforated cover) and the specimen at each side.

The cell was then immerged in a PEG 20,000 (poly-

ethylene glycol) solution which was continuously stirred by

a magnetic stirrer for the homogeneization purpose. Sev-

eral drops of penicillin were added into the solution to

prevent from bacteria attack. The solution container was

covered by a piece of polyethylene membrane for mini-

mizing water evaporation. After 40 days (this time was

proved to be enough for suction equilibrium by pre-test),

the test was stopped and the specimen was extruded out

from the cell. The gravimetric water content of the speci-

men was determined following a procedure mentioned

previously when applying the vapour equilibrium tech-

nique. Four PEG 20 000 solutions at initial concentrations

of 20.85%, 15.82%, 7.83%, 5.69%, 2.63% corresponding,

respectively, to matric suctions of 1.0 MPa, 0.5 MPa,

0.1 MPa, 0.05 MPa and 0.01 MPa were used in this study.

In parallel, the water retention curve of a single pellet

under free swelling condition was determined. For high

suctions (s C 4.2 MPa), a handful of pellets contained on a

plate were subjected to vapour equilibrium with saturated

salt solutions (Table 2) in a desiccator. For low suctions

(1.0 MPa and 0.1 MPa), a single pellet was clothed by a

semipermeable membrane and immersed in the PEG

20,000 solutions at initial concentrations of 20.85% and

7.83%, respectively. At equilibrium, the water content was

determined by oven-drying method and the volume was

obtained by hydrostatic weighing the waxed pellet [33].

Accordingly, the dry density was determined.

2.3 Infiltration test

The experimental setup shown in Fig. 4 was used for the

infiltration test. The pellet mixtures with the designed

pellet size distribution (Fig. 1) were introduced into a rigid

stainless steel cell, which has an internal diameter of

Table 2 Saturated salt solutions and corresponding suction at 20 �C
[28]

Salt solution Suction (MPa)

LiCl 309.0

MgCl2 150.0

NaBr 70.9

NaCl 38.0

ZnSO4 12.6

K2SO4 4.2

Fig. 3 Experimental setup for suction control using osmotic

technique Fig. 4 Schematic view of infiltration setup
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50 mm. The resulting specimen had a height of 150 mm

and global dry density of 1.45 Mg/m3. A piston, a force

transducer and an upper lid were attached and fixed on the

top side of the specimen to measure the axial swelling

pressure. The piston was equipped with an air-discharge

channel which was connected to water through a tube. This

air-outlet setup allowed the pore air in the specimen to be

discharged through water and isolated the specimen from

the atmosphere, avoiding thus humidity reduction due to

evaporation. Five relative humidity (RH) sensors and five

swelling pressure (SP) sensors were installed every 30 mm

along the specimen (30, 60, 90, 120 and 150 from the

wetting end) through the ports in the wall of the cell. With

these sensors, the evolutions of relative humidity and radial

swelling pressure at different positions of the specimen

were monitored. Water was supplied to the pedestal of the

device from a burette, in which the height of water surface

was maintained to be about 1.0 m higher than the speci-

men’s bottom side. In other words, the specimen was

wetted from its bottom side by water at a pressure of about

10 kPa, which can be ignored in further analysis consid-

ering the high suction of the soil specimen. The volume of

water intake was regularly recorded through the graduated

burette. At the end of the test, the specimen was extracted

out from the cell and divided into small discs with thick-

ness of 10 mm for determination of water content and dry

density profiles.

3 Experimental results

3.1 Water retention curve

The water retention curves of pellet mixture under con-

stant-volume condition and a single pellet under free

swelling condition are presented in Fig. 5 in terms of

gravimetric water content versus suction. It appears that

when suction is higher than 10 MPa, the pellet mixture

under constant-volume condition and a single pellet under

free swelling condition have comparable water retention

properties. However, when suction is lower than 10 MPa,

the single pellet has higher water retention capacity than

the pellet mixture. This phenomenon suggests that at high

suctions ([ 10 MPa), the water retention curve is inde-

pendent of initial conditions (initial dry density and fabric,

etc.), while it becomes dependent at lower suctions

(\ 10 MPa). This observation is consistent with the results

reported by Molinero-Guerra [23] on pellet/powder mix-

ture and a single pellet of MX80 bentonite. Similar phe-

nomena were also reported by Villar and Lloret [30] on

compacted FEBEX bentonite, Hoffmann et al. [13] and

Alonso et al. [1] on FEBEX bentonite pellets, Villar and

Lloret [30] and Seiphoori et al. [26] on MX-80 bentonite,

as well as Wan et al. [32] on GMZ bentonite.

