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Abstract
Diffuse instability is a typical failure mode of sand that occurs before the perfect plastic flow condition is attained. Whereas

extensive laboratory experiments have demonstrated the macro-scale responses associated with such a failure mode, its

underlying microscopic mechanism remains unclear. Therefore, no effective predictions can be made incorporating

sophisticated constitutive models of sand, particularly when various drainage conditions are considered. In the present

study, diffuse instability is first investigated using the discrete element method (DEM). Herein, partially drained and fully

drained conditions are imposed to investigate the instability failure in proportional strain loading and constant shear

drained tests, respectively. Then, both macro- and micro-scale second-order work criteria are applied to identify the

occurrence of instability. Furthermore, the main features associated with the onset of diffuse instability are presented. The

diffuse instability behavior of sand is observed to be closely related to its fabric evolution. Eventually, independent criteria

for diffuse instability under various drainage conditions are determined considering the DEM results. In addition, a newly

developed anisotropic constitutive model with a fabric evolution law is applied to simulate the mechanical behavior of sand

and the instability that ensues. The model exhibits satisfactory agreement with the DEM simulation results. Overall, this

study is aimed at elucidating why diffuse instability occurs prior to the plastic limit and how to predict it under various

drainage conditions.

Keywords Constant shear drained stress path � Diffuse instability � Discrete element method � Proportional strain loading �
Second-order work � State-dependent plasticity model

1 Introduction

The classical standpoint of failure in soils considers a

single limit failure surface in a stress space. For example,

in the Mohr–Coulomb failure criterion, all the failure stress

states lie on the failure surface. However, accumulative

experimental evidence over the past few decades has

indicated that this may not be true. This is because the

other failure modes, namely strain localization and diffuse

instability, may occur prior to the limit failure. The prob-

lem of shear localization is usually formulated as the

possibility of the emergence of a weak discontinuity in the

velocity field during quasi-static homogeneous deforma-

tion. Extensive research results have demonstrated that, for

incrementally linear constitutive equation, the criterion for

the occurrence of strain localization is consistent with the

vanishing of the determinant of the acoustic tensor

[9, 39, 50, 52]. This is particularly so for dense sands and

over-consolidated clays. Meanwhile, diffuse instability

arises without any accompanying inhomogeneous defor-

mation and still requires an appropriate indicator of its

occurrence. This is particularly so when various drainage

conditions are considered [23, 27, 42, 45].

The onset of diffuse instability depends on factors

including the initial density of soils, loading mode, and

particularly, drainage conditions. Under undrained shear,

static liquefaction or flow instability (deemed as a typical
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type of diffuse instability) generally occur in loose sand

[3, 10]. However, in medium or dense sand, the quasi-

stable (or limited flow) response, rather than diffuse

instability, prevails. It is featured by a peak deviatoric

stress followed by subsequent considerable dilation

[20, 51, 54]. Influenced by the loading rate, permeability,

and boundary conditions, the instability behavior of gran-

ular soil under a partially drained condition was observed

to be different from that under fully undrained conditions

[5, 19]. The effects of a drainage boundary condition on the

potential instability of granular soil were investigated

through experimental tests [29, 47, 48]. In particular, pro-

portional strain loading (PSL) tests (wherein the ratio of the

volumetric strain increment to the axial strain increment is

maintained constant) are effective for examining the

instability of sand under varying drainage conditions

characterized by the imposed loading control parameter a.
Mital and Andrade [31] demonstrated that flow liquefac-

tion depends on both the imposed drainage condition and

the density of the specimens. This indicates that loose soil

that liquefies under undrained triaxial compression may be

stable in contractive drainage condition. Moreover, dense

soil that is stable under undrained triaxial compression may

liquefy if expansive drainage is imposed. Substantial effort

has also been invested to develop constitutive models,

aiming at simulating the instability behavior of sand under

axisymmetric PSL conditions. Based on a deviatoric

hardening plasticity model, Lü et al. [27] indicated that the

instability of sands depends on both the stress–dilatancy

relation and the imposed strain proportion ratio. Using a

state-dependent plasticity model, Lashkari and Yaghtin

[22] simulated the instability of anisotropic samples under

the proportional strain path. They observed that the stress

ratio at the onset of diffuse instability is insensitive to Kc,

the initial ratio of the horizontal to the vertical effective

stress. However, no relevant microscopic data or con-

vincing explanation was presented in their study.

Although a sand specimen remains stable before the

deviatoric stress attains its peak value when sheared under

the drained triaxial compression condition, such stability is

conditional. The sand may lose its stability if the loading

stress path differs [18]. A typical example is the constant

shear drained (CSD) test, in which a continuous decrease in

the mean normal stress is enforced. Such a test is aimed at

mimicking the loading conditions of instability failures

triggered in practical engineering, e.g., rainfall infiltration

induced landslides and slope failure [14]. Under the CSD

stress path, both experimental results [6, 49] and numerical

simulations [36, 40] indicate that diffuse instability can

occur in medium and dense sand. This is dramatically

different from the failure scenario widely observed under

undrained conditions. It has been demonstrated that Hill’s

condition of stability [16] can be employed to predict the

onset of instability in CSD tests [11, 46]. A few models

have also been subsequently developed, aimed at simulat-

ing the instability observed in CSD tests [11, 42, 45]. Using

the concept of loss of uniqueness, Alipour and Lashkari [1]

predicted that two dissimilar scenarios and accordingly,

two independent criteria for granular soils in loose and

dense states may trigger instability under CSD, from the

theoretical perspective. However, this prediction requires

further scrutiny.

Although extensive data on the macroscopic instability

behavior of sand has been obtained from both PSL tests

and CSD tests, the micromechanical responses associated

with the onset of instability and subsequent collapse of the

microstructure are still unclear and yet to be explored.

Moreover, although second-order work criterion has been

proven to be general and powerful enough to detect diffuse

failure occurrence [53], its application incorporated with a

specific constitutive model of granular soils is still limited

and deserves further investigations.

