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Abstract
In this paper, the stress–strain responses of frozen sands and an elastoplastic constitutive model based on the homoge-

nization theory of heterogeneous materials are presented. In the model, frozen soils are conceptualized as binary-medium

materials consisting of bonded blocks and weak bands, and their mechanical behavior is described with elastic–brittle and

elastoplastic constitutive models, respectively. By introducing two groups of parameters (i.e., the breakage ratio (kv and ks)
and strain concentration coefficient (cv and cs) related to the spherical and deviatoric stress components), the proposed

model incorporates the breakage process of ice crystals and nonuniform strain distributions between the matrix (bonded

elements) and inclusions (frictional elements) of the heterogeneous frozen soil samples. Moreover, an elasticity-based

model and a double hardening constitutive model are employed to simulate the mechanical properties of the bonded

elements and the characteristics of the frictional elements, respectively. To provide appropriate and quantitative predictions

with the binary-medium constitutive model proposed here, triaxial compression tests are performed on the frozen and

unfrozen sands to determine the individual parameters at confining pressures of 300–1800 kPa. The model validations

demonstrate that the predictions agree well with the available laboratory results.

Keywords Breakage ratio � Elastoplastic constitutive model � Frozen sands � Homogenization theory � Local strain

concentration coefficient

1 Introduction

Frozen soils are special geological materials that are

extensively distributed in cold regions; they are soils and

rocks that contain some ice and have temperatures below

0 �C [1, 2]. Because these composite materials include

solid mineral particulates, ice crystals, unfrozen water, and

gaseous inclusions, the mechanical characteristics of frozen

soils are clearly distinct from those of other geomaterials

[3–7], such as rocks, concretes, shape memory alloys, and

ceramics at room temperature. When the environmental

temperature falls below the freezing point, the unfrozen

water surrounding the soil particulates freezes gradually

and transforms into ice crystals, thereby bonding the soil

skeletons together and exhibiting a quasi-elastic–brittle

behavior [8]. Constitutive models can be used to represent

the macroscopic stress–strain responses; many existing

constitutive models focus on the external factors such as

the stress level, stress history, confining pressures, tem-

peratures, loading rates, and soil types and place less

emphasis on the changes in the internal configurations such

as the interactions between the soil matrix and inclusions

with different volume fractions, shapes, and orientations.

However, regarding frozen soils, few research studies have

considered the mesoscopic perspective, that is, they have

not considered the micromechanisms between multiple

ingredients of the compound soils. Therefore, establishing
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a micromechanics-based constitutive model for frozen soils

is crucial.

Experimental and theoretical investigations of compos-

ite-reinforced soils are becoming increasingly prevalent in

geotechnical engineering, and great progress has been

made in predicting the effective mechanical behavior of

such compound materials. In addition, the interactions

between the soil matrix and inclusions with different vol-

ume fractions, shapes, and configurations have often been

studied [9–11]. The existing models consider the consti-

tutive relationships of each phase and combine them to

predict the available laboratory results of the compound

materials. For instance, Zhou et al. [12] formulated a

strength upscaling model based on the yield design theory

and linear comparison composite approach to estimate the

macroscopic strength of nonlinear matrix–inclusion com-

posites with different strength characteristics of the matrix

and inclusions. Nguyen et al. [13] proposed a critical-state-

based constitutive model for the behavior of clay treated

with cement and fibers. This model simulates the behavior

of these types of improved composite soils and the

cementation degradation and fiber failure during the

experiment advancement. Moreover, Dejaloud et al. [14]

established a combined constitutive model for municipal

solid wastes by considering an anisotropic critical-state-

based constitutive model for matrix-phase-based materials

and a von Mises-type model for fiber-phase-based materi-

als based on the micromechanical theories of the volu-

metric homogenization procedure. Zhou et al. [15]

proposed a multi-scale homogenization model for the

strength prediction of fully and partially frozen soils by

considering three material phases: the solid particle phase,

crystal ice phase, and liquid water phase with their indi-

vidual constitutive models. However, the previously men-

tioned models are unsuitable for frozen soils. The existing

constitutive models cannot be applied to multi-phase

materials and mainly focus on simulating the stress–strain

responses from a phenomenological perspective based on

the plasticity or thermodynamic theory. For instance, Lai

et al. [16] proposed a yield surface by considering the

strengthening and weakening effects of frozen sandy soils;

they employed the experimental method to establish the

elastoplastic model based on the plasticity theory. Fur-

thermore, Lai et al. [17] proposed an elastoplastic consti-

tutive model for frozen silty soils based on the generalized

plastic theory by incorporating the plastic shear mechanism

and volumetric compression mechanism; in addition, a

dilatation yield surface was employed based on the

experimental results. Lai et al. [18] presented a new sys-

tematical approach for deriving the yield criterion and flow

rule of frozen soils based on the plasticity theory and dis-

sipation function (homogenous function) to predict the

pressure melting/crushing phenomenon of ice crystals.

Moreover, Ghoreishian et al. [19] established an elasto-

plastic constitutive model for describing the stress–strain

features of saturated frozen soils and investigated the

influence of the ice content and temperature; the predicted

values confirmed the capability of the model. Lai et al. [20]

formulated a double-yield surface model that considers the

rotational hardening characteristics of frozen saline sandy

soil and the initial and loaded anisotropies by employing

the thermodynamic theories and non-associated flow rule.

