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Abstract
This paper presents a new analytical model for calculating the dynamic performance of pile groups subjected to vertical

loads. The derived solution allows considering the robust pile-to-pile coupled interaction on impedance of the pile group,

by accounting for the secondary waves generated by the vibration of the receiver pile. For that, we introduce a dynamic

coupling factor to modify the classical pile-to-pile interaction factor to illustrating the coupling effect of the source and

receiver pile. Numerical results obtained for typical problem parameters indicate that this coupling effect can be important

for closely spaced pile group, pile groups with large slenderness ratio or pile groups with large group members. The

proposed solution is capable of determining the frequency-dependent impedance of large pile groups comprising arbitrary

numbers of piles, which numerical modelling can be cumbersome.

Keywords Analytical methods � Dynamic analysis � Pile groups � Soil-structure interaction

1 Introduction

Piles are always designed in a group to transfer dynamic

loads to competent soil layers, which covers the issue of

how each pile interacts with its surrounding soil (pile-to-

soil interaction) [1, 3, 4, 11, 19, 20], and of interaction

between piles in the same group (pile-to-pile interaction)

[7, 10, 15, 18, 21]. The effects of pile-to-soil and pile-to-

pile interaction phenomena on load transfer mechanisms

are coupled sophisticatedly, rendering a number of

numerical methods such as the finite element method

(FEM) [13, 16] and the boundary element method (BEM)

[2, 9, 14]. The complex geometry of pile groups with large

group members and dense mesh discretization of the

domain and its boundaries, especially for dynamic prob-

lems involving wave propagation, lead to large systems of

equations and therefore to computationally expensive

effort. This is not surprising that some approximate wave

propagation methods [5, 6, 8, 12, 15, 17] are still in use to

reveal load transfer mechanisms of pile-to-soil and pile-to-

pile interaction.

Principle of superposition pioneered by Poulos [15]

offers a method to calculate settlement of pile groups with

arbitrary number of piles, by considering the interaction

between two floating piles subjected to static vertical loads.

The interaction factor is defined as a ratio of the additional

displacement of a pile due to the presence of a source pile,

over the displacement of the same pile under its own load.

Later, Dobry and Gazetas [5] extended the static interac-

tion factor of two piles to dynamic problems to serve as a

basis for further studies on vertical, lateral and rocking

vibrations of pile groups. These solutions were proposed

based on a simple three step to calculate the dynamic

interaction factor, while assuming that cylindrical waves

are emanated from the source pile and spread radially to

strike an adjacent pile, and that a receiver pile follows

exactly the soil attenuation function. These assumptions
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suggest that secondary waves generated by the receiver pile

vibration are ignored when the radially spreading incident

waves strike the adjacent pile, and that the interaction

between the receiver pile and its surrounding soil is

neglected. Mylonakis and Gazetas [10] refined the pile-to-

pile interaction model of Dobry and Gazetas [5] to account

for the diffraction effect of the arriving wave by simulating

the pile as a Winkler beam supported by springs and

dashpots, while they did not consider the generated sec-

ondary waves.

In all the above-mentioned studies, only incident waves

are considered when evaluating the pile-soil-pile interac-

tion of pile groups subjected to vertical dynamic loads. In

reality, secondary waves which are generated by the

vibration of the receiver pile also exist in the soil layer after

the incident waves striking the receiver pile, which tends to

interfere with the incident waves form the source pile.

Intuitively, the contribution of the secondary wave to the

responses of the pile group will depend on the pile spacing

S and the number of piles in the same group. To the

authors’ knowledge, this mechanism is ignored in all

existing analytical solutions used to evaluate dynamic

responses of a pile group. In the following, we address a

four-step process for the dynamic analysis of pile-soil-pile

systems that considers both the incident waves and the

secondary waves, and use the new analytical model to

define a ‘‘coupling factor’’ that accounts for the coupling

effect of the source and receiver pile vibrations. Accord-

ingly, we employ this coupling factor to obtain a new

expression for the pile-to-pile interaction factor, which is

used for dynamic responses of a pile group subjected to

vertical loads. Finally, we discuss the effect of the refine-

ment introduced in this paper on the popular interaction

factor of two identical piles and the impedance of pile

groups via comparison with existing solutions of Mylon-

akis and Gazetas [10].