For the pellet mixture, the relationship between water

content (w) and suction (s) can be described by the fol-

lowing expression:

w ¼ wsat=½1þ ðs=aÞm�n: ð2Þ

where wsat stands for water content at saturation (s = 0); a,

m and n are parameters related to the shape of the curve. As

shown in Fig. 5, the measured data can be well fitted by

Eq. (2), with parameters wsat = 33.8%, a = 15.31 MPa,

m = 0.42 and n = 1.

The dry density of a single pellet versus suction under

free swelling condition is replotted in a semi-logarithmic

plane in Fig. 6. A good linear relationship was obtained,

i.e., the dry density decreased linearly with the decrease in

log(s). It can be deduced from the fitting line that a dry

density of 1.45 Mg/m3, which is equal to the global dry

density of the pellet mixture under constant-volume con-

dition, will be obtained at a suction of 3.25 MPa. In
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Fig. 5 Water retention curves of pellet mixture under constant-
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addition, it was observed that subjecting the pellet to

vapour equilibrium with suction as low as 4.2 MPa, fis-

sures began to develop. As the suction decreased to

1.0 MPa and 0.1 MPa, both the fissure size and quantity

increased. It seems that the development of fissures did not

affect the linearity identified.

3.2 Infiltration results

The evolution of relative humidity profiles from the infil-

tration test is plotted in Fig. 7. As expected, the relative

humidity at RH30 increased rapidly and reached 90% after

312 h, then increased gradually to 97.54% after 4560 h.

The relative humidity at RH 60 started to increase within

24 h after the infiltration started and reached 90% after

2040 h. The relative humidity at RH90, RH120 and RH150

increased within the first 120 h and reached 90% after

3000 h, 4080 h and 4560 h, respectively. It appears that the

increasing rate of RH decreased with the distance from the

wetting end.

The values of relative humidity were then converted into

total suctions according to the Kelvin’s law:

s ¼ �ðqwRT=MwÞ lnðRH=100Þ ð3Þ

where qw is the water unit mass (taken equal to 1.0 Mg/

m3); R is the universal gas constant (8.31432 J/mol/K); T is

the absolute temperature (taken equal to 293.75 K); Mw is

molecular mass of water vapour (18.016 kg/kmol).

The suction profiles every 240 h are shown in Fig. 8. At

the initial state (t = 0), the suction distribution within the

specimen was quite homogeneous with a mean value

around 102 MPa. After the infiltration started, it was sup-

posed that the suction at the wetting end decreased

instantaneously to zero. Then, the suction at different

heights decreased progressively at different rates. After

1200 h hydration, the suction profile turned into a nearly

straight line with a steep slope in the h-s plane. Afterwards,

the slope of the suction profile increased with the infiltra-

tion time. At the end of the test (t = 4560 h), the suction

profile approached a vertical line.

Based on the results of water retention curve [Fig. 5 and

Eq. (2)] and suction profiles [Fig. 8 and Eq. (3)], the

unsaturated hydraulic conductivity was calculated follow-

ing the instantaneous profile method as detailed by Cui

et al. [6], Ye et al. [37], Wang et al. [34] and Niu et al. [24].

Firstly, the water content profiles were determined using

the suction profiles (Fig. 8) with Eq. (2), allowing the

water flux (Q) during the times t and t ? dt to be calcu-

lated. Secondly, the t-time hydraulic gradient (it) at the

height h was determined with the corresponding slope of

suction profile (calculated from Fig. 8):

it ¼
ds=dh

qwg
ð4Þ

where ds=dh is the slope of suction profile at the height h,

qw is the water unit mass, g is the gravity. Here the suction

is considered as the unique driving force of water move-

ment, because of the low water infiltration pressure

(10 kPa), low water permeability (Ksat = 9.39 9 10-13

m/s) and high suctions (several to hundreds of MPa with

low water content, see Fig. 5) of the specimen.

Finally, the unsaturated hydraulic conductivity was

calculated based on the generalized Darcy’s law:

K ¼ 2Q

Aðit þ itþdtÞ
ð5Þ

where A is the cross section of the specimen.