Xu et al. [21] presented a hypo-plasticity constitutive

model for the viscous behavior of frozen soil, and Zhou

et al. [22] applied the hyper-plasticity theory with multiple

internal variables to establish a rate-dependent constitutive

model based on the laboratory results of frozen loess.

Furthermore, Loria et al. [23] proposed an elastoplastic

constitutive model for capturing the nonlinear mechanical

behavior of frozen silt based on the associated flow rules;

they employed an elliptical and a parabolic yield surface to

describe the volumetric mechanisms. However, few con-

stitutive models incorporate the breakage and deformation

mechanisms of multi-phase frozen soils based on the

mesoscale level.

Research studies on constitutive models for reconsti-

tuted soils have led to satisfactory models, such as the

Cam-Clay model [24–26], generalized plastic mechanics

model [16, 27], unified hardening model [28–30], cemen-

ted Cam-Clay model [31], and other constitutive models

[32–34, 56]. However, certain constitutive models have

difficulties in modeling the strain softening and volumetric

dilatation features. Therefore, some of them have been

reformulated and improved by considering the influences

of the soil structures (e.g., the revised structural Cam-Clay

model [35], disturbed-state concept (DSC) model [36–38],

thermo-poromechanics-based elastoplastic model [8], and

some micromechanics-based models [39–41]). The struc-

tured soils usually possess different spatial arrangements

and cementations, and their mechanical features differ

much from those of remolded soils [42]. Because of the ice

crystals, frozen soils possess stronger cementation bonds

than general structured soils and exhibit strong structural

performances and quasi-brittle characteristics. Therefore,

they are classified as special ‘‘structured soils.’’ Under an

external load and based on the environmental circum-

stances, the cementations (ice crystals) between the soil

particles break gradually and approach a completely dete-

riorated state, i.e., remolded soils without ice crystals are

formed. In a model based on traditional meso-mechanics,

the soil matrix, inclusions, and unfrozen water must be

considered, which will enable the constitutive models more

sophisticated, and thus, fewer researchers focus on the

micromechanics-based constitutive model of frozen soils.

Ice crystals are special inclusions embedded in frozen

soil samples; they exhibit a quasi-elastic behavior under
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relatively weak deformations and break when the inter-

granular stress exceeds the failure stress of the ice crystals;

this is accompanied by an elastoplastic behavior and strain

softening phenomena. Under an external load, ice crystals

break gradually and transform into unfrozen water (the

pressure melting phenomenon) [16, 17, 43]. However, the

existing constitutive models do not reflect the pressure

melting phenomenon. To model the mechanical responses

of frozen soils from a mesoscopic perspective, a new

revised model for simulating the elastoplastic behavior is

proposed based on the homogenization theory for hetero-

geneous materials [44–46]. The model conceptualizes

geomaterials into binary media that consist of bonded

blocks and weakened bands; the former are simplified as

elastic–brittle elements (bonded elements), whereas the

latter are regarded as elastoplastic elements (frictional

elements). The bonded elements transform gradually into

frictional elements owing to the structural breakage and

cementation loss of the bonded blocks under external

loading. More specifically, the bonded elements represent

soil samples under infinitely low-stress conditions or in the

undamaged state, whereas the frictional elements represent

fully damaged frozen soil samples or remolded soils

without ice crystals. Under intermediate stress conditions,

the bonded and frictional elements combine their resis-

tances to bear the external load [47]. The presented con-

stitutive model is revised and reformulated based on the

DSC model in the framework of the homogenization theory

by incorporating the micromechanical characteristics and

nonuniform strain between the bonded elements and rep-

resentative volume element (RVE) [48–50]. Without con-

sidering the microstrain distributions and local breakage

processes, some other constitutive models have also been

investigated based on different theories [51–56]. The pro-

posed model contributes its mutual influences on the

independent binary media and considers the breakage

process between the bonded and frictional elements. By

decomposing the stress into hydrostatic and deviatoric

components, the deformation mechanisms (compressive

and shear mechanisms) can be easily determined. In

addition, an elastic–brittle model is applied for the bonded

elements, and a double hardening model is used for the

frictional elements. The strain concentration coefficient

represents the interior nonuniform strain distribution and

the deformation relationship between the bonded and

frictional elements.

2 Proposed constitutive model

2.1 Introduction to proposed model

The homogenization theory is applicable to compound

soils and heterogeneous geomaterials [57]. In the RVE, the

local stress is represented by Cartesian coordinates x; y; zð Þ;
it represents the overall characteristics of the composite

soil, including the matrix and inclusions from a micro-

scopic viewpoint. The stress and strain are considered

homogeneous in the element volume fraction owing to the

assumed micro-stress and strain. Therefore, the macro-

scopic average stress rij and strain eij in the total volume

are expressed as follows:

rij ¼
1

V

Z

V

rloc
ij x; y; zð ÞdV; ð1Þ

eij ¼
1

V

Z

V

eloc
ij x; y; zð ÞdV ; ð2Þ

where rloc
ij and eloc

ij are the local stress and strain,

respectively.

The frozen soils (multi-phase geomaterials) are treated

as porous media with three components: the soil skeleton,

ice crystals, and unfrozen water, as illustrated in Fig. 1.