2 A new proposed model for mutual
interaction of piles in a group

The problem addressed in this paper is illustrated in Fig. 1:

a group of m vertical circular piles with length H, diameter

d (d = 2r0), cross-sectional area Ap, modulus of elasticity

Ep and mass density qp are embedded in soil layers and

subjected to a vertical harmonic load PGe
ixt. x is the

excited frequency; i ¼
ffiffiffiffiffiffiffi

�1
p

. The soil layer is modelled as

linear viscoelastic material, with damping ratio bs, complex

Lame constants k = k*(1 ? 2ibs) and G = G*(1 ? 2ibs)
and mass density qs. The pile members spaced with S are

connected through a rigid weightless pile cap which is not

in contact with the soil, rendering this model competent for

high-rise pile groups. A right-handed cylindrical

(r - h - z) coordinate system, shown in Fig. 1b, is used to

cast the governing equations of the problem. The origin of

the system lies at the centre of the pile head, and the z-axis

coincides with the pile axis which points downwards, with

clockwise polar angles h taken as positive. In addition, we

introduce the following assumption that the pile members

are simulated as Winkler beams; no slippage takes place at

the pile-soil interface and that the pile group is rested on

the rigid bedrock.

Fig. 1 Schematic of a pile group subjected to a vertical dynamic load:

a side view of the pile group and b coordinate system used to cast the

governing equations
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As discussed above, secondary waves also exist in the

soil after the incident waves striking receiver piles, which

tends to amplify or de-amplify the free soil displacement at

location of the source pile. In order to depict this mecha-

nism mathematically, the development of pile-to-pile

coupled interaction is decomposed into the following four

steps with reference to Fig. 2, which follows from the

model proposed by Dobry and Gazetas [5] and Mylonakis

and Gazetas [10]:

Step 1: The response (vertical displacement W11(z)) of a

solitary source pile subjected to a time-harmonic vertical

load is determined using an analytical method.

Step 2: Cylindrical waves are generated along the source

pile and spread radially with the vertical soil displace-

ment U21(S, z) given by:

U21 S; zð Þ ¼ w Sð ÞW11 zð Þ ð1Þ

in which w(S) is the soil attenuation function:

w Sð Þ ¼ U21 S; zð Þ
U21

d
2
; z

� � ¼
H

2ð Þ
0

S
d

a0
ffiffiffiffiffiffiffiffiffiffi

1þ2ibs
p

� �

H
2ð Þ
0

1
2

a0
ffiffiffiffiffiffiffiffiffiffi

1þ2ibs
p

� � ð2Þ

where a0 = xd/Vs, Vs is shear wave velocity of the soil

layer, and H0
2() is the Hankel function of zero order and

the second kind.

Step 3: The unloaded receiver pile is modelled as a

Winkler beam to account for diffraction effect of the

arriving wave. Notice that the mechanics of step 3 is in a

sense the reverse to that in step 1: in step 1 the source

pile induces displacements on soil, whereas in step 3, the

incident wave field induces displacements on the

receiver pile.

Step 4: The soil reaction at location of the source pile

arising from the receiver pile interferes with the incident

free displacement, rendering responses of the source pile

different. To account in a simple realistic way for this

interaction, the source pile is modelled as aWinkler beam,

and the soil displacementU12(S, z) induced by the receiver

pile is applied at the distributed soil springs and dashpots.

For a harmonically vibrating source pile, the dynamic

equilibrium of the infinitesimal pile segment gives the

following governing equation:

EpAp
d2W11 zð Þ

dz2
� kz þ ixcz � mx2
� �

W11 zð Þ ¼ 0 ð3Þ

where W11(z) denotes the axial displacement of the

vibrating source pile, kz and cz are frequency-dependent

springs and dashpots, respectively, m = qpAp. The general

solution of Eq. (3) is:

W11 zð Þ ¼ A11e
kz þ B11e

�kz ð4Þ

where k2 ¼ kzþixcz�mx2

EpAp
, A11 and B11 are constants relating

with boundary conditions of the source vibrating pile. For

special end-bearing piles, we introduce the boundary con-

ditions at the top and bottom of the pile as:

dW11 zð Þ
dz

�

�

�

�

z¼0

¼ � P1

EpAp
ð5Þ

W11 zð Þjz¼H¼ 0 ð6Þ

where P1 denotes the harmonic vertical load atop the

source pile.

