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Abstract
The models for stress–strain behavior of granular soils can be generally categorized into two approaches: the conventional

plasticity approach and the micromechanics-based approach. In this work, we upscale a micromechanical model to a

commonly used isotropic hardening plasticity model by assuming the ‘‘same’’ constitutive laws at different scales. The

mathematically derived relationships between element-level and contact-level parameters are presented based on the

condition that the two models would predict the same mechanical response, and a parameter calibration procedure is

proposed. A comparative study is then conducted to investigate the differences of the predicted element behaviors arisen

from the two models.
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1 Introduction

The modeling methodology for stress–strain behavior of

granular soils can be generally categorized into two

approaches: the conventional plasticity approach and the

micromechanics-based approach. In the conventional

approach, the material is treated as a continuum. The

stress–strain behavior of the continuum material is defined

for a ‘‘material point,’’ which represents an ‘‘infinitesimal

volume element’’ of the continuum material. However, in

the micromechanics-based approach, the stress–strain

behavior is defined for a ‘‘representative volume element

(RVE)’’ of finite size; some significant underlying mech-

anisms that occur at scales smaller than the representative

volume element (RVE) can be considered.

A number of ‘‘micromechanics-based’’ approaches have

been developed, which can be broadly classified into two

categories: (a) discrete element method (DEM) and

(b) granular mechanics. In the DEM approach, the stress–

strain behavior of the material is analyzed as a boundary

value problem (e.g., [8, 38, 42]). The DEM approach does

not give an explicit stress–strain relationship. In the gran-

ular mechanics approach, the stress–strain behavior of the

representative volume element is derived explicitly based

on the inter-particle behavior through an integration

process.

Many granular micromechanics-based approaches have

been proposed to construct elastic and elasto-plastic con-

stitutive models. Elastic stress–strain models can be found

in the earlier works of Rothenburg and Selvadurai [40],

Walton [45], Jenkins [18], Chang [2], Chang et al. [5],

Cambou et al. [1], Liao et al. [26], Kruyt and Rothenburg

[23] and recently by Tran et al. [44], Kruyt [22] and Misra

and Poorsolhjouy [31]. Elasto-plastic stress–strain models

can be found in the works by Matsuoka and Takeda [30],

Jenkins and Strack [19], Chang and Hicher [4], Nicot and

Darve [36, 37], Maleej et al. [28], Misra and Yang [34],

Zhu et al. [50] and more recently by Irani et al. [15], Xiong

et al. [48].

The differences between the conventional plasticity

approach and the micromechanics-based approach stem

from their inherent nature. Model parameters and calibra-

tion procedures are basic issues in modeling stress–strain

behavior for either micromechanical model or conventional

plasticity model. In the conventional continuum approach,
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the parameters describe directly the behavior of a particle

assembly element (macro-scale), most of which can be

obtained from experiments in laboratory such as triaxial

compression or shear test, whereas in the micromechanics-

based approach, the parameters describe the behavior of an

inter-particle contact (micro-scale), which are difficult or

even impossible to be obtained in laboratory directly. Thus,

it is desirable to have an explicit relationship between the

element-level parameters and the contact-level parameters.

The relationship can be derived from a mathematical pro-

cess, which ensembles the behavior of inter-particle con-

tacts to obtain the stress–strain behavior of the particle

assembly element.

Through this relationship, some contact-level parame-

ters can be determined from element-level experiments in

laboratory. For example, we can derive the relationship

between inter-particle contact stiffness ratio and the Pois-

son’s ratio of a particle assembly, even the specific values

of normal and shear contact stiffness are unknown (see

Sect. 2).

It is relatively easy to derive such relationship for linear

elastic parameters. For nonlinear elastic materials, the

relationship would be dependent on which nonlinear law is

used. If the same form of nonlinear law is applied to both

element level and contact level, a unique relationship can

be obtained. Several relationships have been proposed for

linear and nonlinear elastic parameters, for example, the

moduli of a particle assembly can be predicted directly

from the contact properties of the constituent particles in

both isotropic and anisotropic stress conditions. (See the

work by Chang et al. [5], Ng and Petrakis [35], Hicher and

Chang [13].) These relationships provide a better under-

standing of the pressure-sensitive elastic behavior of

granular media.

On the other hand, limited work has been done about the

explicit relationships between contact-level parameters and

element-level parameters for plasticity models (see

[32, 33]). The main difficulty lies in the complex behavior

of inter-particle contact stiffness, which has a strong

dependency of contact force. Thus, anisotropic behavior of

a particle assembly is induced by deviatoric stress, which

causes the variation of contact force in various orientations.

Another reason is the evolution of anisotropic fabric with

the development of plastic deformation. It has been shown

that during loading, the directions of contact planes

between grains gradually change and their normal vectors

rotate toward the major principal stress direction. This

fabric change can also induce a significant anisotropy of

materials, which cannot be included in conventional plas-

ticity constitutive models (see [14, 39]).

The purpose of this work is to propose a relationship

between the element-level parameters and the contact-level

parameters for plasticity materials. However, it should be

noted that this relationship exists only under some specific

conditions. For example, in case of the stress-dependent

elastic material, upon loading, Young’s modulus increases

at element level, while inter-particle stiffness increases at

particle level. Under isotropic compression, both the

micromechanical model and continuum plasticity model

behave as isotropic medium. When deviatoric stress is

applied, the continuum model still behaves as isotropic

medium; however, the micromechanical model would

behave as an anisotropic model because the contact forces

vary in each orientation. In other words, the relationship

between the element-level parameters and the contact-level

parameters exists only when the element is isotropically

loaded. In a triaxial test, the relationship exists only at the

very beginning of loading where the element is isotropi-

cally consolidated. With the development of strain during

deviatoric loading, a unique relationship may not exist due

to the difference in modeling methodology. Nevertheless,

we can definitely obtain this relationship by taking the

advantage that they behave same under the isotropic stress

condition. It is also of interest to investigate the different

performances between the conventional plasticity approach

and the micromechanics-based approach under the devia-

toric loading conditions.

Such studies are usually conducted through selecting

two constitutive models (for example, a micromechanical

model and a conventional plasticity model) or two

numerical methods (for example, finite element method

and discrete element method). As we know, the

micromechanical model is more complex than the con-

ventional plasticity model. The added complexity improves

the performance of the micromechanical model. To assess

the trade-off between simplicity and accuracy of the model,

it is of interest to know the differences in modeling per-

formance caused by the two different modeling method-

ologies (or approaches). However, very little research work

had been carried out along this line, because it is not an

easy task to separate the difference caused solely by the

effect of the two different methodologies. In fact, the dif-

ference in model performance is caused by a number of

factors other than the methodologies, such as the physical

laws used in models or even the parameters used in sim-

ulations. Thus, in order to have a meaningful comparison

for the difference caused solely by the effect of the two

different methodologies, the following two factors must be

considered:

(1) Models to be selected (a continuous plasticity model

and a micromechanical model) must be constructed using

the ‘‘same’’ constitutive laws, such as yielding condition,

dilation pattern and hardening rule, etc. Here, the ‘‘same’’

means that the constitutive laws used in two models hold

the same mathematical forms and physical mechanism,

which are defined at different scale levels. For example, the
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Coulomb friction law defined for an inter-particle contact

plane with variables of normal and shear forces in a

micromechanics-based model is considered the ‘‘same’’ as

that for a material point defined with variables of normal

and shear stresses in a continuous constitutive model.