The novelty of the proposed model is that, in the virgin

stress state, frozen soils are considered fully intact without

damage under saturated conditions; they only contain two

components (soil particles and ice crystals; no unfrozen

water). In the failure stress state, the ice crystals are

assumed to have completely been melted into unfrozen

water, which is the fully damaged state. The virgin stress

state of the frozen soil specimen is conceptualized as

bonded elements, and the fully damaged state including the

soil skeleton and unfrozen water is idealized as frictional

elements.

To illustrate the advantages of the proposed model,

combined mechanical components are employed to

account for the deformation mechanisms. The soil speci-

men is considered a hybrid of bonded blocks (bonded

elements) and weak bands (frictional elements), which bear

the external load collectively. As previously mentioned, the

bonded elements consist of the ice crystals and soil

skeleton with elastic–brittle mechanical properties; they are

replaced by a spring E and brittle bond q in Fig. 2a. The

brittle bond is completely rigid when the stress level is

below the failure strength rb of the bonded elements and

breaks/ruptures when the stress exceeds rb at an infinite

strain. The frictional elements contain unfrozen water and

the soil skeleton, in which the bond/cementation of the ice

crystals is completely diminished and therefore negligible.

The mechanical properties of the frictional elements are
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similar to those of remolded soils and can be simulated

with the spring E and plastic slider f in Fig. 2b.

2.2 Homogenization technique

Based on the homogenization theory [57], the bonded

elements are used as the matrix and the frictional elements

as the inclusions. The volumetric homogenization tech-

nique can relate the microscopic stress to the macroscopic

stress; the specific procedure is presented in the following

sections. On the microlevel, the stress and strain of the

bonded elements are expressed as follows:

rbij ¼
1

Vb

Z

Vb

rloc
ij x; y; zð ÞdV and ebij ¼

1

Vb

Z

Vb

eloc
ij x; y; zð ÞdV ;

ð3Þ

where Vb is the volume of the bonded elements for the

RVE.

Likewise, the stress and strain of the frictional elements

(from a microscopic viewpoint) are expressed as follows:

rfij ¼
1

Vf

Z

Vf

rloc
ij x; y; zð ÞdV and efij ¼

1

Vf

Z

Vf

eloc
ij x; y; zð ÞdV;

ð4Þ

where Vf is the volume of the frictional elements for the

RVE.

By substituting Eqs. (3) and (4) into Eqs. (1) and (2), the

macroscopic average stress and strain can be reformulated

as follows:

rij ¼
1

V

Z

VbþVf

rloc
ij x; y; zð ÞdV ¼ Vb

V

1

Vb

Z

VbþVf

rloc
ij x; y; zð ÞdVb

þVf

V

1

Vf

Z

VbþVf

rloc
ij x; y; zð ÞdVb

þVf

V

1

Vf
rloc
ij x; y; zð ÞdVf ¼ Vb

V
rbij þ

Vf

V
rfij;

ð5Þ

eij ¼
1

V

Z

VbþVf

elocij x; y; zð ÞdV ¼ Vb

V

1

Vb

Z

Vb

elocij x; y; zð ÞdVb

þ Vf

V

1

Vf

Z

Vf

elocij x; y; zð ÞdVf ¼ Vb

V
ebij þ

Vf

V
efij:

ð6Þ

The volume fraction of the bonded elements and RVE is

defined as k ¼ Vf

V
, and the macroscopic average stress in

Eq. (5) is rewritten as follows:

rij ¼ 1 � kð Þrbij þ krfij: ð7Þ

Likewise, the macroscopic average strain becomes

eij ¼ 1 � kð Þebij þ kefij: ð8Þ

Fig. 1 Homogenization process of frozen soils in the framework of binary-medium model

ε

ε

ttle bond
q E

stic slider
f

(a)

(b)

Fig. 2 Schematic description of the components of binary-medium

model: a bonded elements, b frictional elements
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Owing to the failure patterns in the frozen soil elements,

one is related to the volumetric compression due to the

spherical stress, and the other is related to the shear yielding

due to the deviatoric stress. To consider these two failure

mechanisms accurately, the stress is decomposed into a

hydrostatic/spherical pressure rm and deviatoric stress rs, and

the corresponding strain is separated into a volumetric strain

ev and generalized shear strain es, as illustrated in Fig. 3.

Thus, the stress expression in Eq. (7) can be decom-

posed into hydrostatic and deviatoric components:

rm ¼ 1 � kvð Þrbm þ kvr
f
m; ð9Þ

rs ¼ 1 � kvð Þrbs þ kvr
f
s: ð10Þ

Similarly, the average strain in Eq. (8) is decomposed

into

ev ¼ 1 � kvð Þebv þ kve
f
v; ð11 � 1Þ

es ¼ 1 � ksð Þebs þ kse
f
s; ð11 � 2Þ

where kv and ks are the volume fraction related to the

spherical components and the area fraction related to the

deviatoric part, respectively.

The spherical and deviatoric components are defined as

follows:

rm ¼ 1

3
rkk; ð12 � 1Þ

rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
rij �

1

3
dijrkk

� �
rij �

1

3
dijrkk

� �s
; ð12 � 2Þ

ev ¼ ekk; ð12 � 3Þ

es ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
eij �

1

3
dijekk

� �
eij �

1

3
dijekk

� �s
; ð12 � 4Þ

where dij is the Kronecker function; rkk ¼ r1 þ r2 þ r3;

r1, r2, and r3 are the maximal principal stress, interme-

diate principal stress, and minimal principal stress,

respectively; e1, e2, and e3 are the corresponding principal

strains; and ekk ¼ e1 þ e2 þ e3.