Substituting Eqs. (5) and (6) into Eq. (4) yields:

A11 ¼ � P1

EpApk 1þ e2Hkð Þ ð7Þ

B11 ¼
e2HkP1

EpApk 1þ e2Hkð Þ ð8Þ

Similarly, the dynamic equation of a receiver pile can be

governed as:

EpAp
d2W21 zð Þ

dz2
þ mx2W21 zð Þ

� kz þ ixczð Þ W21 zð Þ � U21 S; zð Þ½ �
¼ 0 ð9Þ

where

U21 S; zð Þ ¼ w Sð ÞW11 zð Þ ¼ w Sð Þ A11e
kz þ B11e

�kz
� �

W21(z) is the displacement of the receiver pile induced by

vibration of the source pile.

W11(0)

W12(0)

U21(0)W21(0)

P1

Source pile

receiver pile

Incident wave

Secondary wave

Soil layer

Fig. 2 Schematic illustration of the proposed model to account for

pile-to-pile mutual interaction
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The solution of Eq. (9) is:

W21 zð Þ ¼ kz þ ixcz
2kEpAp

w Sð Þz �A11e
kz þ B11e

�kz
� �

þ A21e
kz

þ B21e
�kz

ð10Þ

in which A21 and B21 are integration constants. A21 and B21

are calculated considering zero force atop the receiver pile

and fixed bottom of the receiver pile i.e.

dW21 zð Þ
dz

�

�

�

�

z¼0

¼ 0 ð11Þ

W21 zð Þjz¼H¼ 0 ð12Þ

Accordingly,

A21 ¼
kz þ ixczð Þw Sð Þ A11 � B11 � B11kH þ A11kHe2kH

� �

2EpApk
2 1þ e2Hkð Þ

ð13Þ

Considering the secondary waves striking the source pile,

the governing equation for this step can be expressed as:

EpAp
d2W12 zð Þ

dz2
þ mx2W12 zð Þ

� kz þ ixczð Þ W12 zð Þ � U12 S; zð Þ½ �
¼ 0 ð15Þ

In which U12 S; zð Þ ¼ w Sð ÞW21 zð Þ ¼ w Sð Þ kzþixcz
2kEpAp

w Sð Þ
h

z �A11e
kz þ B11e

�kz
� �

þ A21e
kz þ B21e

�kz�; W12(z) is a dis-

placement induced by the secondary wave, which points

upwards.

The solution of Eq. (15) is:

W12 zð Þ ¼ z
kz þ ixczð Þ2w2

8k2E2
pA

2
p

A11z�
kz þ ixczð Þw
2EpApk

A21

"

� kz þ ixczð Þ2w2

8k3E2
pA

2
p

A11

#

ekz

þ z
kz þ ixczð Þ2w2

8k2E2
pA

2
p

B11zþ
kz þ ixczð Þw
2EpApk

B21

"

þ kz þ ixczð Þ2w2

8k3E2
pA

2
p

B11

#

e�kz

þ A12e
kz þ B12e

�kz

ð16Þ

in which A12 and B12 are integration constants. A12 and B12

are calculated considering zero force atop the pile head and

fixed bottom of the pile i.e.

dW12 zð Þ
dz

�

�

�

�

z¼0

¼ 0 ð17Þ

W12 zð Þjz¼H¼ 0 ð18Þ

Therefore,

A12 ¼ �M1 þ eHkM2k
kþ ke2Hk

ð19Þ

B21 ¼
eHk eHkM1 �M2k
� �

kþ ke2Hk
ð20Þ

where

M1 ¼ �A11w
2 kz þ ixczð Þ2

8A2
pE

2
pk

3
� A21w kz þ ixczð Þ

2ApEpk

þ B11w
2 kz þ ixczð Þ2

8A2
pE

2
pk

3
þ B21w kz þ ixczð Þ

2ApEpk
;