In the present study, both PSL and CSD tests are sim-

ulated using the discrete element method to explore the

underlying mechanisms of diffuse instability under various

drainage conditions. Although the macro-scale second-

order work has been widely used as a legitimate indicator

of the initiation of the instability, the counterpart in the

micro-scale has not received comparable attention. A cor-

relation between the burst of kinetic energy and onset of

diffuse instability are established by considering the

unbalanced forces of each particle. Therefore, based on

both the macro- and micro-scale second-order work crite-

rion, a variety of features accompanying the onset of dif-

fuse instability of sand can be obtained. By introducing a

fabric anisotropy variable, the correlation between fabric

evolution and diffuse instability can be established. Based

on the simulated DEM results, independent instability

criteria are determined. Then, these criteria are incorpo-

rated with a newly developed anisotropic constitutive

model with fabric evolution. A satisfactory agreement is

obtained between the constitutive model’s predictions and

the DEM simulations. The constitutive model also provides

an accurate interpretation regarding why the diffuse insta-

bility occurs before the plastic limit. More importantly, the

model enables the prediction of the onset of diffuse insta-

bility under various drainage conditions.

2 Numerical modeling methods
and instability criteria

2.1 Discrete element simulations

The commercial particle flow code in three dimensions

PFC3D [41] is employed to perform the DEM simulations.
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The key elements of the DEM are available in Cundall and

Strack [8], and are not repeated herein. In this study, three-

dimensional cubical specimens consisting of over 6700

particles are developed to serve as a representative volume

element (RVE). Each specimen is enclosed by six mass-

less, frictionless, and rigid walls.

Clumped particles are employed in this study. Each

consists of two equal and partially overlapping basic

spheres. The constant distance between the sphere centers

is assigned to be 1.333r (r is the basic sphere radius). The

clumped particle used is aimed at mimicking the non-

spherical particles in PFC3D and therefore, at simulating a

more realistic behavior of granular soils [28, 38, 56]. The

equivalent particle radius is uniformly distributed within

the range of 0.13 and 0.33 mm. A linear contact model

with equal normal and tangential stiffness kn = ks = 105

N/m is used. The inter-particle friction coefficient l is set

as 0.5. The entire loading process is monitored to maintain

the quasi-static condition. Meanwhile, the loading incre-

ment is applied when the ratio of the maximum unbalanced

force to the average contact force is lower than the pre-

scribed tolerance (set as 0.03% in the present study). To

accelerate the simulation process and reduce the compu-

tational cost, numerical damping is employed to dissipate

the kinetic energy of the particles. Note that this treatment

does not affect the simulated responses as long as the

quasi-static condition is fulfilled. In this study, a default

value of the damping coefficient (n = 0.7) is employed. All

the parameters used in the simulation are summarized in

Table 1.

After all the particles have been generated randomly in

terms of position and orientations within the domain

bounded by the walls, the specimens are isotropically

compacted to a low confining pressure of 10 kPa. The inter-

particle friction l is varied in the range from zero to 0.5 to

adjust the initial density of the specimens. According to

Yang et al. [58], the maximum void ratio can be estimated

by generating samples with inter-particle friction coefficient

l = 0.5, and the minimum void ratio is obtained with

l = 0.0. Both these are under a reference state with con-

fining pressure p0 = 10 kPa. Once the specimens have been

generated, a common value of l = 0.5 is restored, and all

the specimens are isotropically consolidated (i.e., com-

pressed) to desired confining pressures, e.g., 500 kPa.

Various types of tests are conducted on the isotropically

consolidated specimen, including conventional drained

(CD) tests, constant volume (CV) tests, and PSL tests. Then,

specimens with different initial void ratios are sheared to

have the same stress ratio g = 0.5 under standard drained

conditions, before they are sheared under CSD loading path.

In addition, in order to investigate the influence of the stress

anisotropy on the instability behavior, a few PSL tests are

conducted on the anisotropically consolidated samples with

the same mean normal stress p0 = 500 kPa and g = 0.5.

The stress tensor of the specimen enclosed by the rigid

walls can be calculated by averaging the contact forces in

the whole granular assembly [43] through the following

equation:

rij ¼
1

V

Xk

c¼1

xci F
c
j ð1Þ

where V is the volume of the specimen in the current

configuration, k is the total number of the contacts between

particles and boundary walls, and Fc is the contact force

exerted on the wall at contact point c with the coordinate

denoted by xc.

In the triaxial condition, the mean normal stress p and

deviatoric stress q are defined as follows:

p ¼ 1

3
r11 þ r22 þ r33ð Þ

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11 � r22ð Þ2þ r11 � r33ð Þ2þ r22 � r33ð Þ2

h i.
2

r

8
>><

>>:

ð2Þ

respectively. Here, r11, r22, and r33 are the major, inter-

mediate, and major principal stresses, respectively.

The motions of the boundary walls can be applied to

calculate the strains as follows:

ez ¼
Dh
H0

; ex ¼
Dl
L0

; ey ¼
Dw
W0

ð3Þ

where H0, L0, and W0 are the height, length, and width,

respectively, of the cubical specimen in the initial config-

uration. Their increments can be calculated by Dh = H0-

- H, Dl = L0 - L, and Dw = W0 - W, respectively. Here,

H, L, and W are the height, length, and width, respectively,

of the specimen in the current configuration.

2.2 Second-order work criterion

To explore the underlying microscopic mechanism of the

occurrence of diffuse instability, the evolution of both the

macro-scale and micro-scale second-order work is

Table 1 Input parameters used in 3D numerical simulations

Parameter types Values

Particle solid density q 2600 kg/m3

Equivalent radius of particles r 0.13–0.33 mm

Normal stiffness kn 105 N/m

Tangential stiffness ks 105 N/m

Frictional coefficient l 0.5

Damping ratio n 0.7
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presented and used to identify the onset of instability. A

brief introduction to the method of calculation of the sec-

ond-order work is provided below. Further discussions

about the instability behavior of granular soil are presented

in subsequent sections. It should be noted that the onset of

instability in both the DEM simulations and constitutive

modeling are analyzed in the framework of the second-

order criterion.