Based on Eqs. (9) and (11-1), the incremental expres-

sions for the hydrostatic stress are rewritten as follows:

drm ¼ 1 � k0
v

� �
drbm þ k0

vdrfm þ dkv rf0m � rb0
m

� �
; ð13Þ

dev ¼ 1 � k0
v

� �
debv þ k0

vdefv þ dkv ef0v � eb0
v

� �
: ð14Þ

Based on Eqs. (10) and (11-2), the incremental expres-

sions for the deviatoric stress are as follows:

drs ¼ 1 � k0
s

� �
drbs þ k0

sdrfs þ dks rf0s � rb0
s

� �
; ð15Þ

des ¼ 1 � k0
s

� �
debs þ k0

sde
f
s þ dks ef0s � eb0

s

� �
; ð16Þ

where the superscript ‘‘0’’ represents the current stress/

strain state. Figure 4 presents the incremental forms of the

proposed model. In the incremental step from position A to

B, the coordinate A is considered the current stress/strain

state and B the stress/strain state after the incremental

completion. In addition, the stress state B is completed by

the current stress state A and infinitesimal stress increment

(dr).

To construct a macroscopic constitutive model, the

mechanical properties of the bonded and frictional ele-

ments should be considered (the individual relationship is

linked with the strain concentration coefficient).

The bonded elements consist of soil particles and ice

crystals, which are considered quasi-brittle materials owing

to the cementation loss of the ice crystals. Therefore, an

elastic-based constitutive model is used to predict the

mechanical behavior of the bonded elements; the incre-

mental equations are expressed as follows:

drbm ¼ Kbdebv ; ð17Þ

drbs ¼ 3Gbdebs : ð18ÞStrain decompostion

Bonded elements 
constitutive relation

Spherical/deviatoric 
strain decompostion

Further decompostion Further decompostion

Frictional elements 
constitutive relation

Stress assemblization

Fig. 3 Strain decomposition of bonded elements and frictional

elements

Fig. 4 Schematic description of incremental relationship in the

binary-medium model
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The frictional elements consist of soil particulates and

unfrozen water, and their mechanical properties are seri-

ously influenced by the sliding, rotation, and slippage of

the soil particles. This can be described based on the

plasticity theory and critical-state soil mechanics Roscoe

et al. [24]. In this paper, a double hardening elastoplastic

constitutive model [58, 59] was employed to simulate the

deformation behavior of the frictional elements to model

the strain softening and volumetric dilatancy. The respec-

tive incremental expressions are as follows:

drfm ¼ Lfmmdefv þ Lfmsde
f
s; ð19Þ

drfs ¼ Lfsmdefv þ Lfssde
f
s; ð20Þ

where Lfmm, Lfms, L
f
sm, and Lfss are the stiffness components

of the frictional elements.

By substituting Eqs. (17)–(20) into Eqs. (13) and (15),

the incremental expressions related to the spherical and

deviatoric stresses can be rewritten as follows:

drm ¼ 1 � k0
v

� �
Kbdebv þ k0

v Lfmmdefv þ Lfmsde
f
s

� �
þ dkv rf0m � rb0

m

� �
; ð21Þ

drs ¼ 1 � k0
s

� �
3Gbdebs þ k0

s Lfsmdefv þ Lfssde
f
s

� �
þ dks rf0s � rb0

s

� �
: ð22Þ

In the homogenization theory, the deformations between

bonded elements, frictional elements, and the RVE are not

equivalent, i.e., ebv 6¼ efv 6¼ ev or ebs 6¼ efs 6¼ es. Fortunately,

in continuum micromechanics, the strain concentration

tensor relates the microstrain of the bonded elements to the

RVE. Thus, in the paper, by considering the compressive

and shear mechanisms, the strain concentration coefficient

is classified into cv (hydrostatic component) and cs (devi-

atoric component). Consequently,

ebv ¼ cvev and ebs ¼ cses: ð23Þ

Based on Eq. (23), the following incremental formulations

are obtained:

debv ¼ e0
vdcv þ c0

vdev ¼ Bvdev; ð24 � 1Þ

debs ¼ e0
sdcs þ c0

sdes ¼ Bsdes; ð24 � 2Þ

where

Bv ¼ c0
v þ

ocv

oev
e0
v ; ð25 � 1Þ

Bs ¼ c0
s þ

ocs

oes
e0
s : ð25 � 2Þ

Moreover, the breakage ratio should be introduced to

describe the cementation loss of the ice crystals, which is

divided into the volume breakage ratio kv and area break-

age ratio ks based on the compressive and shear mecha-

nisms. In the paper, kv is related to the volumetric strain,

which is subjected to hydrostatic stress, and ks is related to

the generalized shear strain, which is subjected to devia-

toric stress. Thus, the two breakage ratios are expressed as

follows:

kv ¼ f1 evð Þ and ks ¼ f2 esð Þ; ð26Þ

where the functions f1 and f2 are related to the volumetric

and shear strains, respectively.