M2 ¼ H

kz þ ixczð Þ2w2

8k2E2
pA

2
p

A11H � kz þ ixczð Þw
2EpApk

A21�

kz þ ixczð Þ2w2

8k3E2
pA

2
p

A11

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ekH

þ H

kz þ ixczð Þ2w2

8k2E2
pA

2
p

B11H þ kz þ ixczð Þw
2EpApk

B21þ

kz þ ixczð Þ2w2

8k3E2
pA

2
p

B11

2

6

6

6

6

6

4

3

7

7

7

7

7

5

e�kH :

Since Mylonakis and Gazetas [10] only considered the

incident wave emanating from the source pile, the ratio of

a1 = W21(0)/W11(0) was defined as the popular interaction

factor of two piles. However, to account for the secondary

waves due to vibrations of the receiver pile, we need to

B21 ¼
kz þ ixczð Þw Sð Þ �A11e

2kH þ B11e
2kH � B11kH þ A11kHe2kH

� �

2EpApk
2 1þ e2Hkð Þ

ð14Þ
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introduce a coupling factor j, which is equal to the source

pile head displacement due to vibration of the receiver pile,

over the pile head displacement of the source pile:

j ¼ W12 0ð Þ
W11 0ð Þ ð21Þ

Considering the coupled interaction between the source

and receiver pile, the value of W11(0) - W12(0) is the

finally desired displacement of the source pile. Therefore,

the interaction factor which accounts for secondary waves

propagating from the receiver pile can be expressed as:

a ¼ W21 0ð Þ
W11 0ð Þ �W12 0ð Þ ¼

W21 0ð Þ
1� jð ÞW11 0ð Þ ð22Þ

3 Mutual interaction of pile group

Every single pile in a pile group acts both as a source and

receiver pile, simultaneously. On basis of principle of

superposition, displacement of every solitary pile com-

prises two components: (1) The source pile displacement

induced by load applied on its own head i.e.

1�
Pm

j¼1;j 6¼i jij
� 	

Wi; (2) The receiver pile displacement

induced by neighbouring piles i.e.
Pm

j¼1;j6¼i a1;ijWj, where

jij is a factor accounting for the coupling effect of pile j on

pile i; a1,ij denotes the traditional interaction factor between
pile j and pile i as defined by Mylonakis and Gazetas [10];

Wi and Wj are the displacement of pile i and j, respectively,

due to the atop vertical loads Pi and Pj. Therefore, the

resultant displacement Di of each pile i in the pile group

can be cast as:

Di ¼ 1�
X

m

j¼1;j 6¼i

jij

 !

Wi þ
X

m

j¼1;j6¼i

a1;ijWj ð23Þ

For m identical piles, pile displacement can be expressed

mathematically in matrix as:

D½ � ¼ A½ � P½ � ð24Þ

where

Vertical loads atop the pile can be expressed as:

P½ � ¼ A½ ��1 D½ � ð25Þ

Pile members are connected through a rigid pile cap,

which yields:

PGe
ixt ¼

X

m

i¼1

Pi ð26Þ

and

D1 ¼ D2 ¼ � � � ¼ Dm ¼ DG ð27Þ

The pile group impedance can be defined as:

KG ¼ PGe
ixt

DG
ð28Þ

which can be recast in the summation of a real component

and an imaginary component:

KG ¼ Epd kG þ icGð Þ ð29Þ

4 Results and discussion

The aim of this section is twofold: first, we present

examples to illustrate secondary waves generated by the

vibration of the receiver pile on dynamic responses of the

source pile through the coupling factor. Next, we use the

introduced coupling factor to combine with the two-pile

interaction factor to shed some light on how the refinement

of the receiver pile affects dynamic responses of a pile

group via selected arithmetic examples. Unless otherwise

stated, the parameters considered in the analysis are

D½ � ¼

D1

D2

:

:

:

Dm

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

; A½ � ¼ 1

K

1�
P

m

j¼1;j6¼1

j1j a1;12 a1;13 : : : a1;1m

a1;21 1�
P

m

j¼1;j 6¼2

j2j a1;23 : : : a1;2m

: : : : :