2.2.1 Macro-scale second-order work

Hill [16] and Rudnicki and Rice [44] proposed the well-

established criterion to identify the loss of stability in solids

(termed Hill’s instability criterion). It has been corrobo-

rated by numerous experiments [5, 21, 29, 47, 48] and

numerical simulations [4, 11, 33]. According to Hill’s

condition of instability, the material is considered to be

stable if the second-order work is strictly positive, i.e.,

d2W = dr0de[ 0 for all feasible variations in the stress and

strain. In a triaxial setting, the second-order work can be

expressed as

d2W ¼ dqdeq þ dp0dev ð4Þ

where the deviatoric stress q, effective mean stress p0,
deviatoric strain eq, and volumetric strain ev are defined as

follows: q = r1 - r3, p0 = 1/3 (r10 ? 2r30), eq = 2/

3(e1 - e3), and ev = 1/3 (e1 ? 2e3), respectively. In the

present study, both the stress increments and strain incre-

ments can be registered every 5000 steps during the DEM

simulations to calculate the macroscopic second-order

work.

2.2.2 Microscopic second-order work

Nicot et al. [35] and Hadda et al. [15] calculated the sec-

ond-order work in terms of the microscopic variables

within the granular assembly by using the following

equation:

d2Wm ¼
X

c2V
df ci dl

c
i

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
d2W

m
c

þ
X

p2V
df

p
i dx

p
i

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
d2W

m
p

ð5Þ

where fc is the contact force between particles; lc is the

branch vector connecting the centers of the two contacting

particles within the REV; and fp and xp are the resultant

force and position of the particle p, respectively. It is

noteworthy that both the creation and loss of the contacts

during the calculation cycles can be accounted for by the

term dfcdlc; herein, both the final contact force of the lost

contact and the initial contact force of the new contact are

considered as zero. In order to calculate the micro-scale

second-order work, both the contact and particle

information need to be stored at the beginning and end,

respectively, of the calculation interval. In the present

study, this interval is selected as 10,000 steps as a trade-off

between the computational cost and accuracy.

Note that the first term of Eq. (5) (d2Wm
c ) is related to

the contacts, whereas the second term d2Wm
p is relevant to

the particles and can be omitted if the entire process is

quasi-static [15, 34]. However, when the quasi-static con-

dition cannot be maintained and thus the particles move

rapidly, an abrupt fluctuation of the term d2Wm
p is likely.

This signifies the outburst of the kinetic energy within the

REV. It should be emphasized that the diffuse instability

failure mode corresponds to a homogeneous failure regime.

Herein, no visible pattern of localization can be observed,

and generally, a chaotic kinematic field dominates [34]. As

the diffuse instability is essentially different from the strain

localization failure, the evolution of the second term of

Eq. (5) is presented separately to facilitate the identifica-

tion of the initiation of the diffuse instability.

3 Simulation procedures

Among previous studies, the PSL test and CSD test are two

typical examples that can simulate the continuous decrease

in the mean principal stress p0 (and hence the occurrence of

diffuse instability) under both partially drained and drained

conditions. A brief introduction to these two typical load-

ing schemes is presented below.

3.1 PSL path

Generally, fully drained and undrained conditions represent

two extremes. They are considered valid only if the initial

pore water pressure within the soil deposit is uniform

throughout [47]. However, in the field conditions, the stress

states and thus the loading path depends on the spatial

variation in the excess pore pressure. Moreover, similar

boundary constraints are likely to induce drainage condi-

tions other than the above two ideal scenarios.

The imposed proportional strain paths of the tests can be

described by the following conditions:

de1 [ 0

dev ¼ ade1
de2 ¼ de3

8
<

: ð6Þ

According to the sign convention in soil mechanics, the

compression and volume contraction are both considered

as positive, whereas the extension and volume dilation are

negative. The volumetric response of the specimen (or the

partial drainage) depends on the sign of the loading control

parameter a as follows:
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1. a = 0, undrained test (constant volume)

2. a\ 0, dilation in volume

3. a[ 0, contraction in volume

Note also that the stress path of a = 1 refers to the

conventional oedometer test, in which the lateral strain is

prohibited. Equation (6) prescribes a class of proportional

strain path tests with constant strain ratio R = de3/de1-
= (a- 1)/2. Fifteen PSL tests under various drainage

conditions and different densities on both isotropically and

anisotropically consolidated specimens are conducted, as

listed in Table 2. The simulation results and more detailed

discussions are presented in Sect. 4.

3.2 CSD tests

Failure is defined as the attainment of certain limit stress–

strain states that cannot be sustained by the material. If

these limit states are defined purely in a stress space, the

classical definition of plastic limit criteria would be

obtained. However, both experimental and theoretical

evidence indicated that certain limit states obtained prior to

the stress limit are mixed [1, 7, 37, 42]. The CSD test, with

controlled deviatoric stress and volume variations, is

probably the best-known example of such mixed limit

states.

Four drained tests outlined in Table 3 are performed

under constant deviatoric stress. The specimens with dif-

ferent initial void ratios are first isotropically consolidated

to p0
0 = 500 kPa. They are then sheared under conven-

tional drained conditions to an identical stress ratio

(g = 0.5), prior to the drained shear, where a constant

deviatoric stress q is maintained until the onset of the

instability, which is signified by the cross symbols in all the

figures.

4 DEM simulation results

4.1 Stress-deformation response

A series of proportional strain path tests were performed on

specimens with varying a values and initial void ratios to

simulate the instability behavior under partially drained

condition. These are summarized in Table 2. As shown in

Fig. 1, the presence of the peak for the deviatoric stress q is

closely related to a. For the cases a B 0, the smaller the

value of the a is, the smaller the magnitude of the peak

value of q. For the cases a[ 0, q continuously increases

without reaching a peak value. It should be noted that the

onset of instability, signified by the symbol ‘‘X’’, does not

correspond to the presence of the peak of the deviatoric

stress q. More detailed discussions about this asynchronism

are given in Sect. 4.2. Special attention should be paid to

the scenario of a\ 0. Here, the volume expansion is

imposed to simulate the process of water infiltration into

the soil elements in the laboratory experiments [47, 48].