This ‘‘same law’’ condition is required in order to make

sure that the predicted differences of the macro-behaviors

from these two models are caused from the method of

analysis, rather than from the different constitutive laws.

(2) The models to be selected, each using its own set of

parameters, must be calibrated from the same selected

mechanical response measured from experiments, for

example, the compressibility measured from an isotropic

loading test, or the initial shear deformation measured from

a shear load test. In other words, the two sets of parameters

should be ‘‘equivalent’’ so that the two models predict the

exact same macro-response for a specified set of stress

conditions.

This condition is required so that the predicted differ-

ences of the macro-responses from these two models for

general stress conditions (as the load progress) are not

caused from the difference in arbitrarily selected

parameters.

However, there is no existing pair of models available

for this kind of analysis. So, we select a micromechanical

model [4] and then upscale it to a conventional isotropic

hardening plasticity model. We apply the same form of the

yield function, the flow rule and the hardening law to both

element level and contact level and investigate the rela-

tionships between the two sets of parameters and the

specific performance differences of these two models.

The proposed upscaled model is very similar to the

commonly used plasticity model such as nor-sand [17, 47]

or the two-surface plasticity [29]. So, the relationship

established below and the upscaled procedures are not only

valid for the model proposed here, but also valid for the

other commonly used isotropic hardening plastic models.

In the following, we will first discuss the relationship

between the element-level parameters and the contact-level

parameters for the elasticity case. Then, for the plasticity

case, the specific yield function, the flow rule and the

hardening law, and their associated parameters will be

described for both the element level and the contact level.

A relationship between the two sets of parameters will then

be mathematically derived. Then, a comparative study is

conducted to investigate the differences of the predicted

element behaviors, such as stress–strain, dilating proper-

ties, etc., arisen from these two models. Such a compara-

tive study may contribute to the assessment of the two

modeling approaches: continuous approach and microme-

chanics-based approach.

2 Link between elastic properties
at element level and contact level

2.1 Element level

The stress–strain relationship for the element level is

_rij ¼ Cijkl _uk;l ð1Þ

For elastic materials, the Cijkl can be expressed in terms

of Young’s modulus E and Poisson’s ratio v as follows:

Cijkl ¼ kgijgkl þ lðgikgjl þ gjkgilÞ ð2Þ

where k and l are Lame constants,

k ¼ vE=ð1þvÞ=ð1 � 2vÞ, l ¼ G ¼ E=2ð1þvÞ,
gij ¼ ðei; ejÞ, and G is shear modulus.

For granular materials, the modulus is stress dependent;

thus, Young’s modulus E (or bulk modulus B = E/

3(1 - 2v)) is considered to be dependent on mean stress

rm, expressed as follows:

E ¼ E0

rm

pref

� �n

or B ¼ B0

rm

pref

� �n

ð3Þ

where E0 ¼ 3ð1 � 2vÞB0, B0 and n are two material con-

stants: B0 is the reference bulk modulus, and n is a constant

exponent. The constant E0 ¼ 3ð1 � 2vÞB0, and the refer-

ence pressure pref is taken to be 1 atm. The Poisson’s ratio

v is a constant.

2.2 Contact level

At the inter-particle contact level, an auxiliary local coor-

dinate is established on each contact plane between two

particles as shown in Fig. 1. The orientation of the contact

plane is defined by the vector n perpendicular to this plane.

On each contact plane, the contact stiffness includes

normal stiffness, kan, and shear stiffness, kar . The elastic

contact law is defined by the force and displacement

relationship,

_f ai ¼ keij
_daj ð4Þ

keij ¼ kann
a
i n

a
j þ kar ðsai saj þ tai t

a
j Þ ð5Þ

Fig. 1 Local coordinate system at an inter-particle contact
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where _f ai is an increment of force on the contact plane and

keij is the elastic stiffness tensor, _daj is the relative dis-

placement between two contact particles; superscript a
represents that the particle contact is in a orientation; n, s, t

are three orthogonal unit vectors that form the local coor-

dinate system in Fig. 1.

For a nonlinear elastic case, at the contact level, the

elastic stiffness between two particles (normal kan and

tangential kar ) is assumed force dependent, following a

revised Hertz-Mindlin’s formulation [5]:

kan ¼ kan0

f an
Ggl2

� �n

; kar ¼ 1akan ð6Þ

where kan0, 1a and n are three material constants in which

kan0 is the reference normal contact stiffness, 1a is the ratio

of shear stiffness to normal stiffness, and n is a constant

exponent. f an is the normal contact force between two

particles, and Gg is the elastic modulus for the two parti-

cles. l is the branch length for the two particles. The elastic

parameters for the micromechanical model include: the

inter-particle elastic constants kan0, 1a and n.

2.3 Link between parameters of element level
and contact level

The relationship between the element-level and contact-

level stiffness tensor can be established by using a static

hypothesis or a kinematic hypothesis [3]. Here, we limit

our discussion to the static hypothesis. The relationship is

given by

Cijmp ¼ A�1
ik A�1

mnV
XN
a¼1

kajpl
a
k l
a
n ð7Þ

where N is the total number of inter-particle contacts in the

representative volume V . The branch vector lak (lan) is the

vector joining the centers of two contact particles, and Aik

is a fabric tensor, defined as,

Aik ¼
XN
a¼1

lai l
a
k ð8Þ

The summation in Eq. (7) can be expressed in an inte-

gral form:

XNc

a¼1

kajpl
a
kl
a
n ¼

Nl2

2p

Z 2p

0

Z p=2

0

kjpðb; hÞnkðb; hÞnnðb; hÞnðb; hÞ sin h dhdb

ð9Þ

where l is the mean branch length; the distribution function

nðb; hÞ is a probability density function, defined by:

Z 2p

0

Z p=2

0

nðb; hÞ sin h dh db ¼ 1 ð10Þ

In integration form, Aik can be expressed as:

Aik ¼
Nl2

2p

Z 2p

0

Z p=2

0

nkðb; hÞnnðb; hÞnðb; hÞ sin h dhdb

ð11Þ

For isotropic packing structures,

nðh; bÞ ¼ 1

2p
ð12Þ

And for a linear isotropic elastic case, all contacts have

the same stiffness (i.e., kjpðb; hÞ = constant). After inte-

gration of Eq. (7) and compared with Eq. (2), the values of

Young’s modulus and Poisson’s ratio can be derived as,

E ¼ 5Nl2kan
3V

2 þ 31a

4 þ 1a

� �
; v ¼ 1 � 1a

2 þ 31a
ð13Þ

where 1a ¼ kar =k
a
n. Thus, the element-level parameters E

and v can be linked to the particle-level parameters kan, kar
and the assembly packing information, N/V and branch

length l (or particle size).