: : : : :

: : : : :

a1;m1 a1;m2 : : : : 1�
P

m

j¼1;j 6¼m

jmj

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; r P½ � ¼

P1

P2

:

:

:

Pm

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:
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presented as follows: elasticity modulus of pile Ep=-

25GPa, mass density of pile qp= 2500 kg/m3, mass den-

sity of soil qs= 2000 kg/m3, shear modulus of soil

Gs= 10 MPa, damping ratio of soil bs= 0.02 and Poisson’s

ratio of soil ms= 0.4. In addition, the results are presented in

terms of the normalized frequency a0 = xd/Vs, where

Vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

Gs=qs
p

.

4.1 Effect of receiver pile vibration on the source
pile and the interaction factor

First, variations of the real and imaginary components of

the coupling factor j with the dimensionless frequency a0
for different pile spacing and different pile slenderness

ratio are, respectively, illustrated in Figs. 3 and 4. Notice in

Fig. 3 that resonance amplitude of the coupling factor (both

the real component and the imaginary component) tends to

decrease with the increasing pile spacing. The variation of

the coupling factor with pile spacing is not trivial, sug-

gesting that the effect of secondary waves on responses of

the source pile is important, especially for closely spaced

pile groups. Also notice in Fig. 4 that the coupling factor

is, as expected, dependent on the pile slenderness: large

slenderness ratio results in significant coupling effect. This

is owing to the fact that the interaction between the

receiver pile and its surrounding soil becomes obvious with

the increasing pile length, leading to increased secondary

waves. This coupling effect between the source pile and the

receiver pile cannot be captured by the conventional

model, as it does not consider the secondary waves caused

by the existence of the receiver pile.

(a) Real component

(b) Imaginary component

0.0 0.1 0.2 0.3 0.4 0.5
-0.005

0.000

0.005

0.010
R

ea
l  κ

a0

S=2d S=3d
S=4d S=5d

0.0 0.1 0.2 0.3 0.4 0.5
-0.010

-0.005

0.000

0.005

0.010

Im
ag

in
ar

y  
κ

a0

S=2d S=3d
S=4d S=5d

Fig. 3 Effects of pile spacing on the coupling factor a real component

and b imaginary component. The results for H/d = 20

(a) Real component

(b) Imaginary component

0.0 0.1 0.2 0.3 0.4 0.5
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

R
ea

l  κ

a0

H=20d H=30d
H=40d H=50d

0.0 0.1 0.2 0.3 0.4 0.5
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

Im
ag

in
ar

y  
κ

a0

H=20d H=30d
H=40d H=50d

Fig. 4 Effects of slenderness ratio of the pile on the coupling factor

a real component and b imaginary component. The results for S/d = 2
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Next, we will investigate the effect of secondary waves

generated by the vibration of the receiver pile on its cal-

culated interaction factor, by comparing results of the

presented solution against those obtained by Mylonakis and

Gazetas [10]. Interaction factors calculated through the two

solutions, which are both expressed via a uniformly here,

are illustrated in Figs. 5 and 6 for different pile spacing and

slenderness ratio, respectively. Comparatively noticeable

discrepancies are observed for the case of S/d = 2 in Fig. 5

and H/d = 50 in Fig. 6, while as expected, the two solu-

tions converge as the pile spacing increases and the pile

slenderness ratio decreases (see S/d = 5 in Fig. 5 and H/

d = 20 in Fig. 6). Therefore, (1) secondary waves ema-

nating from the receiver pile become important for pile

groups with close pile spacing or with large slenderness

ratio, and (2) the presented solution agrees well with the

established solutions proposed by Mylonakis and Gazetas

[10] when the pile spacing is sufficiently large enough or

the pile slenderness ratio is comparatively small. It is

noteworthiness that the secondary waves of the receiver

pile on the interaction factor may not significant e.g. cases

of S/d = 5 and H/d = 20, as only two piles are used to

obtain the interaction factor. However, this coupling effect

tends to be noticeable when calculating impedance of the

pile group with increased group members, and we will

demonstrate this in the following part through a selected

arithmetic example.