For the undrained case, the excess pore pressure is mainly

induced by an increase in the shear stress. However, in the

expansive drainage condition, the water inflow may con-

tribute to the development of excess pore-water pressure in

addition to the shear-induced pore pressure. Moreover, the

effective stresses will hence be smaller than that of its

undrained counterpart. This observation indicates that the

undrained condition may not represent the most detri-

mental scenario in the field. This is evidenced by the fact

that significantly lower shear strength is observed in the

volumetric expansion (a\ 0) under partial drainage

condition.

A comparison between Fig. 1a and b indicates that the

initial void ratio also affects the instability of sand. For

example, for the denser specimen (e0 = 0.674, a = 0), no

Table 2 Summary of proportional strain loading tests (PSL)

Test Series Loading control

parameter, a
Void ratio before PSL

shearing, e0

I: Loose

g0 = 0

- 1.0 0.706

- 0.5

0.0

0.25

0.5

II:

Medium

dense

g0 = 0

- 1.0 0.674

- 0.5

0.0

0.25

0.5

III: Loose

g0 = 0.5

- 1.0 0.704

- 0.5

0.0

0.25

0.5

Table 3 Summary of constant shear drained tests (CSD)

Relative

density

Void ratio after consolidation

p0 = 500 kPa, e0

Void ratio before CSD

tests g0 = 0.5, e0

Loose 0.732 0.720

Medium

dense

0.674 0.667

Dense 0.603 0.599

Very

dense

0.520 0.517
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peak of the deviatoric stress is observed, and a higher

strength can be mobilized. In contrast, for the looser

specimen with e0 = 0.706, a peak deviatoric stress is fol-

lowed by a sharp decrease prior to the phase transformation

state. Thereafter, the deviatoric stress is increased again

toward the critical state. The state of the onset of instability

is marked with a cross on these figures for each test, with

the stress ratio gins provided nearby. For a specified initial

void ratio, it is observed that gins is smaller when subjected

to a more dilative loading path (smaller a). For example,

for the medium dense samples, gins= 0.79 (a = - 1) and

gins= 0.85 (a = - 0.5). Meanwhile, for a specified a value,

gins is always below the critical state stress ratio

M (= 1.102) and is higher for denser specimens.

Recognizing that the initial stress state of the soils in situ

is always anisotropic, a series of PSL tests are performed

on specimens that are consolidated along the constant-p0

stress path up to g = 0.5 from the isotropic stress state,

prior to the subsequent shearing. To eliminate the effect of

the void ratio, the interparticle friction parameter is fine-

tuned at the compaction stage. Thereby, it is ensured that

both isotropically and anisotropically consolidated samples

exhibit almost equal void ratio prior to the commencement

of the PSL tests (Table 2). Figure 1c presents the effective

stress paths of the anisotropic specimen, obtained from the

PSL tests. It is observed that similar to the isotropic sam-

ple, the tendency of flow liquefaction increases as a varies

from 0.5 to - 1. Moreover, full flow liquefaction and

complete loss of shear strength occur for samples with

a\ 0. Moreover, a comparison between Fig. 1a and c

indicates that the stress ratio at the onset of diffuse insta-

bility is almost insensitive to the stress anisotropy caused

by the different consolidation paths. A more detailed dis-

cussion about this observation from the perspective of

microstructure evolution is presented in Sect. 4.2.

Figure 2 presents the effective stress paths obtained

from the CSD tests. The tests were conducted with varying

initial void ratios and a fixed stress ratio g = 0.5. The stress

ratio at the onset of the instability gins is observed to be

closely related to the initial void ratio. That is, the denser is

the specimen, the larger is gins on the initiation of the
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Fig. 2 Stress path of CSD tests
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instability, and vice versa. For both the medium-dense and

loose specimens (as shown in Table 3), gins is always less
than the critical stress ratio M. However, it could be higher

than M for dense and very dense samples. Similar experi-

mental results have been reported by Chu et al. [7] and

Dong et al. [12]. Unlike the undrained tests presented in

Fig. 1 (a = 0), by imposing the constant deviatoric stress

drained path, all the specimens would undergo instability

failure irrespective of their initial density. This indicates

that the CSD stress path is more detrimental than the

undrained path.

Figure 3a presents the reduction in mean effective stress

p0 against the axial strain. It is evident that the instability is

accompanied by a sharp increase in the axial strain. This is

in agreement with the experimental observations by Chu

et al. [6, 7]. Figure 3b illustrates the evolution of the void

ratio (or the volume change) with the mean normal stress.

It is evident that all the specimens, including the loosest

one, tend to dilate prior to the initiation of instability

failure. This volumetric response is consistent with the

experimental results reported by Dong et al. [12], Monkul

et al., [30], and Daouadji et al., [13]. However, no dilation

was observed by Chu et al. [7]. This inconsistency is

speculated to be a result of the use of the ‘‘extremely

loose’’ sample in their tests. Once the decrease in mean

normal stress p0 is imposed, an ‘‘extremely loose’’ sample

may immediately lose controllability of the deviatoric

stress and hence the stability. Consequently, the second-

order work transforms from positive to negative simulta-

neously owing to the volume contraction at the beginning

of the CSD test. Moreover, the instability appears to be

synchronized with the sharp variation in the volumetric

response of sand; herein, the looser sand tends to contract,

whereas the denser sand dilates. Based on this observation,

two independent instability criteria can be determined for

dense and loose sand, as presented in the following.