For a stress-dependent isotropic elastic case (see

Eq. (3)), the element-level parameters B0, v and n can be

expressed in terms of particle-level parameters kan0, 1a and n

[see Eq. (6)] as follows:

B0 ¼ 4

9

N

V

� �
r2kan0 ð14Þ

where N is contact number in the representative volume V ,

and r is the radius of particles.

The Poisson’s ratio is the same as that given in Eq. (13)

or

1a ¼ 1 � 2v

1 þ 3v
ð15Þ

Both the elastic constant n, as shown in Eqs. (3) and (6),

have the same value for both models (see [3]).

It is noted that these relationships exist only for the case

of isotropic loading. In the micromechanical model, the

contact force distribution evolves with the applied devia-

toric stress. Thus, it is obvious that the assembly element is

no longer an isotropic material, if the contact stiffness is

force dependent.

3 Link between plasticity properties
at element level and contact level

In order to find the element-level and contact-level

parameters relationship, a simple plasticity model was

upscaled from the micromechanical model. The model
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belongs to one kind of commonly used isotropic hardening

plastic model proposed by other researchers (such as

[17, 29, 47]). So, the method used here is also valid for

other isotropic plasticity models. As we know, the

micromechanical model is a kinematic hardening model

and the upscaled model proposed here is an isotropic

hardening model. However, the explicit relationship

between element-level and contact-level parameters can be

obtained under the isotropic compression stress state (or

the initial state of shearing).

3.1 Element level

The yield function is chosen to be of Coulomb type, the

flow rule is based on the shear dilatancy equation of Taylor

type, and the isotropic hardening rule is chosen to be of

hyperbolic type given as follows,

Yield function

f p; qr; jð Þ ¼ q� pj epr
� �

¼ 0 ð16Þ

Flow rule

_epv
_epr
¼ D M � q

p

� �
ð17Þ

Hardening rule

j epr
� �

¼ GpMp epr
pMp þ Gpepr

ð18Þ

where p is the mean stress, p ¼ ðr1 þ r2 þ r3Þ=3; q is the

shear stress (q ¼
ffiffiffiffiffiffiffi
3J2

p
, where J2 is the second invariant of

deviator stress tensor;epr and epv are plastic shear and volu-

metric strain; M is the slope of critical state line in p� q

space, M ¼ 6 sin/cs=ð3 � sin/csÞ. D is the dilatancy

parameter, Mp ¼ 6 sin/p=ð3 � sin/pÞ, and the value of /p

is made to be a function of density state as shown in

Eq. (19):

tan/p ¼
ecr

e

� �m

� tan/cs ð19Þ

where m is a positive number that is dependent on the type

of soil (especially particle shape). For dense packing, the

frictional angle /p is greater than the critical state friction

angle (/cs). After peak load, the packing structure dilates,

the increase in void ratio is associated with a reduction of

frictional angle /p, and this results in a strain-softening

phenomenon.

The relationship between critical state void ratio (ecr)

and mean effective stress from the following equation is

called critical state line (CSL), given by:

ecr ¼ eref � k
p0

pref

� �n

ð20Þ

where p0 is the effective mean stress and pref is the refer-

ence pressure, which is taken to be 1 atm. Three parame-

ters are required to define the critical state line (CSL):

eref(zero intercept), k (CSL slope) and n (CSL curvature).

The plastic stiffness Gp is assumed to be related to the

bulk elastic stiffness B by a constant v, given by

Gp ¼ vB ¼ vB0

p

pref

� �n

ð21Þ

The initial slope of the hyperbolic curve (Eq. 18) is

Gp=p, and the value of j epr
� �

asymptotically approaches

Mp. One can see that the flow rule is nonassociative.

Comparing with the three commonly used isotropic

hardening models (such as [17, 29, 47]), the proposed

model has similar characteristics in the following aspects:

(1) Critical state and state parameters

All models including this model proposed here are built

in the framework of CCSM (critical state soil mechanics).

Similar state parameters are used to define the peak and

dilatancy stress ratios of sand. All these models are capable

of simulating stress–strain behavior of sands under mono-

tonic, drained and undrained loading conditions.

(2) Yielding equation

Although the shape of yielding surface proposed here is

different from wood’s model and nor-sand model, yielding

function in these three models are of Coulomb type, i.e.,

the materials yield when q/p reaches a certain value. The

yield surface in the two-surface plasticity model appears as

a simple Misses-type circle in deviatoric stress ratio space

and as a moving circular cone in general space.

(3) Dilatancy equation (or flow rule)

The dilatancy equation (Eq. 17) has the same form as

nor-sand model [17], Wood’s model [47] and the two-

surface plasticity model [29], i.e., dep=deq ¼ CðMc � gÞ,
where C is a material constant. If C = 1, the dilatancy

equation has the same form as Cam-clay model.

(4) Hardening rule

The hardening rule proposed here (Eq. 18) is very

similar to wood’s model in form. The hardening function in

nor-sand is a proportional function of the maximum hard-

ness controlled by state parameters w. In the two-surface

plasticity model, the isotropic hardening is plasticity vol-

umetric strain hardening, while the bounding surface con-

trols the kinematic hardening of the yield surface.

As described above, the model proposed here is an

isotropic hardening model, built within the framework of

CCSM.
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3.2 Contact level

The same forms of yield surface, flow rule, and hardening

rule are applied to the inter-particle contact behaviors (see

[4]).

Yield function F f an ; f
a
r ; j

� �
¼ f ar � f an j dpr

� �
¼ 0 ð22Þ

Flow rule
_dpn
_dpr
¼ d tan/0 �

f ar
f an

� �
ð23Þ

Hardening rule j dpr
� �

¼
k
p
r0 tan/p d

p
r

f an tan/p þ k
p
r0d

p
r

ð24Þ

In these equations, the resultant shear force f ar and the

resultant plastic sliding dPr can be defined as:

f ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f as
� �2þ f at

� �2
q

and dpr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dps
� �2þ dpt

� �2
q

ð25Þ

The yield function is assumed to be of Mohr–Coulomb

type. The direction of plastic sliding at an inter-particle

contact is governed by the flow rule, where d is a material

constant that controls the intensity of dilation and is typi-

cally equal to 1.0. /0 is a material constant which, in most

cases, can be considered equal to the reference apparent

internal friction angle /l, which, in value, is very close to

the internal friction angle /cs, measured at critical state.

Similar to the critical state void ratio, the reference

apparent inter-particle friction angle (/l) is an intrinsic

material property for a given type of soil. tan/0 represents

the obliquity at which the dilation is zero. The angle of /0

is corresponding to the concept of ‘‘phase transformation’’

as defined by Ishihara [16] or ‘‘characteristic state’’ as

defined by Luong [27].