The calculated unsaturated hydraulic conductivity is

plotted versus suction in Fig. 9, where the saturated

hydraulic conductivity (9.39 9 10-13 m/s) was determined

on a specimen with the same dry density (1.45 Mg/m3) and

diameter (50 mm) but smaller height (35 mm) under con-

stant-volume condition by 1000 kPa water pressure. It can

be observed that as suction decreases, the hydraulic con-

ductivity at different heights of the specimen evolves
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Fig. 7 Evolution of relative humidity during water infiltration
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following different paths but a similar trend: a decrease

followed by an increase. The suction corresponding to the

minimum unsaturated hydraulic conductivity increases

with the increase in the measurement height. For a suction

larger than 40 MPa, the higher the measuring height, the

smaller the unsaturated hydraulic conductivity. As suction

decreases from 40 to 15 MPa, the hydraulic conductivity at

h = 30, 90, 120 mm remain nearly constant while that at

h = 60 mm increases slightly. As suction further decreases

to lower value, the hydraulic conductivity increases in a

comparable trend and tends to head for the value of satu-

rated hydraulic conductivity (Ksat = 9.39 9 10-13 m/s).

The evolutions of axial and radial swelling pressures

with infiltration time are shown in Fig. 10. It can be seen

that the swelling pressure at different heights also evolved

in different trends. As the infiltration test started, the radial

swelling pressure at SP30 increased rapidly to a peak value

of 1.15 MPa at t = 840 h, then decreased to a value of

1.03 MPa at t = 1608 h. Successively, the swelling pres-

sure increased slightly to a second peak value of 1.08 MPa

at t = 3360 h before it decreased gradually to a lower

value. The swelling pressure at SP60 increased quickly to a

first peak of 0.55 MPa within the first 840 h. After a short

plateau, it increased again until reaching a second peak of

0.98 MPa at t = 2328 h, after which it decreased slightly to

a steady value of about 0.9 MPa after t = 3240 h. The

swelling pressure measured at SP90 developed in a similar

fashion as that at SP60; but at SP90 the curve after the first

peak exhibited much more fluctuation. At a lower rate, the

swelling pressure at SP120 and SP150 increased continu-

ously to a value of 0.71 MPa and 0.60 MPa at the end of

the test, respectively. The final swelling pressure at lower

height has a higher value. For the axial swelling pressure, it

evolved in a smoother trend: increased first to a peak value

of 0.56 MPa at t = 1800 h and then decreased to a lower

value of 0.52 MPa at t = 3240 h before a new increasing.

At the end of the infiltration test, the water content and

dry density were determined for the positions every 10 mm

along the height of the specimen. The results are shown in

Fig. 11a, b, respectively. As expected, the water content

decreased while the dry density increased as the height

0 20 40 60 80 100
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Fig. 9 Hydraulic conductivity versus suction for different measure-

ment heights
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increased. In the zone near the wetting end (h = 0–60 mm),

the dry density was found to be 1.39–1.44 Mg/m3, lower

than the initial value (1.45 Mg/m3), while in the upper zone

(h = 60–150 mm), higher dry densities (1.45–1.52 Mg/m3)

were observed. This must result from the swelling of the

lower part and the compaction of the upper part of the

specimen [3].

The degree of saturation (Sr) at different heights was

calculated using the measured water contents and dry

densities (Fig. 11). Results show that the zone near the

wetting end (h\ 10 mm) was already saturated by water

(Sr = 1.01), while the other area (h[ 10 mm) was still in

unsaturated state (Sr\ 1.0). The value of degree of satu-

ration slightly higher than 1.0 may be due to: (1) possible

experimental error resulting from the inflow of water from

the bottom during slicing the dismantled specimen and (2)

the average density of adsorbed water which could be

higher than 1.0 Mg/m3 [30]. It seems that the re-saturation

process of the specimen should last a long period of time.

4 Discussion

The comparable water retention curves of pellet mixture

and a single pellet at high suctions ([ 10 MPa, Fig. 5)

suggests the independence of water retention behaviour

with respect to the initial conditions (dry density and fab-

ric, etc.) and confining condition. This is because in high

suction range ([ 10 MPa), water is essentially adsorbed by

clay minerals or inside the pellets. Thus, no difference

exists between pellet mixture and single pellet and the

confining condition has no effect because the presence of

macro-pores between the pellets in the mixture. By con-

trast, in low suction range (\ 10 MPa), under confined

condition, as the total amount of inter-pellet pores is lim-

ited, the water content increase is slowed down when these

pores are fully filled by swollen clay particles. On the

contrary, under free swelling condition for the single pellet,

this limitation related to the inter-pellet pores does not

exist. Thus, more water is allowed by larger pellet swel-

ling. Predictably, given unconfined condition, higher water

retention capacity of the pellet mixture is expected.