4.2 Instability analysis

The instability analysis is carried out within the framework

of second-order work criterion. In terms of PSL tests, by

combing Eq. (4) and (6) the second order work can be

rewritten as:

1

3
dr1 þ 2dr3ð Þade1 þ dr1 � dr3ð Þ 1� a

3

� �
de1

¼ dr1 þ dr3 a� 1ð Þð Þade1
¼ dqþ adr3ð Þade1

ð7Þ

It can be seen from Eq. (7) that the onset of instability

corresponds to the vanishment of the term (dq ? adr3)
rather than the deviatoric stress q. Hence, to investigate the

correspondence between the second-order work based

instability criterion and the peak state of q or (q ? ar3)
under the partially drained condition, the results of two

example of anisotropic loose specimens with a = - 1

and = 0.5 are presented in Fig. 4a and b, respectively. It is

observed that both the macroscopic and microscopic sec-

ond-order work exhibits a similar trend with elapsed time.

The second-order work becomes negative in synchrony

with the peak of (q ? ar3), which occurs subsequent to the

arrival of the peak value q. Such asynchronism between the

peak value of q and the onset of instability implies that

failure could occur even if the shear stress within the REV
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is lower than the shear strength (peak value of q). However,

if there is no peak for (q ? ar3), as shown in Fig. 4b, the

specimen would remain stable. The second-order work also

remains positive during the entire loading process.

Although no particle-scale information is obtained in the

experiments, similar conclusions with respect to the macro-

scale response and second-order work were obtained by

Lancelot et al. [21] and Jrad et al. [29]. To reveal the

underlying microscopic mechanism of the instability, the

second term of the micro-scale second-order work d2Wp
m is

also presented. It is observed that an abrupt disequilibrium

(or fluctuation in the term d2Wp
m in Eq. (5)) occurs in

synchrony with the vanishing of both the macro-scale and

micro-scale second-order work. This signifies the onset of

the instability. Note that the magnitude of the fluctuation in

d2Wp
m is of the same order as the d2Wm and is almost zero

when the specimen remains stable. Based on Eq. (5), the

second term of the right hand side of the equation is related

to inertial effects on the grain scale. This term, related to

the imbalance forces, accounts for local inertial mecha-

nisms that can be investigated from local kinetic energy. In

DEM simulations, the evolutions of kinetic energy can be

thoroughly examined. Total kinetic energy is the sum of

the rotational and translational kinetic energies and can be

calculated respectively as:

Ekr ¼
1

2

XNp

i¼1

Iix
2
i ; Ekt ¼

1

2

XNp

i¼1

miv
2
i ; Ek ¼ Ekr þ Ekt ð8Þ

where Np is the total number of particles, mi, vi, and xi are

the mass, translational velocity, and rotational velocity of

the particle i, respectively, and Ii is the moment of inertia

of a clumped particle i. The evolutions of kinetic energy in

the PSL tests are also plotted in Fig. 4. It can be seen that

kinetic energy is negligibly small when the sample remains

stable but an abrupt increase is observed at the occurrence

of instability. This observation suggests that when the

second-order work vanishes, a few infinitesimal perturba-

tions will be sufficient to trigger the abrupt collapse of the

granular system.

To reflect the effect of the fabric anisotropy and its

evolution on the instability, a fabric anisotropy variable A

is employed. It was first introduced by Li and Dafalias [25]

to quantify the combined influence of fabric and loading

direction on soil behavior:
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A ¼ F : n ¼ FnF : n ¼ FN ð9Þ

where n is the loading direction and F is a deviatoric

contact-normal-based fabric tensor. F has two nontrivial

invariants (i.e., norm F and direction nF of F), such that F

can be expressed as follows [25, 56, 57]:

F ¼ FnF ; F ¼
ffiffiffiffiffiffiffiffiffiffi
F : F

p
; nF : nF ¼ 1; trnF ¼ 0 ð10Þ

In the present study, the evolution of the state parameter

A in the PSL tests on both isotropically- and anisotropi-

cally-consolidated specimens is illustrated in Fig. 5. In the

figure, the initiation of instability is signified by the cross

symbols. It is evident that for an equal loading control

parameter a, A is almost the same at the occurrence of

instability irrespective of the consolidation stress state.

This is consistent with the observation in Fig. 1 that the

stress ratio at the initiation of instability is almost insen-

sitive to stress-induced anisotropy. This observation can be

explained as follows: On one hand, it has been consistently

evidenced by experimental observations [32, 55] and

theoretical investigations [24, 25] that granular soil is more

dilative when it is more anisotropic because the direction of

the soil’s fabric is aligned with the loading direction. On

the other hand, the plastic modulus of the anisotropic

sample is smaller than that of the isotropic one owing to the

higher stress ratio applied on the former [24, 27, 57]. When

subjected to dilative volumetric strain, a smaller modulus

promotes a decrease in the effective mean normal stress.

This counteracts the increase owing to the dilatancy. These

two competing effects renders almost identical stress ratio

and fabric anisotropy variable at the onset of instability for

both the isotropic and anisotropic samples with an equal a
(Figs. 1 and 5). The following discussions are with regard

to the samples exhibiting same initial stress ratio. At the

early stage of the tests, the fabric anisotropy variable A is

smaller for the test imposed with a larger a. This is because
the PSL tests are purely strain-controlled, and the ratio

between de3 and de1, i.e., R = de3/de1 = (a- 1)/2, is

determined by a. As a increases, the strain increment de3
gradually approaches de1. This implies that the applied

loading scheme is more isotropic and thus renders a smaller

A at the early stages of the tests. However, as the loading

process continues, the effective stress for more a contrac-

tive loading path (larger a) is more likely to increase. This

defers the occurrence of instability and renders a larger A at

the onset of instability.

Similar to the partial drainage condition, the instability

behavior of the sand under drained condition can be

investigated in the framework of the second-order criterion.

Considering the specimen with e0 = 0.667 as an example,

the evolution of both the macro- and micro-scale second-

order work is shown in Fig. 6. The occurrence of instability

is also observed to be synchronized with the vanishing of

both the second-order work, accompanied by an abrupt

increase in the kinetic energy and the abrupt fluctuation in

the second term of the micro-scale one. It is also observed

that dq varies from zero to negative at the onset of insta-

bility. This is in accordance with the concept of ‘‘loss of

controllability’’ [16, 17].