The sliding direction represented by Eq. 23 is not per-

pendicular to the yield surface. Thus, the flow rule is also

nonassociative. The hardening function jðdPr Þ is defined by

a hyperbolic curve in j� dpr plane, which involves two

material parameters, /p and k
p
r0.

The plastic stiffness k
p
r0 is assumed to relate to the elastic

stiffness kan by a constant 1p:

k
p
r0 ¼ 1pkan ¼ 1pkan0

f an
Ggl2

� �n

ð26Þ

The initial slope of the hyperbolic curve is k
p
r0=f

a
n , and

the value of j dpr
� �

asymptotically approaches the apparent

inter-particle friction angle (i.e., tan/p). For the purpose of

compensating the errors due to the assumptions used in the

static hypothesis for the relationships between contact

forces and element stresses, the value of /p is made to be a

function of density state as previously shown in Eq. (19).

3.3 Link between parameters of element level
and contact level

The element-level plastic constants are v, D, m, and the

inter-particle plastic constants are 1p, d, m. Critical state

constants, eref ,k, n and /cs are used in both element-level

and contact-level models. The values for the four critical

state parameters, namely eref (zero intercept), k (CSL

slope), n (CSL curvature) and /cs(CSL friction angle), are

the same in both models for a given soil.

We aim to find the relationships between these param-

eters through an integration process over all inter-particle

contacts in the assembly. As mentioned previously, under a

general loading condition, inter-particle contact forces vary

for each contact, and the assembly element becomes ani-

sotropic. Thus, the material can no longer be regarded as an

isotropic hardening plasticity model.

The two parameters in flow rule: d for the microme-

chanical model and D for the plasticity model can be

determined from the measured initial dilation at the

beginning of shear after isotropic consolidation. By using

Eq. (54) shown in ‘‘Appendix 1,’’ the ratio of macro-scale

plastic volumetric strain increment and plastic shear strain

increment can be derived by integrating Eq. (23) over all

contact orientations. At the beginning of shear after the

specimen is isotropically stressed (q ¼ 0), the ratio can be

expressed as follows (see ‘‘Appendix 1’’ for derivation),

_epv
_epr

� �
0

¼ 15d tan/cs

d tan/cs þ 6
ð27Þ

For the plasticity model, the ratio of plastic volumetric

strain increment and shear strain increment can be obtained

according to Eq. (17) as follows,

_epv
_epr

� �
0

¼ DM ð28Þ

By equating Eqs. (27 and 28), we obtain the relationship

of d and D as follows,

d ¼ 6DM

tan/csð15 � DMÞ ð29Þ

The two parameters 1p and v, in connection to hardening

rule, can be determined from the measured initial plastic

stiffness at the beginning of shear after isotropic consoli-

dation. For the micromechanical model, we obtain the

initial plastic shear strain increment by integrating the

contact deformation in all orientations (see Eqs. 54–57 in

‘‘Appendix 1’’), as follows,

_epr ¼
1

3B1p
1

15
d tan/csþ

2

5

� �
_q ð30Þ

For the conventional plasticity model, the plastic shear

strain increment at the beginning of shear is,
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_epr ¼
_q

Gp
ð31Þ

Equating Eqs. (30)–(31) and using Eq. (21), we obtain

the relationship of 1p and v as follows,

1p ¼ d tan/cs þ 6

45
v ð32Þ

The values of plastic constant m are the same for the

plasticity and the micromechanical models, because /p is

defined by the same evolution law as shown in Eq. (19).

The parameters of conventional plasticity model and

micromechanical model are summarized in Table 1. All

parameters can be determined from the stress–strain curves

obtained from compression triaxial tests (see Sect. 4).

3.4 Macro-stress–strain relationship
and computation scheme

Based on the classical plastic theory, the stress–strain

relationship of the upscaled plasticity model can be easily

derived and the computation scheme follows the standard

elastic–plastic integral scheme, which will be not repeated

here.

With previously described elastic and plastic inter-par-

ticle behaviors, the incremental force–displacement rela-

tionship for two particles under sliding can be expressed as,

_f ai ¼ k
ep
ij
_daj ð33Þ

where k
ep
ij is the elastic–plastic stiffness tensor. The stress–

strain relationship for a packing will then be obtained by

integrating the behavior of inter-particle contacts in all

orientations. Using the static hypothesis proposed by Liao

et al. [26], we obtain the relation between the macro-strain

and inter-particle displacement,

_uj;i ¼ A�1
ik

XN
a¼1

_daj l
a
k ð34Þ

where the branch vector lak is the vector joining the centers

of two contact particles. For simple, N is defined as the

total number of contact orientations. The variables _daj and

lak are defined, respectively, as the averaged values for all

contacts belong to the ath orientation. Aik is the fabric

tensor, defined as in Eq. (10). Using the principle of energy

balance, the mean force on the contact plane of each ori-

entation is

_f aj ¼ _rijA
�1
ik lakV ð35Þ

where the stress increment _rij can be obtained by the

contact forces and branch vectors for contacts using the

equilibrium condition and divergence theorem as follows,

_rij ¼
1

V

XN
a¼1

_f aj l
a
i ð36Þ

The derived Cauchy stress expression in Eq. (36) from

volume average principle leads to the results obtained by

Christoffersen et al. [7] and Rothenberg and Selvadurai

[40] derived from the principle of virtual work.

The final incremental stress–strain relations can be

derived that includes both elastic and plastic behavior,

given by

_ui;j ¼ Cijmp _rmp ð37Þ

where Cijmp ¼ A�1
ik A�1

mnV
PN

a¼1 k
a
jpl

a
kl
a
n, as described in

Eq. (7). The summation in Eq. (37) can be replaced by an

integral over orientations. The integral can lead to a closed-

form solution for the elastic modulus of randomly packed

equal-size particles [6]. However, in the elastic plastic

behavior, due to the nonlinearity nature of the local con-

stitutive equation, a numerical calculation with iterative

process is necessary to carry out the summation in

Eq. (37). In order to facilitate the numerical calculation,

the orientations are selected to coincide with the locations

of Gauss integration points in a spherical coordinate.

Summation over these orientations with the Gauss

weighting factor for each orientation is equivalent to

determining the integral over orientations. We found that

the results were more accurate by using a set of fully

symmetric integration points. From a study of the perfor-

mance of using different numbers of orientations, we found

N� 74 to be adequate.

Table 1 Summary of required parameters for both models
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For a strain-controlled test, Eq. (37) is not useful espe-

cially at the after peak range of strain softening. In this

case, a method of ‘‘plastic predictor–plastic corrector’’ was

adopted to obtain the solution. For a mix-mode loading

condition, additional process of distributing the unbalance

stresses was also needed. The detailed procedure is not

included here.

4 Parameter determination of the two
models

In this section, we propose a procedure to determine the

element-level and contact-level parameters for both the

conventional plasticity and the micromechanical models;

both sets of parameters are calibrated from the same

selected mechanical response measured from experiments.