Based on Eq. (26), the incremental expressions can be

written as follows:

dkv ¼
of1

oev
dev ¼ vvdev; ð27Þ

dks ¼
of2

oes
des ¼ vsdes: ð28Þ

Furthermore, based on Eqs. (11-1) and (11-2), the vol-

umetric and deviatoric increments of the frictional ele-

ments can be derived as follows:

defv ¼
1

k0
v

dev � 1 � k0
v

� �
debv � dkv ef0v � eb0

v

� �� �
; ð29Þ

defs ¼
1

k0
s

des � 1 � k0
s

� �
debs � dks ef0s � eb0

s

� �� �
: ð30Þ

Rewriting Eqs. (9) and (11-1) leads to

rf0m � rb0
m ¼ 1

k0
v

r0
m � rb0

m

� �
; ð31Þ

ef0v � eb0
v ¼ 1

k0
v

1 � c0
v

� �
e0
v : ð32Þ

Likewise, rewriting Eqs. (10) and (11-2) results in

rf0s � rb0
s ¼ 1

k0
s

r0
s � rb0

s

� �
; ð33Þ

ef0s � eb0
s ¼ 1

k0
s

1 � c0
s

� �
e0
s : ð34Þ

Finally, the incremental constitutive relations of

Eqs. (21) and (22) are obtained as follows:

drm ¼ A1dev þ B1des; ð35 � 1Þ
drs ¼ A2dev þ B2des; ð35 � 2Þ

where

A1 ¼ 1 � k0
v

� �
KbBv

þ Lfmm 1 � 1 � k0
v

� �
Bv �

1 � c0
v

k0
v

vve
0
v

( )
; ð36 � 1Þ

B1 ¼ k0
v

k0
s

Lfms 1 � 1 � k0
s

� �
Bs �

1 � c0
s

k0
s

vse
0
s

( )
; ð36 � 2Þ
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A2 ¼ k0
s

k0
v

Lfsm 1 � 1 � k0
v

� �
Bv �

1 � c0
v

k0
v

vve
0
v

( )
; ð36 � 3Þ

B2 ¼ 1 � k0
s

� �
3GbBs

þ Lfss 1 � 1 � k0
s

� �
Bs �

1 � c0
s

k0
s

vse
0
s

( )

þ rf0s � rb0
s

� � vs
k0
s

: ð36 � 4Þ

In (35-1), (35-2), (36-1), (36-2), (36-3), and (36-4), there

are four groups of parameters that must be set; the

parameters of the bonded and frictional elements can be

determined based on the experimental results of the frozen

and unfrozen sands, breakage ratio, and local strain con-

centration coefficient, which are determined by the trial-

and-error method based on the test data. The determination

procedures of the parameters are described in the following

sections.

3 Constitutive relations of bonded
and frictional elements

According to Fig. 5, in the intact/virgin stress state, the

samples contain undamaged soil particles and ice crystals,

which are considered bonded elements with elastic–brittle

characteristics. In the fully damaged stress state, the ice

crystals in the soil samples are considered completely

transformed into unfrozen water; the specimens contain

only soil particulates and unfrozen water, which is

conceptualized as frictional elements with an elastoplastic

behavior. The practical stress–strain curve for the stress

state with partial damage conditions is marked in red in

Fig. 6; evidently, both elements bear the external load.

3.1 Constitutive relations of bonded elements

On the meso-level, the bonded elements in the frozen soil

samples have the following characteristics: (1) the

cementation (ice crystals) between the soil skeleton bonds

the soil particulates. Once the intergranular stress exceeds

the failure strength of the bonded elements, the bond is

rapidly broken, and the mechanical behavior of the bonded

elements can be considered elastic–brittle; (2) after the

bonded elements are destroyed, they are completely

transformed into frictional elements. To model the

mechanical properties of the bonded elements, an elastic

and perfectly brittle constitutive model is adopted; the

stiffness tensor Lbijkl is expressed as follows:

Lbijkl ¼
1

3
3Kb � 2Gb
� �

dijdkl þ Gb dildjk þ dikdjl
� �

; ð37Þ

where Kb is the bulk modulus and Gb the shear modulus of

the bonded elements.

3.2 Constitutive relations of frictional elements

As mentioned in Sect. 2.1, the mechanical properties of the

frictional elements are similar to those of the remolded

soils; thus, an appropriate elastoplastic model is required.

To describe the strain softening and volumetric dilatation

Elastic-brittle behavior
(bonded elements)

Practical observed stress-strain
(strain softening behavior)

Elastoplastic behavior
(frictional elements)

Virgin stress state
undamaged

Intermediate stress state
partial damaged

Fully damaged
stress state

Soil sample

Breakage
   point

=0 0 =1

σ σ σ

ε εε

Fig. 5 Deformational process of frozen soils under external loads

Acta Geotechnica (2020) 15:1831–1845 1837

123



behavior of the unfrozen sands, a single yield surface with

two hardening parameters is used to simulate the

mechanical characteristics of the frictional elements

[58, 59]. The mathematical expression is as follows:

f f ¼ rfm
1 � gf =að Þn � H; ð38Þ

where

gf ¼ rfm
rfs

; ð39 � 1Þ

rfm ¼ 1

3
rf1 þ rf2 þ rf3

	 

; ð39 � 2Þ

rfs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 rf1 � rf2

	 
2

þ rf1 � rf3

	 
2

þ rf2 � rf3

	 
2
� �s

;

ð39 � 3Þ

a ¼ a0 1:0 � c1 exp � epfs
c2

� �� �
; ð39 � 4Þ

H ¼ H0 exp bepfv
� �

; ð39 � 5Þ

where the superscript f represents the frictional elements

and epfv andepfs denote the volumetric plastic strain and

generalized shear plastic strain of the frictional elements,

respectively; H is the hardening function; a0, c1, c2, H0,

and b are the model parameters, which can be determined

with the tested data of the unfrozen sands.