Before the sample loses its stability in the CSD test,

dq = 0 such that the second-order work reduces to d2-

W = dp0dev. There are two possibilities for the initiation

of instability with d2W = dp0dev = 0, i.e., dp0 = 0 or

dev = 0. To obtain the criteria triggering the vanishing of

the second-order work and hence the instability of the

specimen, the evolutions of the increments in the void ratio

e and in the mean principal stress p0 are presented in

Fig. 7a and b, respectively. Based on the known critical

state line (CSL) (see Sect. 5), the state parameter defined

by Been and Jefferies [2] w = e- ec can be calculated: w is

positive for the loose sample and negative for the dense

sample. That is, the initial state of the loose samples prior

to the constant shear test is above the CSL, whereas those
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of the three dense samples are below the CSL. Figure 7

shows that for the samples below the CSL with w\ 0,

dev\ 0 holds, and dp0 becomes zero (no variation in p0) at
the onset of instability. This signifies that d2W = 0. How-

ever, for the loose sample, the effective mean normal stress

p0 continuously decreases (dp0 \ 0 holds). Furthermore, it

is the turning point of volume change from dilation to

contraction (dev= 0) at which d2W reduces from positive to

zero. Hence, it can be concluded that the criterion trig-

gering the onset of diffuse instability in CSD tests, signified

by dq\ 0, is state-dependent. Further discussions from the

perspective of constitutive model are provided in Sect. 5.

Figure 8 presents the evolutions of the fabric anisotropy

variable in the CSD tests. It is observed that a looser

sample has a larger A at the early stage of the CSD test.

This is because a larger strain increment is imposed on a

looser sample during the CD test prior to the CSD test to

achieve a same desired stress state. As the mean normal

stress continuously decreases, a denser sample is observed

to lose stability at higher A. This indicates that a denser

sample retains a larger stress ratio at the onset of instability

and therefore is less prone to lose stability. Moreover, a

larger A indicates a stronger tendency to dilate. This can

explain the abrupt dilation of dense sand at the initiation of

instability, as presented in Fig. 3b.
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5 Insights from constitutive model
predictions

As demonstrated in Sect. 4, the instability response of sand

is observed to be closely related with the fabric anisotropy

and its evolution. Hence, a constitutive model that can

account for the fabric evolution is likely to be more suit-

able for simulating the instability behavior of sand.

Therefore, a newly developed anisotropic model by Yang

et al. [57] is employed to simulate the diffuse instability

observed in the DEM tests. In this model, a novel

expression of the fabric evolution rules is proposed. This

allows for both the ‘‘hardening’’ and ‘‘softening’’ types of

variation in the fabric norm, as observed in the DEM

simulations. The engaged fabric anisotropy variable

reflects the combined effect of the anisotropic consolida-

tion and subsequent loading path and enables the simula-

tion of the combined dilation–contraction deformation

patterns.

This model is developed within the framework of the

anisotropic critical state theory (ACST) developed by Li

and Dafalias [25]. Further details are available in Yang

et al. [57]. In this study, a simplified version is employed. It

considers only the yielding caused by the increase in stress

ratio g (q/p0) under a constant p0. The incremental relations

of the model can be expressed by Eq. (11). The model

parameters are listed in Table 4 and their detailed cali-

bration procedure can be referred to Yang et al. [57].

dq

dp0

( )
¼

3G 0

0 K

� �
� h Lð Þ
Kp þ 3G� KgD

�

9G2 �3KGg

3KGD �K2gD

� �	
deq

dev

( ) ð11Þ

In Eq. (11), G and K are the elastic shear and bulk moduli,

respectively; Kp is the plastic modulus; g is the stress ratio;

and D is the dilatancy of sand. The CD tests, PSL tests, and

CSD tests are all simulated by the model using the single

set of the model constants. The instability criteria for dif-

ferent drainage conditions and the corresponding simula-

tion results are presented as follows:

Because the constitutive model employed is developed

within the framework of ACST, the critical state parame-

ters of the granular soil need to be determined first. For

non-cohesive soils such as sands and gravels, Li and Wang

[26] recommended the following expression for CSL:

ecs ¼ eC � k
p0

pa

� �n

ð12Þ

where eC, k, and n are the material’s critical state constants

and pa= 101 kPa is the atmospheric pressure. Based on the

CD and undrained DEM simulations of the tests summa-

rized in Table 5, a unique CSL fitting asymptotic states of

nine drained and eight undrained tests can be obtained in

both the q–p0 and e–p0 planes, as shown in Fig. 9. There-

fore, the following parameters of CSL can be calibrated:

Table 4 The model parameters

Category Parameter Value

Elastic parameters G0 60

m 0.1

Critical state parameters M 1.102

eC 0.767

k 0.0146

n 0.7

Dilatancy parameters d0 0.98

m 3.5

b1 4.0

b2 7.5

Hardening parameters h1 0.4

h2 0.2

n 2.7

Fabric evolution

parameters

r 1.0

c 5.7

eA 0.05

Fin 0.003 for isotropic samples

0.122 for anisotropic

samples

Table 5 Summary of both drained and undrained triaxial tests for the

obtainment of critical state line in both p0–q plane and e–p0 plane

Test series Confining pressure, p0
0

(kPa)

Void ratio after

consolidation, e0

Drained

tests

1000 0.647

500 0.747

0.674

0.603

0.520

300 0.617

200 0.728

0.622

100 0.701

Undrained

tests

500 0.706

0.674

300 0.687

250 0.701

200 0.728

0.622

100 0.736

0.627
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eC = 0.767, k = 0.0146, and M = 1.102. A default value

n = 0.7 is assigned as it is not a sensitive parameter.