For convenience, the two selected mechanical responses

are: (1) the compressibility measured from a drained iso-

tropic compression loading test, and (2) the initial shear

deformation measured from the beginning of a shear load

test on an isotropically consolidated sample.

We take the Japanese silica sand test result [21] as an

example to illustrate the procedure. First, the critical state

parameters are determined. Then, the elastic parameters are

determined from experimental test data, and at last the

plastic parameters are determined.

4.1 Critical state parameters

Three critical state parameters, namely eref (intercept), k
(CSL slope) and n (CSL curvature), are required to define

the critical state void ratio. To do so, drained or undrained

triaxial tests are needed to attain the critical state line

(CSL) [46]. By fitting Eq. (20) to the critical state data, the

critical void ratio parameters eref, k, and n are determined.

Figure 2 shows CLS of silica sand [21], by fitting the CSL

line, eref = 0.66 and = 0.82.

The critical state friction angle /cs (noting it is also the

plastic parameter) can be obtained by measuring the slope

of critical state line, M, in p0-q space. The following

equation describes the relationship between critical state

friction angle and M-line slope.

M ¼ 6 sin/cs

3 � sin/cs

ð38Þ

For the silica sand [21] /cs = 30.96, the corresponding

M is 1.243.

4.2 Elastic parameters

The isotropic compression test is used to determine the

elastic parameters B0 and n of the conventional plasticity

model. Figure 3 shows the isotropic compression line

(ICL) of sand [21]. By fitting the ICL, parameters B0 and

n can be determined. For this sand, we obtain

B0 = 6.53 MPa and n = 0.8.

The elastic constant n for the micromechanical model is

the same as the elastic constant n for the conventional

plasticity model. The parameter kan0 for the micromechan-

ical model can be calculated from Eq. (14) after B0 is

obtained, kan0 ¼ 9 � B0=4 ¼ 14:7. The parameters for both

conventional plasticity and micromechanical models fit

well the experimental curve.

Another elastic parameter for the conventional plasticity

model is Poisson’s ratio v, which can be estimated from the

axial and volumetric strains measured in a triaxial com-

pression test, as discussed by many researchers [11, 24].

The corresponding parameter 1a for the micromechanical

model can be calculated with the relationship of 1a and v

using Eq. (15). For the silica sand [21], v = 0.15, and

1a = 0.48.
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4.3 Plastic parameters

After the three elastic parameters B0, n and v have been

determined, elastic strains can be calculated using Eq. (1),

and the plastic strain can then be obtained by subtracting

the elastic part from the measured total strain.

Parameter D and d Parameter D can be obtained from

the initial slope of the epv � epr curve. Figure 4 is the epv � epr
curve for the sand sample under triaxial shear [21] with a

confining pressure of 400 kPa. The measured initial slope

of the curve, _epv= _e
p
r , is -1.67, and then D can be determined

by Eq. (28). Using M = 1.243, the value D = 1.67/

1.243 = 1.35. In model prediction, the average value of

D = 1.2 for different confining pressures can be used.

Parameter d of the micromechanical model can be

obtained by the relationship of D and d using Eq. (29) after

D is determined. For the silica sand [21], d = 1.1.

Parameter v and 1p For the conventional plasticity

model, the initial slope of q� epr curve is Gp. The param-

eter v by definition can be obtained by v ¼ Gp=B, where

the value of B is calculated by Eq. (3), i.e.,

B ¼ B0 p=prefð Þn.

For example, Fig. 5 is epr � q curve of the undrained

triaxial compression test for sands under confining pressure

of 400 kPa [21], from which we obtain

Gp ¼ 115 MPa,B ¼ 6:65 � 400=101:35ð Þ0:8¼ 19:58 MPa;

then, the value of v can be determined by

v ¼ Gp=B ¼ 5:87.

Parameter 1p of the micromechanical model can be

obtained from the relationship between v and 1p in Eq. (32)

after parameters d and v have been determined. For the

silica sand, the parameter 1p = 0.88.

Parameter m Parameter m can be calculated from

Eq. (19) involving four parameters: the friction angle at

peak /p, the critical void ratio ecr, the void ratio e at peak

and the critical state friction angle /cs. Among the 4

parameters, ecr and /cs are known critical state parameters.

The values of void ratio e and the friction angle /p can be

obtained from an undrained triaxial test.

For example, from the experimental data, we obtain

e ¼ 0:66, and Mp = 1.60 at peak stress state for the sand

sample [21]. Using the critical state parameters, we obtain

ecr ¼ 0:6087 and /cs ¼ 30:96�, and then, we can calculate

m ¼ 3:76 using Eq. (19). The averaged value of m = 4.0

for different confining pressures was later used in model

prediction.
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5 Comparison of two models based
on the proposed parameters relationship

In the micromechanical modeling, the overall stress–strain

behavior of the assembly is derived from integrating the

inter-particle behavior over all contacts. The conventional

modeling approach on the other hand does not account for

the behavior at particle level. Thus, the differences between

the two approaches are due to their inherent nature. In this

section, we compare the selected two models based on the

relationship between element-level and contact-level

parameters, and the calibration procedure mentioned

above.

5.1 General numerical results from two models

In this section, we compare the general performances and

trends of the two models without comparing with the

experimental results. We first choose a set of parameters

for the conventional plasticity model, and then based on the

relationship of Eqs. (14), (15), (29) and (32) the corre-

sponding ‘‘equivalent’’ parameters for the micromechanical

model are determined. All parameters are listed in Table 2.

Using these two models, the stress–strain curves for soil

with three different densities are simulated under both

drained and undrained conditions. The predicted stress–

strain responses are used to study the predicted differences

between the two models.

Figure 6a shows the simulated stress–strain and stress–

path curves for tests under undrained conditions, and

Fig. 6b shows the simulated stress–strain and the volu-

metric strain curves for tests under drained conditions.

At the beginning of shear loading after the sample is

isotropically consolidated, both models predict the same

response because the parameters are calibrated based on

the stress conditions at the beginning of shear, and the

sample is isotropic at this stage. As additional load is

applied, the sample deviates from the isotropic condition

and differences between the predicted responses are

expected.

For the tests under undrained conditions, loose soil

specimens show shear softening behavior (´, ˆ in

Fig. 6a). However, for the tests under drained conditions,

dense soil specimens show shear softening behavior (�,

`in Fig. 6b). In these shear softening curves, the peak

shear stresses predicted by the micromechanical model are

(a) Stress-strain curves and undrained stress paths for specimens under triaxial undrained conditions.

(b) Stress-strain curves and volumetric strain change for specimens under triaxial drained conditions. 
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higher and the axial strains needed to reach peak shear

stresses are less than those predicted by the conventional

plasticity model. On the other hand, the predictions show

strain hardening behavior for dense soil specimens under

undrained conditions (�, `in Fig. 6a) and for loose soil

specimens under drained conditions (´, ˆ in Fig. 6b). For

the strain hardening curves, the predicted strength by the

micromechanical model is higher than that predicted by the

conventional plasticity model.