(a) Real component

(b) Imaginary component

0.0 0.1 0.2 0.3 0.4 0.5
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S/d=5R
ea

l  α

a0

 This study
 Mylonakis and Gazetas 1998

S/d=2

0.0 0.1 0.2 0.3 0.4 0.5
-0.20

-0.15

-0.10

-0.05

0.00

S/d=2

S/d=5

Im
ag

in
ar

y 
α

a0

 This study
 Mylonakis and Gazetas 1998

Fig. 5 Comparison of the interaction factor computed using the

proposed model and the solution of Mylonakis and Gazetas [10] for

the case of S/d = 2 and S/d = 5: a real component b imaginary

component. The results for H/d = 50

(a) Real component

(b) Imaginary component

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

H/d=20

R
ea

l α

a0

 This study
 Mylonakis and Gazetas 1998

H/d=50

0.0 0.1 0.2 0.3 0.4 0.5
-0.25

-0.20

-0.15

-0.10

-0.05

0.00

H/d=20
Im

ag
in

ar
y 

α

a0

 This study
 Mylonakis and Gazetas 1998

H/d=50

Fig. 6 Comparison of the interaction factor computed using the

proposed model and the solution of Mylonakis and Gazetas [10] for

the case of H/d = 20 and H/d = 50: a real component b imaginary

component. The results for S/d = 2
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4.2 Effect of receiver pile vibration on pile group
impedance

Effects of the receiver pile vibration on the impedance of a

symmetrical nine-pile group are illustrated in Figs. 7 and 8,

via making comparisons between the proposed solutions

and the results obtained from Mylonakis and Gazetas [10].

Arithmetic results are presented for different pile spacing

in Fig. 7 and different pile slenderness ratio in Fig. 8.

Notice that the solution at hand agrees well with the pile

group impedance resulting from that neglecting effects of

the receiver pile, for the case of large-spaced pile group

e.g. S/d = 10 in Fig. 7. However, notable discrepancies are

observed with the decreased pile spacing e.g. S/d = 2,

which confirm the important role of the receiver pile

vibration. In addition, comparatively significant discrep-

ancies, as expected, are observed for the case of H/d = 20

and H/d = 30 in Fig. 8, and this difference becomes more

prominent for the case of H/d = 30. Notice in Fig. 6 that

effect of the receiver pile vibration on the interaction factor

is negligible small for the case of H/d = 20. However,

discrepancies between the proposed solution and that from

Mylonakis and Gazetas [10] in evaluating the impedance of

a nine-pile group are still not trivial for the case of H/

d = 20 in Fig. 8. Therefore, effects of the receiver pile

vibration in a pile group with large group members become

important for pile slenderness of practical interests.
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Fig. 7 Comparison of impedance of a symmetrical nine-pile group

computed using the proposed solution with that obtained by

Mylonakis and Gazetas [10] for the case of a S/d = 2, b S/d = 2.

The results for H/d = 30
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Fig. 8 Comparison of impedance of a symmetrical nine-pile group

computed using the proposed solution with that obtained by

Mylonakis and Gazetas [10] for the case of a H/d = 20, b H/
d = 30. The results for S/d = 2
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5 Concluding remarks

We presented a simple physical model for describing the

dynamic response of end-bearing pile groups subjected to

harmonic vertical loads. The model is based on a pile-to-

pile coupling interaction which allows considering the

radially spreading waves emanated from the source pile

and considering the secondary waves generated by the

receiver pile vibration. The model allows calculating the

coupling effect of the source and receiver pile through an

introduced coupling factor, and permits the impedance of

pile groups with arbitrary number of cylindrical piles to be

obtained analytically. Apart from illustrating coupling

factor between the source and receiver pile, which allows

us to gain insight into the physical mechanics of the

problem, we also presented arithmetic results to verify

validation of the method and to quantify effects of the

receiver pile vibration on dynamic responses of the pile

group. Unquestionably, limitations of the model stem from

certain assumptions introduced in the solution, such as the

rigid weightless cap which is not in contact with soil and

the perfect bonding at pile-soil interaction. Nevertheless,

the main advantage of this model is that it is relatively easy

to program, and is suitable for dealing with large closely

spaced pile groups or pile groups with large members.
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