Moreover, a non-associated flow rule is employed, and

the potential surface is presented as follows:

gf ¼ rfm
1 � gf =að Þn1

� H: ð40Þ

The incremental plastic volumetric strain and general-

ized shear strain are obtained based on the orthogonal flow

rule:

depfv ¼ dK
ogf

orfm
and depfs ¼ dK

ogf

orfs
; ð41Þ

where dK is the plastic multiplier (dK[ 0).

Based on the consistency condition, Eq. (38) can be

rewritten as follows:

of f

orfm
drfm þ of f

orfs
drfs þ

of f

oa
oa

oepfs
depfs þ of f

oH

oH

oepfv
depfv ¼ 0:

ð42Þ

By rewriting Eqs. (41) and (42), the plastic multiplier is

obtained:

dK ¼ 1

h

of f

orfm
drfm þ of f

orfs
drfs

� �
ð43 � 1Þ

and

h ¼ � of f

oa
oa

oepfs

og

orfs
� of f

oH

oH

oepfv

ogf

orfm

¼
nrfm gf =a

� �n
a 1 � gf =að Þn½ �2

c1

c2

a0 exp � epfs
c2

� �
ogf

orfs

þ H0b exp bepfv
� � ogf

orfm
: ð43 � 2Þ

Hence, the incremental constitutive model for the fric-

tional elements is expressed as follows:

drfm ¼ Lfmmdefv þ Lfmsde
f
s; ð44 � 1Þ

drfs ¼ Lfsmdefv þ Lfssde
f
s; ð44 � 2Þ

where

Lfmm ¼ 1

M

1

3Gf
þ 1

h

of f

orfs

ogf

orfs

� �
; Lfms ¼ � 1

Mh

of f

orfs

ogf

orfm
;

ð45 � 1Þ

Lfsm ¼ � 1

Mh

of f

orfm

ogf

orfs
; Lfss ¼

1

M

1

Kf
þ 1

h

of f

orfm

ogf

orfm

� �
;

ð45 � 2Þ

M ¼ 1

3GfKf
þ 1

Kf h

of f

orfs

ogf

orfs
þ 1

3Gf h

of f

orfm

ogf

orfm
; ð45 � 3Þ

of f

orfm
¼

1 þ n� 1ð Þ gf =a
� �n

1 � gf =að Þn½ �2
; ð45 � 4Þ

of f

orfs
¼

ngf gf =a
� �n

1 � gf =að Þn½ �2
; ð45 � 5Þ

ogf

orfm
¼

1 þ n1 � 1ð Þ gf =a
� �n1

1 � gf =að Þn1½ �2
; ð45 � 6Þ

Loading equipment
Refrigerating 

devices

Confining pressure chamber

Soil samples

MTS-810

Fig. 6 Modified material test system (MTS-810)
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ogf

orfs
¼

n1gf gf =a
� �n1

1 � gf =að Þn1½ �2
:: ð45 � 7Þ

3.3 Breakage ratio

The occurrences of shear bands (micro-cracks, voids, and

fracture) may cause the degradation of the geomaterial

[60]. To capture the deterioration process accurately, the

breakage ratio k is used to describe the transition from

bonded to frictional elements; their evolutionary regularity

is similar to those of the hardening parameters of plasticity

[27] and damage factors in continuum damage mechanics

[61, 62]. Moreover, the breakage ratio is an internal vari-

able on the mesoscale level and cannot be directly mea-

sured by laboratory tests, and the breakage ratio k
approaches zero when the soil sample is subjected to virgin

loading. The reason for this is that the bonded elements do

not break (no frictional elements) and bear the external

load alone. With increasing stress amplitude, the bonded

elements break gradually and transform into frictional

elements. Hence, both elements bear the external inter-

mediate load, and the breakage ratio k increases and

approaches 1. The following relations are proposed for the

evolution of the volumetric breakage ratio kv and corre-

sponding area breakage ratio ks:

kv ¼ 1 � qvexp �kv evð Þhv
n o

; ð46 � 1Þ

ks ¼ 1 � qsexp �fs esð Þrsf g: ð46 � 2Þ

Combining Eqs. (27) and (28) leads to

vv ¼ qvkvhv evð Þhv�1
exp �kv evð Þhv

n o
; ð47 � 1Þ

vs ¼ qsfsrs esð Þrs�1
exp �fs esð Þrsf g: ð47 � 2Þ

3.4 Local strain concentration coefficient

The following relations are proposed based on the changes

in the microscopic strain concentration coefficient:

cv ¼ exp �av evð Þmvf g; ð48 � 1Þ

cs ¼ exp �bs esð Þnsf g: ð48 � 2Þ

Combining Eqs. (24-1), (24-2), (25-1), and (25-2)

results in

Bv ¼ c0
v � e0

vavmv evð Þmv�1
exp �av evð Þmvf g; ð49 � 1Þ

Bs ¼ c0
s � e0

sbsns esð Þns�1
exp �bs esð Þnsf g: ð49 � 2Þ

4 Determination of model parameters
and validations

To validate the applicability of the proposed model, two

triaxial laboratory test groups are performed. The first test

group is conducted to investigate the mechanical behavior

of the frozen sands at - 6 �C to determine the real stress–

strain behavior of the frozen sands. The parameters of the

bonded elements (e.g., the bulk and shear moduli) are

identified based on the isotropic loading–unloading–

reloading compression and loading–unloading–reloading

compression tests at a very low axial strain. The second test

group comprises conventional triaxial compression tests

conducted on the unfrozen sand without ice crystals to

determine the parameters of the frictional elements.