5.2 Dilatancy and induced anisotropy

In this section, we discuss the predicted behavior of dila-

tancy from both models. Figure 7 shows the simulation

(a) p
rq / p' ~ ε  curves (b) p

vε ~ p
rε  curves 

(c) p p
v rdε / dε ~ q / p curves (d) p p p

v r rdε / dε ~ ε curves

(e) stress-strain curves (f) stress paths
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results for an undrained triaxial test using the microme-

chanical model and the conventional plasticity model. The

simulation results were obtained using the two sets of

parameters shown in Table 2, except the values of d=D: in

order to see more clearly the effect of dilatancy, we

increase the value from d = 0.615 to 1.1 and the corre-

sponding value of D from 0.7 to 1.2 (using Eq. 29).

Figure 7a shows the stress–strain curves on the q=p0 � epr
plane, and Fig. 7b shows the plastic volumetric strain epv
versus shear strain epr curve. In these plots, Point ‘‘A’’ is the

point representing the beginning of shear loading after

isotropic consolidation. Points ‘‘B’’ and ‘‘B’’’ are the phase

transformation points (from contraction to dilation) (see

Fig. 7b); points C and C’ are the points at the peak stress

ratios (see Fig. 7a) predicted from the two models.

The predicted dilatancy curves are plotted in Fig. 7c on

the plane with plastic strain ratio increment (depv=de
p
r )

versus stress ratio (q=p) and in Fig. 7d on the plane with

(depv=de
p
r ) versus plastic shear strain epr . The value of

depv=de
p
r represents the dilation/contraction tendency at a

given stresses or strain level.

One can see from the point ‘‘A’’ in Fig. 7c that the

values of depv=de
p
r for both models at the beginning of shear

load (or the initial slope of the curve in Fig. 7b) are the

same. This is not a surprise because, at this point, the

properties are same for all orientations. The values of d and

D are related by Eq. 29. However, with the development of

shear strain, the sample becomes anisotropic, and one can

see from Fig. 7c that the dilatancy developments are very

different for the two models. The essential difference is

that the micromechanical model predicts a nonlinear curve

in the plot of plastic strain ratio, depv=de
p
r versus stress ratio,

q=p, whereas the conventional plasticity model gives a

linear line. Numerical results indicate that this difference

becomes significant for larger values of the dilatancy

parameters (D and d).

For both Fig. 7c, d, the predicted maximum dilation

tendency point (C or C’) from the two models is corre-

sponding to the reflecting point of epv � epr curve in Fig. 7b,

and to the point of peak stress ratio, as shown in Fig. 7a.

One can also see that the maximum volume contraction

point (B or B’) in Fig. 7b is corresponding to the zero slope

of the epv � epr curve (or zero dilatancy point), which occurs

when q=p0 ¼ M.

Comparing the dilatancy behavior of the two models, it

is observed that, given a fixed value of stress ratio, q=p0 in

Fig. 7c, the micromechanical model gives a higher con-

traction tendency before the phase transformation and a

lower dilation tendency after the phase transformation.

However, it is noted that, given a fixed value of plastic

shear stain, epr in Fig. 7d, the dilatancy behavior is com-

pletely opposite to the above statement: i.e., the

micromechanical model gives a ‘‘lower’’ contraction ten-

dency before the phase transformation and a ‘‘higher’’

dilation tendency after the phase transformation.

The above statements are seemingly contradictory but

actually consistent. This can be made clear by examining

Fig. 7a; for a fixed value of shear strain, epr , there are two

different corresponding stress ratios, q=p0 of two models,

and vice versa. Therefore, when comparing the levels of

dilatancy of the two models, it should be referenced to the

condition of given stress or strain level.

It is also interesting to compare the stress–strain curves

(Fig. 7e) and undrained stress path (Fig. 7f) predicted from

the two models. Obviously, the peak of stress ratio, q=p0

(point C or C’ in Fig. 7a), is not corresponding to the peak

shear stress, q in Fig. 7e; the peak stress ratio is reached

long before the peak value of the shear stress q is reached.

One can observe from Fig. 7f that at the initial portion

of the shear loading, the stress paths predicted from both

models show contraction behavior. Based on our previous

conclusion from Fig. 7c, for a given stress level, the

micromechanical model predicts higher contraction before

the transformation point. Thus, the stress path predicted

from the micromechanical model should be on the left side

of the stress path predicted from the conventional plasticity

model, which seems to contradict the results shown in

Fig. 7f.

Therefore, there must be another mechanism in the

micromechanical model, which can create dilatancy and

offset the volume strain induced by plastic shear strain.

This specific mechanism will be discussed below.

Under the condition of d ¼ D ¼ 0, Fig. 8 shows the

predicted results for triaxial undrained loading conditions

using both models. One can see that the stress path of the

conventional plasticity model is a vertical line in p’-q space

(constant p’) (Fig. 8a). However, the stress path for the

micromechanical model moves to the right side, indicating

a negative pore pressure generation due to the dilatancy

tendency. The negative pore pressure generation results in

a higher strength which can be seen from Fig. 8b. This

phenomenon mentioned here cannot be captured by the

upscaled plasticity model, which can be explained from a

micromechanics viewpoint as follows:

As mentioned previously, during deviatoric load, the

stiffness becomes different for contact planes in various

directions. This leads to a stress-induced elastic anisotropy

of the material. It is well known that, for an anisotropic

elastic material under a constant mean stress condition,

applied shear stress can cause an increase in elastic volu-

metric strain, eev, in a drained triaxial experiment. Under an

undrained condition, this tendency of volume strain

increase causes a negative pore pressure generation,

resulting in an increase in effective mean stress and shear
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strength as shown in Fig. 8a, b. The predicted elastic vol-

umetric dilation due to axial strain is shown in Fig. 8c. The

predicted elastic volumetric compression due to the

increase in mean stress is shown in Fig. 8d. It is noted that

in this undrained triaxial test, the sum of elastic compres-

sion and elastic dilation is zero. For the conventional

plasticity model with dilatancy constant D = 0, one can see

from Fig. 8c, d that there is no elastic dilation or com-

pression under the applied shear load.

Thus, the shape of stress path predicted by the

micromechanical model shown in Fig. 8a is caused as a

result of the stress-induced elastic anisotropy. In the case of

d 6¼ D 6¼ 0, the shape of stress path of the micromechanical

model shown in Fig. 7f is affected not only by the plastic

contraction but also by the elastic dilation.

5.3 On the aspect of inherent anisotropy

The anisotropy of the packing structure creates anisotropy

of the mechanical behavior whose directions are identical

to those of the geometric anisotropy. The anisotropy of

granular assembly can be featured by a fabric tensor,

Fij ¼
Z 2p

0

Z p

0

nðh; bÞ ninj sin h dh db ð39Þ

where nðh; bÞ is distribution of inter-particle contact ori-

entations, which can usually be expressed by a harmonic

Fourier expansion in a spherical coordinate system.