Four CD test results conducted on specimens with dif-

ferent initial void ratios and a same confining pressure

p0
0 = 500 kPa are presented in Fig. 10. Other test results

from the different initial conditions listed in Table 5 are not

presented in the interest of brevity. Nonetheless, they are

used to determine the CSL, as illustrated above. Based on

the critical state parameters obtained, the tests simulated by

the constitutive model employed include the CD tests, PSL

tests, and CSD tests, as presented below. In the following

comparison, DEM results are denoted by dotted symbols,

and model responses are represented by solid lines.

5.1 Simulation of CD tests

For simplicity, the elasto-plastic relationship (Eq. (11)) can

be re-expressed as

dq

dp0


 �
¼ Pqq Pqp

Ppq Ppp

� 	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
P

deq
dev


 �
ð13aÞ

where P ¼ Pqq Pqp

Ppq Ppp

� 	

¼

3h Lð ÞG Kp � KgD
� 

Kp þ 3G� KgD
3h Lð ÞKGg

Kp þ 3G� KgD
�3h Lð ÞKGD

Kp þ 3G� KgD

h Lð ÞK Kp þ 3G
� 

Kp þ 3G� KgD

2
6664

3
7775

ð13bÞ

The test results simulated by the model are illustrated in

Fig. 10. They match very well with the experimental

results. It is observed that the model can simulate both the

contractive and dilative response of sand, covering a wide

range of the initial densities with satisfactory performance.

Therefore, the model is used to simulate the PSL and CSD

tests, as shown below.
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5.2 Simulation of PSL tests

In this section, the mechanical behaviors of both aniso-

tropic and isotropic samples subjected to PSL (a = - 1,

- 0.5, 0, 0.25, and 0.5) are simulated. The developments of

the shear stress q with the axial strain from these two series

of tests are illustrated and compared with the DEM data in

Fig. 11. It is observed that the model predictions match

well with the DEM results for both isotropically and

anisotropically consolidated samples with varying a values.
It is noteworthy that Fin, a parameter employed in the

present model and signifying the norm of the initial fabric,

is set as 0.003 for the isotropically consolidated samples

and as 0.122 for the anisotropically consolidated samples,

based on the DEM simulation results, as shown in Table 4.

As illustrated in Sect. 4.2, in PSL tests the second order

work has been given in Eq. (7).

Because the axial strain rate is non-zero, the only per-

missible solution is dq ? adr3 = 0. This implies that the

onset of diffuse instability predicted by the second-order

work criterion coincides with the peak state of (q ? ar3).

This has been verified by the above DEM simulations.

However, the second-order work criterion is inconsistent

with the plastic limit criterion. Typically, the plastic

modulus Kp is positive at the onset of loading. Moreover,

Kp = 0 temporally when the response of soils varies from

strain hardening to softening, in synchrony with the peak

state of q. However, in the PSL tests, such plastic limit

criterion is valid only for the undrained tests. Hence, Kp= 0

(or the peak state of q) can no longer serve as a legitimate

indicator of instability while considering a partially drained

condition.

5.3 Simulation of CSD tests

CSD tests are conducted in the fully drained conditions.

Herein, the deviatoric stress is maintained constant (dq =

0) until the sample loses its stability. As dq = 0 holds prior

to the occurrence of diffuse instability, the criteria

expressed by Eq. (4) reduces to

dp0 � dev ¼ 0 ð14Þ

There are two feasible solutions to Eq. (14): dp0 = 0

and dev = 0. Based on the DEM results presented in

Sect. 4.2, these two scenarios correspond to dense and

loose sand, respectively.

For dense sand (dp0 = 0), the following equation is

obtained:

dq

dp0


 �
¼ 0

0


 �
¼ Pqq Pqb

Ppq Ppp

� 	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
P

deq
dev


 �
ð15Þ

To obtain a non-trivial solution for Eq. (15) it is nec-

essary that det(P) = 0, i.e.,

det Pð Þ ¼ PppPqq �PpqPqp ¼ 0 ð16Þ

where Ppp, Pqq, Ppq, and Pqp are uniquely associated with

the specific constitutive model. Combining Eqs. (13a) and

(16), the following equation is obtained:

3KGhðdLÞ
Kp þ 3G� KgD

Kp ¼ 0 ð17Þ

Because the term 3KGh(dL) is always positive during

the loading process, the onset of instability coincides with

Kp = 0.

However, for loose sand (dev= 0), Eq. (15) can be re-

expressed as

dq

dp0


 �
¼ 0

dp0


 �
¼ Pqq Pqb

Ppq Ppp

� 	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
P

deq
0


 �
ð18Þ
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By solving Eq. (18), the calculated volumetric strain

rate becomes

dev ¼
1

det Pð ÞPqqdp
0 ¼ 0 if det Pð Þ 6¼ 0 ð19Þ

If dp0 = 0, det(P) = 0. Therefore, the only feasible

scenario is Pqq = 0. Based on Eq. (13b), Pqq = 0 is

equivalent to Kp = KgD. Because the elastic volumetric

strain increment deev ¼ dp0/K\0 owing to the continuous

decrease in p0, the plastic volumetric strain increment

depv ¼ dev � deev ¼ �deev is positive. Hence, the dilatancy

equation D ¼ depv /de
p
q and thus Kp is positive at the

occurrence of instability in the present scenario. This

clearly elucidates why diffuse instability can occur before

plastic limit is attained.

Based on the above analyses, it can be concluded that a

loose sample is subjected to contraction at the initiation of

instability prior to the plastic limit. Meanwhile, the insta-

bility criterion of sands in dense state coincides with the

plastic limit criterion. The comparisons between the DEM

simulations and the constitutive model predictions are

illustrated in Fig. 12. They exhibit satisfactory agreement.

6 Conclusions

The primary objective of the present study is to explore the

underlying mechanisms triggering diffuse instability under

various drainage conditions. Noting that PSL tests and

CSD tests are two typical examples that replicate diffuse

instability, both types of tests are conducted using the

discrete element method. By introducing a fabric aniso-

tropy variable A, the instability behavior of sand is

observed to be closely related to its fabric evolution. A

newly developed anisotropic plasticity model incorporating

the fabric evolution is employed to simulate the numerical

results from DEM. The following conclusions are drawn

from this study:

1. Based on both macro- and micro-scale second-order

work, the main features accompanying the onset of

instability in both the PSL and CSD tests are obtained.