4.1 Test procedure of frozen sands

The tested materials are standard sands; the physical

parameters are listed in Table 1. The specimens are pre-

pared according to the GB/T50123-1999 Standard for Soil

Test Method of the Ministry of Water Resources, China.

The sands are added layer by layer into a copper mold

(three components of equal volumes) to create cylindrical

samples with inner diameters of 61.8 mm, heights of

125 mm, and a dry density of 1.78 g/cm3. Subsequently,

porous stones are mounted on both ends of each specimen,

which is then placed into a sealed vacuum barrel for 3 h.

Furthermore, the sample is saturated for more than 12 h to

ensure a saturation degree of more than 95%. Subse-

quently, the porous stones are substituted by epoxy resin

platens. In the next step, the soil samples are quickly frozen

in a refrigerator for more than 48 h at - 30 �C to prevent

the formation of ice lenses. Then, the soil samples are

covered with rubber membranes and placed into an incu-

bator until their temperature reaches - 6 �C. Afterward,

the triaxial compression tests are conducted in the modified

MTS-810 configuration: The frozen samples are embedded

in the pressure chamber (Fig. 6). In addition, the prepared

specimens are isotropically loaded 5 min prior to the axial

loading at confining pressures ranging from 300 to

1800 kPa. Two stress–strain conditions describe the failure

of the soil specimens; regarding the strain hardening and

strain softening curves, the peak stresses correspond to an

Table 1 Physical parameters of sands (unit %)

Composition of particulate diameter

[ 2.0

mm

1.0–2.0

mm

0.75–1.0

mm

0.5–0.75

mm

0.25–0.75

mm

5.32 11.63 19.52 25.17 38.36
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axial strain of 15% and the maximal stress value, respec-

tively. The loading rate is 1.25 mm/min, and the stress path

and loading pattern are illustrated in Fig. 7. Figure 8 pre-

sents the samples after the tests. For convenience, a posi-

tive stress and strain are assumed under compression

conditions.

The experimental results of the deviatoric stress–axial

strain and volumetric strain–axial strain curves of the fro-

zen sands are illustrated in Fig. 9a, b. All stress–strain

curves exhibit strain softening, which becomes less evident

with increasing confining pressure of 300–1800 kPa. This

is because the bonds (ice crystals) between the soil par-

ticulates become gradually damaged at low confining

pressures, and shear bands occur, as shown in Fig. 8a–c.

However, the lateral deformation is severely restricted at a

high confining pressure. Hence, the stress–strain curves

exhibit a slight softening phenomenon accompanied by a

failure pattern (bulging) in the center of the soil samples

(Fig. 8d, e). The volumetric strain is first continuously

compacted, and dilatancy occurs. According to the results,

the lower the confining pressure, the more the specimen

dilates.

4.2 Test procedure of unfrozen sands

The triaxial compression tests of the unfrozen sands under

drained conditions are conducted by employing the triaxial

system in Fig. 10. The tested materials and soil preparation

method are similar to those of the frozen sands in Sect. 3.1.

The dry densities of the unfrozen and frozen sand samples

are equal; the diameter is 61.8 mm, and the height is

120 mm. After the sand sample is fully saturated, it is not

frozen in the refrigerator; instead, it is covered with rubber

membranes and inserted into the triaxial system to perform

the triaxial compression tests.

The deviatoric stress–axial strain and volumetric strain

curves of the unfrozen sands are presented in Fig. 11a, b.

Because the soil samples do not contain ice crystals, their

mechanical behavior is distinct from that of the frozen

sands. In addition, the experimental results demonstrate

that (1) the stress–strain curves exhibit a slight softening

tendency at a confining pressure of 300 kPa, followed by a

strain hardening phenomenon with increasing confining

pressure; (2) at confining pressures of 300–800 kPa, the

volumetric strain–axial strain curves meet under virgin

load conditions and become separated until the soil sam-

ples fail. However, at confining pressures of

1200–1800 kPa, the volumetric curves are compacted until

the volume of the soil sample remains constant in the

critical stress state. The failure patterns are always bulged

in the centers of the soil samples, as presented in Fig. 12a,

b for all tested unfrozen sands.