One of the main interests of the micromechanical model

is its capacity to take into account a structural anisotropy.

In fact, in the micromechanical model, the decomposition

of the constitutive equations along a set of planes allows

formulating the dependency of the parameters with respect

to the orientation. Therefore, inherent anisotropy can be

easily incorporated to obtain the response of a material

[4, 49].

The upscaled conventional plasticity model, used here

for comparison, is an isotropic hardening model, which

does not consider the factor of inherent material anisotropy.
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5.4 Response envelopes predicted
from both models

Response envelopes are a useful tool for validating and

comparing constitutive equations [10, 20, 41, 43]. The

original concept of response envelopes was presented by

Lewin and Burland [25] and Gudehus [12] in context with

the development of constitutive equations. In general, to

obtain a response envelope, a soil element is subjected to a

certain stress or strain increment. The corresponding ‘‘re-

sponse’’ of the soil in the form of either strain or stress is

determined and described graphically. The direction of the

applied stress or strain increment with a constant absolute

value is then varied and leads to different stress or strain

responses, endpoints of which are connected to form

response envelopes.

The strain response envelopes predicted from the

upscaled plasticity model and from the micromechanical

model were compared in the present work. After an initial

isotropic compression with confining pressure 200 kPa, a

drained triaxial loading test was simulated in axisymmetric

conditions. Stress probe test is performed at 4 stress points,

i.e., points A, B, C and D as shown in Fig. 9. Point A

(r1 ¼ r2 ¼ r3 ¼ 200 kPa, g ¼ q=p ¼ 0) is an initially

isotropic stress state, and the other three points are initially

anisotropic stress states (B: r1 ¼ 400; r3 ¼ 200 kPa,

g ¼ 0:75; and C: r1 ¼ 480; r3 ¼ 200 kPa, g ¼ 0:95; and

D: r1 ¼ 600; r3 ¼ 200 kPa, g ¼ 1:2). Then, the stress

increment dr in all directions with the same norm

( drk k ¼ 10 kPa) was imposed, and the corresponding

strain response de was computed.

The two sets of parameters for both models in Table 2

were adopted to perform the strain response analysis.

The response envelopes predicted from the two models

for the same initial stress states are plotted in Fig. 10. The

response envelopes predicted from the two models for

initially isotropic stress state (point A) is shown in

Fig. 10a. The two response envelopes are almost identical

ellipses centered at the origin of the Rendulic plane of

strain increments. The predicted response envelopes from

point A indicate the response deformations at this stress

state are mostly elastic.

Figure 10b–d is the predicted response envelopes from

the two models for three anisotropic stress states (i.e.,

points B, C and D). The patterns of response envelopes for

the anisotropic stress states are very different from the
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ellipsis response envelopes for the isotropic stress states.

The distorted shape of the strain response envelope indi-

cates large plastic strains for some loading directions.

Comparing the strain response envelopes derived from

the two models, noteworthy differences are observed, and

the amount of differences increases with the applied initial

stress ratio. Figure 10 also suggests that the differences of

the two models are dependent on the loading directions.

For some loading directions, there are not many differences

in the predicted results, whereas, for other loading direc-

tions, significant differences can be observed.

Figure 10d shows the strain response envelopes for a

stress level (g = 1.2) near critical line (or Coulomb friction

line g = 1.234). According to the discussion by Darve and

Nicot [9], near the plastic limit condition, the strain

response envelope shrinks into a straight line. This straight

line indicates that, at the plastic limiting condition, the

direction of the incremental strain vector is independent of

the direction of the incremental stress vector.

The dot product of the two tensors, dr and de used in the

strain response analysis, represents the second-order work,

which is a useful indicator for the instability of the mate-

rial. It is of interest to check the possible instabilities due to

the stress probes in various directions. For convenience, we

define a normalized second-order work d2Wnorm

d2Wnorm ¼ drde
drk k dek k ð40Þ

Thus, d2Wnorm is equal to the cosine of the angle

between dr and de. Its value is included in the interval of (-

1, 1). Figure 11a–d shows rose diagrams showing the

variation in d2Wnorm with respect to the stress probe

direction. In such diagrams, a constant value c = 1 is added

to the polar value of d2Wnorm so that a circle of radius c is

drawn in the circular diagrams to represent vanishing val-

ues of d2Wnorm: inside the circle, d2Wnorm is negative;

outside the circle, it is positive.

Figure 11 shows the rose diagrams for four different

levels of shear stress (q/p = 0, 0.75, 0.95, 1.2). The angles

shown in Fig. 11 are the stress probing directions (see

Fig. 9). Note that the direction of 210 degree is parallel to

the hydrostatic axis (reduction of mean stress), and the

Fig. 10 The predicted strain response envelopes from two models at initially different stress states
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direction of 240 degree is about parallel to the Coulomb

friction line. Figure 11 shows that the instabilities occur for

probe directions between these two directions.

The patterns of instability are different for the plasticity

model and micromechanical model. For the plasticity

model, at q/p = 0.95, instabilities already occur for stress

probes between 220� and 235�, whereas, for microme-

chanical model, instabilities do not occur at this stress

level. When q/p = 1.2, instabilities start to occur in the

micromechanical model for stress probe directions in the

vicinity of 210�.

6 Summary and conclusions

A conventional plasticity model was constructed by

upscaled the micromechanical model by Chang and Hicher

[4], and the proposed model belongs to the kind of isotropic

hardening model. The mathematically derived relationships

between the plasticity model parameters and particle-level

properties were presented based on the condition that the

two models would predict the same selected mechanical

response, i.e., the isotropic stress condition. A calibration

procedure was proposed for both sets of parameters. Then,

a comparative study was conducted to investigate the dif-

ferences of the predicted element behaviors. Some con-

clusions can be obtained as follows:

(1) To derive the relationship between element-level and

contact-level parameters, the constitutive laws (such as

yielding condition, dilation pattern and hardening rule,

etc.) used in the selected micromechanical model and

plasticity model, need to have the same mathematical

forms and physical mechanism although they are defined at

different scale levels.

(2) For an isotropic hardening plasticity model, the

relationship between element-level parameters and contact-

level parameters exists only under the isotropic loading

condition. Accordingly, parameters of element level and

contact level, can be calibrated from the measured

mechanical response for a specimen under the isotropic

loading condition, for example, the compression response

measured from a drained isotropic compression loading

Fig. 11 Results from different models for the same q/p
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test, and the shear response measured from the beginning

of a triaxial load test on an isotropic consolidated sample.

(3) In the micromechanical model, the dependency of

the inter-particle behavior with respect to the orientation is

modeled. However, the upscaled plasticity model belongs

to the type of isotropic hardening model. Thus, different

mechanical responses are predicted after the sample

becomes anisotropy induced by a deviatoric stress.