In the PSL tests, special attention should be paid to the

scenarios of a\ 0. Here, the mobilized strength is

lower than what is generally obtained from undrained

tests (a = 0). In the CSD tests, all the specimens are

observed to dilate prior to the onset of instability. Two

independent criteria triggering the onset of diffuse

instability in dense and loose sand are derived. For

dense samples, it is dp0 = 0 that causes d2W to become

zero. However, for loose samples, the abrupt contrac-

tion necessitates the transformation of d2W from

positive to negative and hence the instability.

2. By introducing a fabric anisotropy variable A, the

correlation between the instability behavior of sand and

its fabric evolution can be established. In the PSL tests,

for the samples having same initial stress ratio, the

larger A is, the more dilative is the specimen and

hence, lesser the tendency toward instability. However,

both the stress ratio and the fabric anisotropy variable

at the onset of instability are observed to be almost

insensitive to stress-induced anisotropy. This can be

explained by the counteraction between the enhanced

dilation rendered by fabric anisotropy and the degraded

(a)

(b)

Fig. 12 Comparison of consititutive modeling and DEM results of

CSD tests. a evolution of axial strain; b evolution of void ratio
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plastic modulus owing to the initial stress ratio. In the

CSD tests, the denser sample is observed to lose the

stability at larger A in the later stage of the test. This

indicates that a denser sample retains a larger stress

ratio at the onset of instability and thus is less prone to

instability. Moreover, a larger A indicates a strong

tendency toward dilation. This may explain the abrupt

dilation of dense samples at the initiation of instability.

3. Using the critical state parameters determined by the

17 drained and undrained tests (four of which liquefy),

a newly developed anisotropic constitutive model

incorporating the fabric evolution is employed to

predict the mechanical behavior of the samples in

both the PSL and CSD tests. The constitutive model

can offer further insights into the failure criterion. In

the PSL tests, the second-order work criterion is

observed to be consistent with (dq ? adr3) = 0 rather

than dq = 0 (or Kp = 0). In the CSD tests, the second-

order work criterion is identical to the plastic limit

criterion for dense samples. Meanwhile, for loose

samples, the instability failure predicted by the second-

order work occurs when the plastic modulus is positive.
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Géotechnique 35(2):99–112

3. Borja RI (2006) Condition for liquefaction instability in fluid-

saturated granular soils. Acta Geotech 1(4):211–224

4. Buscarnera G, Nova R (2011) Modelling instabilities in triaxial

testing on unsaturated soil specimens. Int J Numer Anal Methods

Geomech 35(2):179–200

5. Chu J, Lo SCR, Lee IK (1993) Instability of granular soils under

strain path testing. J Geotech Eng 119(5):874–892

6. Chu J, Leroueil S, Leong WK (2003) Unstable behaviour of sand

and its implication for slope instability. Can Geotech J

40(5):873–885

7. Chu J, Leong WK, Loke WL, Wanatowski D (2012) Instability of

loose sand under drained conditions. J Geotech Geoenviron Eng

138(2):207–216

8. Cundall PA, Strack ODL (1979) A discrete numerical mode for

granular assemblies. Géotechnique 29(1):47–65
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27. Lü XL, Qian JG, Huang MS (2017) Instability of sands under

axisymmetric proportional strain and stress loadings. Eur J

Environ Civ Eng 23:1–17

28. Jiang MD, Yang ZX, Barreto D, Xie YH (2018) The influence of

particle-size distribution on critical state behavior of spherical

and non-spherical particle assemblies. Granul Matter 20:80

29. Jrad M, Sukumaran B, Daouadji A (2012) Experimental analyses

of the behaviour of saturated granular materials during axisym-

metric proportional strain paths. Eur J Environ Civ Eng

16(1):111–120

30. Monkul MM, Yamamuro JA, Lade PV (2011) Failure, instability,

and the second work increment in loose silty sand. Can Geotech J

48(6):943–955

31. Mital U, Andrade JE (2016) Mechanics of origin of flow lique-

faction instability under proportional strain triaxial compression.

Acta Geotech 11(5):1015–1025

32. Nakata Y, Hyodo M, Murata H, Yasufuku N (1998) Flow

deformation of sands subjected to principal stress rotation. Soils

Found 38(2):115–128

33. Nicot F, Darve F (2011) Diffuse and localized failure modes: two

competing mechanisms. Int J Numer Anal Methods Geomech

35(5):586–601

34. Nicot F, Laouafa F, Darve F (2011) Second-order work, kinetic

energy and diffuse failure in granular materials. Granul Matter

13(1):19–28

Acta Geotechnica (2020) 15:1763–1778 1777

123



35. Nicot F, Hadda N, Bourrier F, Sibille L, Wan R, Darve F (2012)

Inertia effects as a possible missing link between micro and

macro second-order work in granular media. Int J Solids Struct

49(10):1252–1258

36. Ning Z, Evans MT, Andrade J (2013) Particulate study of drained

diffuse instability in granular material. In: Proceedings of ASCE

geo-congress 2013: stability and performance of slopes and

embankments III, pp 1290–1299

37. Nova R (1994) Controllability of the incremental response of soil

specimens subjected to arbitrary loading programs. J Mech Behav

Mater 5(2):193–202

38. Nouguierlehon C, Cambou B, Vincens E (2010) Influence of

particle shape and angularity on the behaviour of granular

materials: a numerical analysis. Int J Numer Anal Methods

Geomech 27(14):1207–1226

39. Osinov VA, Wu W (2009) Wave speeds, shear bands and the

second-order work for incrementally nonlinear constitutive

models. Acta Mech 202(1–4):145–151

40. Perez JCL, Kwok CY, Osullivan C, Huang X, Hanley KJ (2016)

Exploring the micro-mechanics of triaxial instability in granular
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