(b)(a)

Fig. 7 Test procedures of frozen sands: a stress path, b loading pattern

=300kPa =500kPa =800kPa

=1200kPa =1500kPa

(a) (b)

(d) (e)

(c)

Fig. 8 Failure patterns of frozen sands: a r3 = 300 kPa, b r3 =

500 kPa, c r3 = 800 kPa, d r3 = 1200 kPa, and e r3 = 1500 kPa
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4.3 Determination of model parameters

To determine the shear modulus G, loading–unloading–

reloading triaxial shear tests are conducted at different confin-

ing pressures. The experimental results are shown in Fig. 13a,

b, and the shear modulus is defined by G ¼ dq

3dees
owing to the

elastic behavior in the unloading process. It should be noted that

the shear moduli of the bonded elements are determined when

the generalized shear strain is below 1% (Fig. 13a); in this strain

range, the bonded elements can be considered intact and

without damage. In the nonlinear elastic model, the bulk

modulus can be obtained by isotropic compression tests (q ¼ 0)

with loading–unloading–reloading cycles (defined by

K ¼ dp

deev
). As shown in Fig. 14a, b, different stress levels are

applied to the frozen and unfrozen sands.

There are four groups of parameters: the material

parameters related to the bonded elements and frictional

elements (determined by experimental results) and the

internal state variables of the breakage ratio and local strain

concentration coefficient (determined by trial-and-error

tests with laboratory data).

The parameters of the bonded elements are determined

at an axial strain of 0.5% and based on the test results of

the frozen sands: Kb ¼ 6531Pa
r3

Pa

	 
0:542

, Gb ¼ 13280Pa

r3

Pa

	 
0:2213

, Pa is 101:33kPa.

σ3=1200kPa
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Fig. 9 Stress–strain curves of frozen sands: a deviatoric stress–axial strain curves, b volumetric strain–axial strain curves

Fig. 10 Triaxial test apparatus
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The parameters of the frictional elements are determined

based on the laboratory results of the unfrozen sands in

Sect. 4.2: Kf ¼ 950:2Pa
r3

Pa

	 
0:231

, Gf ¼ 666Pa
r3

Pa

	 
0:2446

,

n ¼ 0:1, n1 ¼ 0:2, c1 ¼ 0:6, c2 ¼ 10, b ¼ 40, H0 ¼ 350,

a0 ¼ 1:837 r3

Pa

	 
0:544

.

The breakage ratio and local strain concentration coef-

ficient are internal state variables and can be obtained by

the trial-and-error method; thus, based on the test results:

kv ¼ 1atr3 � 0:8MPa and kv ¼ 2atr3 [ 0:8MPa, hv ¼ 2,

fs ¼ 120, rs ¼ 1:2, av ¼ 1:0, mv ¼ 2:0, bs ¼ 1:0, ns ¼ 2:0,

qv ¼ 6:85 � 10�5 r3

Pa

	 
2

�0:0001995 r3

Pa
þ 0:0159,

qs ¼ 0:000421 r3

Pa

	 
2

�0:01256 r3

Pa
þ 0:152.

(a) Before test (b) After test

Soil sample

Fig. 12 Soil sample of unfrozen sands before and after tests
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4.4 Model validations

The predicted and measured curves of the deviatoric

stress–axial strain and volumetric strain–axial strain of the

frozen sands are presented in Fig. 15a–m. Regarding the

deviatoric stress–axial strain results, despite some slight

discrepancies between the predictions and experimental

data at low confining pressures of 300 and 500 kPa, the
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Fig. 15 Comparisons between the laboratory results and predictions of frozen sands
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proposed binary-medium model can generally represent the

strain softening phenomena of the frozen sands. At con-

fining pressures of 800–1800 kPa, the model predictions

agree well with the tested results of the deviatoric stress

and volumetric strain, particularly for the strain softening

and volumetric dilatation behavior.

5 Conclusions

A new constitutive model for frozen sands is proposed

based on the homogenization theory framework. The

model considers frozen soils as multi-phase composite soils

consisting of bonded and frictional elements, and each

medium obeys its independent and individual constitutive

model. The elastic-based model captures the deformation

properties of the bonded elements, and the double hard-

ening elastoplastic model is employed to simulate the

behavior of the frictional elements. Moreover, the model

considers the interdependency between the binary media

by introducing the breakage ratio and local concentration

coefficient, that is, the bonded elements are transformed

into frictional elements with increasing external loads.

The laboratory tests indicate that the stress–strain

behavior of the frozen sands exhibits strain softening and

volumetric contraction phenomena followed by dilatancy;

their failure characteristics exhibit evident shear bands at a

confining pressure below 0 MPa; at higher confining

pressures, the centers of the soil samples exhibit bulging.

Regarding the unfrozen sands, the stress–stain curves

exhibit slight strain softening phenomena at low confining

pressures of 300–500 kPa and strain hardening phenomena

at 800–1800 kPa. Furthermore, the volumetric strains

exhibit contractancy, accompanied by dilatancy at

300–500 kPa; at 1200–1800 kPa, the contraction is con-

tinuous. The unfrozen sands are bulged in the center of all

tested soil specimens.

The proposed constitutive model conceptualizes the

frozen sand specimens as a mixture of bonded and fric-

tional elements; simultaneously, the model considers the

nonuniform strain relations between the bonded elements

and RVE from a mesoscopic perspective. Breakage ratios

are introduced to describe the cementation loss of the ice

crystals due to the compressive and shear mechanisms.

Finally, an incremental elastoplastic constitutive model is

established in the framework of the homogenization tech-

nique, and the model parameters are determined based on

the laboratory test results of the frozen and unfrozen sands.

Compared with the experimental stress–strain results, the

proposed model simulates the experimental results of the

frozen sands well, including the strain softening, volu-

metric contraction, and dilatancy.
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