The dilatancy developments are very different during

shear. For the micromechanical model, the ratio of plastic

volumetric strain and shear strain has a nonlinear rela-

tionship with stress ratio, whereas, for the conventional

plasticity model, the relationship is linear. Besides, the

micromechanical model has the ability to predict the stress-

induced anisotropy of granular materials and the corre-

spondent change of elastic volumetric strain due to the

anisotropy. In the upscaled conventional plasticity model,

this mechanism of stress-induced anisotropy cannot be

accounted.

(4) Although there are some differences between the two

models, it is noted that the upscaled plasticity model is

reasonably acceptable for capturing main features of sand

behavior in a triaxial loading condition under both drained

and undrained situations. However, it can be observed from

the strain response envelope analysis that the amount of

differences between model predictions are dependent of the

loading directions. For loading directions other than triaxial

condition, the differences between the upscaled plasticity

model and the micromechanical model may be significant.
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Appendix 1: Derivation of relationship
of parameters of two models

According to Chang and Gao [47], the relationship of kan
and B under isotropic compression condition can be

expressed as follows,

B ¼ 4

9

N

V

� �
r2kan ð41Þ

where N is contacts number in the representative volume V,

and r is the radius of particles.

The relationship of 1a and l can be expressed as follows

[26],

1a ¼ 1 � 2l
1 þ 3l

ð42Þ

We consider the problem under drained triaxial com-

pression condition. At the initial point after consolidation

with confining pressure rc, the effective stress tensor is,

rij ¼ rcdij ð43Þ

In case of isotropic compression, the normal and tan-

gential forces on each plane can be calculated from

Eq. (35) in local coordinate (see Fig. 1) as,

f an ¼ rc
3V

Nl
ð44Þ

f as ¼ 0 ð45Þ

where l is the ravage branch length between the two par-

ticles l ¼ 2r.

Given a small total stress increments dr11 (dr11 [ 0) in

the axial direction, the effective stress increments _rij can be

written as follows,

_rij ¼
dr11 0 0

0 0 0

0 0 0

2
4

3
5 ð46Þ

The incremental normal force and tangential force on

each contact plane can be calculated from Eq. (35) as

follows,

_f an ¼ _r11

3V

Nl
cos2 hþ _r22

3V

Nl
sin2 h cos2 b

þ _r33

3V

Nl
sin2 h sin2 b ð47Þ

_f as ¼ � _r11

3V

Nl
sin h cos hþ _r22

3V

Nl
sin h cos h cos2 b

þ _r33

3V

Nl
sin h cos h sin2 b ð48Þ

where b; h are direction angle in Fig. 1.

Substituting Eq. (46) into (47) and (48), the above two

equations can be simplified as follows,

_f an ¼ 3V

Nl
dr11 cos2 h ð49Þ

_f as ¼ �dr11

3V

Nl
sin h cos h ð50Þ

We take deviations of hardening equation (Eq. 24) with

plastic tangential displacements dpr at the point of dpr ¼ 0;

then, we get the incremental plastic tangential displace-

ments _dpr ,

_dpr ¼
_f ar
k
p
r0

ð51Þ

The incremental plastic normal displacements _dpn can be

obtained from the dilation equation (Eq. 23),

_dpn ¼ d tan/cs
_dpr ð52Þ
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The global plastic incremental displacements can be

obtained as follows,

_dpi ¼ _dpnni þ _dpr si ð53Þ

The macro-plastic strain increment can be obtained by

Eq. (34), which can be written in integration forms as

follows,

_upj;i ¼ A�1
ik l

Z 2p

0

Z p

0

_dpj h; bð Þnak h; bð Þ sin hdhdb ð54Þ

Then we get,

_up1;1 ¼ 2

5

f an d tan/cs

k
p
r0l

dr11

rc
þ 2

5

f an dr11

k
p
r0lrc

_up2;2 ¼ 3

10

f an d tan/cs

k
p
r0l

dr11

rc
� 1

5

f an dr11

k
p
r0lrc

_up3;3 ¼ _up2;2

_up1;2 ¼ _up2;1 ¼ _up1;3 ¼ _up3;1 ¼ _up2;3 ¼ _up3;2 ¼ 0

ð55Þ

So the macro-plastic volumetric strain increment and

shear strain increment can be obtained as follows,

_epvol ¼ _up1;1 þ _up2;2 þ _up3;3

� �
¼ f an d tan/cs

k
p
r0l

dr11

rc
ð56Þ

_epr ¼
2

3
_up1;1 � _up3;3

� �
¼ 2

30

f an d tan/cs

k
p
r0l

dr11

rc
þ 2

5

f an dr11

k
p
r0lrc

ð57Þ

The plastic strain increment ratio of the micromechan-

ical model can be obtained,

_epvol

_epr

� �
0

¼ 15d tan/cs

d tan/cs þ 6
ð58Þ

where the subscript ‘‘0’’ presents the initial state after

consolidation.

Substituting Eq. (41) and Eq. (44) into Eq. (56), then we

get,

_epvol ¼
d tan/cs

3Bðkpr0=kanÞ
dr11 ¼ d tan/cs

3B1p
_q ð59Þ

Substituting Eq. (41) and Eq. (44) into Eq. (57), then we

get,

_epr ¼
1

3B1p
1

15
d tan/cs þ

2

5

� �
dr11

¼ 1

3B1p
1

15
d tan/cs þ

2

5

� �
_q ð60Þ

For the conventional plasticity model, at the beginning

of shear after consolidation, q ¼ 0. The plastic shear strain

increment and volumetric strain increment can be obtained

from hardening rules and dilating equation as follows,

_epr ¼
_q

Gp
ð61Þ

_epvol ¼ D M � q

p

� �
_epr ¼ DM _epr ¼ DM

_q

Gp
ð62Þ

So the plastic strain increments ratio of the conventional

plasticity model can be obtained,

_epvol

_epr

� �
0

¼ DM ð63Þ

Equating (58) and (62), then the relationship of d and D

can be obtained as follows,

d ¼ 6DM

tan/csð15 � DMÞ ð64Þ

Equating (60) and (61) or Equating (59) and (62), then

the relationship of 1p and v can be obtained as follows,

1p ¼ d tan/cs þ 6

45
v ð65Þ

where 1p ¼ k
p
r

kan
, v ¼ Gp

B
.

Under undrained compression conditions, given a small

total stress increments dr11 (dr11 [ 0) in the axial direc-

tion, stress increments _rij can be written as,

dr11 � du 0 0

0 �du 0

0 0 �du

2
4

3
5 ð66Þ

where du is the water pore pressure increment. Similarly,

we can obtain the incremental force on each contact plane

from Eq. (35). The incremental plastic displacements _dpr
and _dpn can be calculated by hardening equation (Eq. 24)

and the dilation equation (Eq. 23). Then the plastic strain

increment can be obtained from Eq. (34). Using the same

derivation process, we can obtain the same relationship for

parameters of two models, as described by Eqs. (41), (42),

(64) and (25), which will not be repeated here.
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