Figure 9 indicates that as suction decreased from a high

value to zero, the hydraulic conductivities at different

heights first decreased and then increased. This result was

different from the observation commonly made on non-

expansive unsaturated soils, for which the hydraulic con-

ductivity increases in a continuous way upon wetting as a

result of the increase in degree of saturation [7]. As pointed

out by Cui et al. [6], Ye et al. [37], Wang et al. [34] and

Niu et al. [24], water transfer in compacted bentonite or

bentonite-based materials is primarily governed by the

network of large pores. Upon wetting, the initial decrease

in hydraulic conductivity is caused by the progressive

clogging of large pores due to the gel creation from ben-

tonite aggregate hydration and exfoliation; the subsequent

increase in hydraulic conductivity is attributed to the

decrease in water retention energy defined by the suction.

Figure 9 also indicates that at given suctions (s), the

unsaturated hydraulic conductivity (K) at different heights

were not comparable. Cui et al. [6] and Wang et al. [34]

also reported different K-s relationships at different heights

of column specimen of bentonite/sand mixtures. They

attributed this phenomenon to the effect of critical gradient:

water flow with hydraulic gradient lower than the critical

gradient is of non-Darcian flow nature and should be

excluded in the determination of K-s relationship. Fol-

lowing this idea, the water fluxes (q) versus hydraulic

gradient (i) for each suction level obtained from this study

are plotted in Fig. 12. It appears that for a given suction,

the relationship between water flux and hydraulic gradient

is bilinear with two slopes: the slope at high gradients is

larger than that at low gradients. This can be explained by

the high activation energy of the water adsorbed on the clay

particles, which increases with the decreasing distance to

the surface of the clay particles [35]. When the hydraulic

gradient is not large enough to overcome the activation

energy, the adsorbed water behaves as ‘‘immobile film’’

without contribution to water flow and thus the water fluxes

are small (Fig. 12). As the hydraulic gradient increases,

this energy is overcome locally and the adsorbed water can

be displaced, resulting in larger water fluxes (Fig. 12).

Clearly, for each suction value, there is a ‘‘critical gradi-

ent’’ below which the water flow is of non-Darcian nature

and should not be considered when calculating the

hydraulic conductivity [10].

Considering the critical gradient effect, the hydraulic

conductivity was corrected by considering water flow only

at high hydraulic gradients. This correction led to a unique

K - s relationship independent of the measurement height

(Fig. 13). It can be observed that K decreased from
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1.97 9 10-13 to 3.85 9 10-14 m/s when suction decreased

from 80 to 25 MPa. As suction further decreased to 8 MPa,

K slightly increased to 6.27 9 10-14 m/s with a tendency

to the saturated hydraulic conductivity (9.39 9 10-13 m/s).

The difference among the evolution curves of radial

swelling pressure at different heights (Fig. 10) could be

related to the local swelling, collapse and displacement of

pellets upon wetting. During hydration, water tended to

flow preferentially into the inter-pellet voids because their

sizes are much larger than those inside the pellets. Simul-

taneously, parts of the inter-pellet water will be adsorbed

by the pellets, leading to swelling of the pellets and thus

filling of the inter-pellet pores. However, due to the limited

inter-pellet pore space, the adjacent swelling pellets will

compress each other, resulting in the collapse of pellets.

This collapse may also be induced by the increasing ver-

tical swelling pressure. In addition, the initial position of

local pellets may also be changed due to the mechanical

interactions between them. The displacement of local pel-

lets will cause sudden increase or decrease in radial swel-

ling pressure. Therefore, it was observed that the radial

swelling pressures at heights of 30 mm, 60 mm and 90 mm

first increased rapidly and then decrease slightly (Fig. 10).

The fluctuation on the curves indicates the complicated

competition between the swelling and collapse of pellets.

At height of 90 mm, the sudden increase followed by a

decrease in radial swelling pressure between t = 2300 h

and t = 3800 h indicates the drastic swelling and collapse

of the local pellets. The continuously increasing radial

swelling pressure at height of 120 mm and 150 mm sug-

gests a dynamic equilibrium between swelling and collapse

of the local pellets.

The swelling and collapse of local pellets during

hydration can also be identified from the evolution curves

of radial swelling pressure with suction (Fig. 14). For

sensor SP30, the swelling pressure increased slowly as

suction decreased from 102 to 40 MPa. Then, it increased

rapidly to a peak value at a suction of 7.5 MPa before

turning into a slight decrease. The swelling pressure at

sensors SP60, SP90 and SP120 increased in comparable

trends as suction decreased from the initial state to a value

of around 16 MPa. As suction further decreased, the

swelling pressure at sensors SP60 and SP90 increased

sharply to peak values at a suction of 13.5 MPa before

decreasing slightly, while the swelling pressure at sensor

SP120 increased continuously. Further examination shows

that the swelling pressure at sensor SP150 grew at a lower

rate than those at sensors SP60, SP90 and SP120. As

swelling pressure is governed by both suction and dry

density, this phenomenon suggests a heterogeneous distri-

bution of the local dry density within the specimen: the

local dry densities at sensors SP30 and SP150 were lower

than those at sensors SP60, SP90 and SP120. Actually, due

to the particle segregation after vibration, more fine pellets

on the lower part (near to SP30) and more large pellets on

the upper part (near to SP150) of the initial prepared

specimen were observed, leading to a less dense soil

structure [19]. During infiltration, the specimen would

undergo a complicated structure homogenization process:

on the one hand, the initial heterogeneity tended to be

reduced due to swelling of pellets and filling of inter-pellet

pores, on the other hand additional heterogeneity could be

caused by the friction between the pellets and the lateral

wall as well as the diverse compressibility of pellets at

different saturation states. However, because of the extre-

mely low rate of water migration, this homogenization

process was not completed even at the end of the test

(Fig. 11). The comparable swelling pressures at a given

suction at sensors SP60, SP90 and SP120 suggest similar

dry density at these levels. When suction tended to zero,

the sharp increase followed by a decrease in swelling

pressures at sensors SP30, SP60 and SP90 suggests the

drastic swelling and then collapse of local large pellets.
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Unlike the radial swelling pressures, the axial swelling

pressure evolved following a smoother path, without sud-

den increase and decrease (Fig. 10). This is because the

axial swelling pressure was measured at the top surface by

a force transducer; thus, it depends on the global dry

density of the specimen. In other words, the evolution of

axial swelling pressure reflected the competition between

the swelling and collapse of all pellets within the specimen.

The axial swelling pressure increased before a peak value

due to the prevailing swelling of pellets and then slightly

decreased owing to the dominant collapse of pellets within

the specimen. The collapse decreased the inter-pellet

macro-pores, leading in turn to the decrease in collapse.

Thus, the swelling process became dominant again with the

new increasing of axial swelling pressure. According to the

relationship between axial swelling pressure and dry den-

sity on compacted GMZ bentonite derived by Ye et al.

[36], the final axial swelling pressure was estimated at

0.913 MPa when the specimen (1.45 Mg/m3) gets satu-

rated completely.

Fundamentally, the soil structure plays a significant role

in the hydro-mechanical behaviour. For further under-

standing the hydro-mechanical behaviour of GMZ ben-

tonite pellets, the evolution of the structure of pellet

mixture with suction requires further investigation either

via MIP, ESEM or l-CT [22, 27]. In addition, a constitu-

tive model for the hydro-mechanical behaviour is needed

for a numerical study on the long-term performance of the

bentonite pellet mixtures used in a HLW repository. In this

regard, the pioneer work of Alonso et al. [1] and Li et al.

[17] could be inspiring.

5 Conclusions

The hydro-mechanical properties of pellet mixture of GMZ

bentonite were investigated in the laboratory by carrying

out water retention test and infiltration test. Based on the

obtained results, the following conclusions can be drawn:

In high suction range ([ 10 MPa), the water retention

curve of pellet mixture under constant-volume condition

was comparable to that of a single pellet under free swel-

ling condition because water is essentially adsorbed by clay

minerals or inside the pellets, while in low suction range

(\ 10 MPa), the water retention capacity of pellet mixture

was much lower than that of a single pellet due to the

limited total amount of inter-pellet pores under constant-

volume condition.

The unsaturated hydraulic conductivity of pellet mixture

decreased as suction decreased to around 25 MPa and then

tended to increase continuously to the value at saturated

state (9.39 9 10-13 m/s) as suction further decreased to

zero. The initial decrease in unsaturated hydraulic

conductivity was attributed to the progressive clogging of

large pores induced by the gel creation from bentonite

aggregate hydration and clay particle exfoliation, while the

subsequent increase resulted from the decrease in water

retention energy defined by the suction.

Different evolution curves of radial swelling pressure at

different heights were observed. It is believed that the

initial heterogeneous distribution of local pellet and

porosity were responsible for such difference. Some sud-

den increase and decrease in radial swelling pressure were

also observed, which could be induced by the swelling,

collapse and displacement of local pellets as suction

decreases. By contrast, the axial swelling pressure grew in

a more regular fashion because it is the competition

between swelling and collapse of pellets.
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https://doi.org/10.1680/geot.2011.61.4.329

2. Andreasen AHM, Andersen J (1930) Relation between grain size

and interstitial space in products of unconsolidated granules.

Kolloid-Zeitschrift 50:217–228

3. Bian X, Cui YJ, Li XZ (2019) Voids effect on the swelling

behaviour of compacted bentonite. Géotechnique 67(7):593–605.
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