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Abstract
The stress–strain response of sand was observed to depend on its material state, i.e., pressure and density. Successful

modelling of such state-dependent response of sand relied on the correct representation of its state-dependent stress–

dilatancy behaviour. In this study, an improved fractional-order að Þ plasticity model for sands with a wide range of initial

void ratios and pressures is proposed, based on a state-dependent fractional-order plastic flow rule and a modified yielding

surface. Potential positive performances and negative limitations of the proposed approach in terms of the critical state of

sand are discussed, based on the simulations of a series of drained and undrained triaxial tests of different sands. It can be

found that unlike previous fractional models, the developed model can reasonably simulate the key features, e.g., strain

softening/hardening, volumetric dilation/contraction, liquefaction, quasi-steady-state flow as well as steady-state flow, of

sand for a wide range of initial states. However, due to typical forms of the critical-state lines being used, negative

performances of the fractional approach could occur when simulating the undrained behaviour of very loose sand and the

drained behaviour of very dense sand.

Keywords Fractional derivative � Liquefaction � Plasticity � Sand � State-dependent dilatancy

1 Introduction

The constitutive behaviour of sand, among other granular

soils, is very complex and usually different from that of

soft soils, e.g., clay. For clay, an associated plastic rule

could provide accurate predictions of the stress–strain

response [76]. However, for sand, an associated plastic

flow rule would overpredict the volumetric dilation of sand

samples [11, 26, 28, 37, 49–51]. In order to solve this

problem, researchers often suggested to use an alternative

stress–dilatancy equation, where the dilatancy angle was

lower than the experimentally obtained friction angle

[2, 65, 66, 78]. Improved performance of the model pre-

dictions was then reported. However, further researches on

sands subjected to a wide range of initial void ratios and

pressures revealed that the strength–deformation and

stress–dilatancy behaviour of sand were highly dependent

on its material state (pressure and density) [6, 7]. Consti-

tutive models not considering such state dependence usu-

ally required different sets of model constants, in order to

capture the constitutive behaviour of sand under different

initial relative densities [5].

In the past decades, a substantial amount of effort had

been devoted to the development of unified modelling of

the stress–strain behaviour of sand [21, 36, 46, 47] and

other granular soils [31, 34, 55, 68–72] with different initial

states. It can be found that these approaches were devel-

oped by incorporating an empirical state parameter, for

example, the state parameter w [6] and state pressure index

Ip [67], into the friction angle at phase transformation state.

A good agreement between the experimental results and

model simulations was often reported. Nevertheless, the

mathematical principles underlying the state-dependent
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plastic flow were missing and open for discussion. Instead

of simply using w or Ip, Sun et al. [59, 61] developed a

rigorous mathematical elaboration of the state-dependent

plastic flow rule for various granular soils, including sand,

by using a stress-fractional operator as suggested in

Sumelka [52] and Sumelka and Nowak [53]. Further vali-

dation against a series of experimental results showed that:

the proposed stress–dilatancy equation can efficiently

capture the state-dependent behaviour of sand with differ-

ent initial material states. A state-dependent nonassociated

a-plasticity model was then developed, based on a sym-

metric yielding surface [59]. However, due to the sym-

metry of the yielding surface, large elastic region would

exist in the proposed model [14], which would result in the

unrealistic prediction of the undrained behaviour of gran-

ular soils. Even though this aspect can sometimes be

remedied by tuning the input model parameters, the model

would be unable to capture the temporary peak or quasi-

steady-state flow behaviour of sand before reaching the

critical state.

This study aims to propose an improved a-plasticity

model for sand with a wide range of initial densities and

pressures, by using a state-dependent fractional-order

plastic flow rule and a modified yielding surface. This

paper is structured as follows: Sect. 2 presents the basic

definitions of the critical state, Caputo’s fractional deriva-

tive and constitutive relation for sand; Sect. 3 provides the

derivations of the plastic loading, flow tensors and hard-

ening modulus; Sect. 4 presents the detailed identification

of model parameters; Sect. 5 validates the model against a

series of triaxial test results of different sands with a variety

of initial material states; Sect. 6 discusses the limitations of

the proposed study; and Conclusions are drawn in Sect. 7.

For the sake of simplicity, the study is limited to isotropic

and homogeneous sands under triaxial loading, where the

applied tensive stress and strain are considered as negative,

while the compressive ones are positive.

2 Definitions

2.1 Critical state

All the model derivations and discussions in this study are

within the framework of the critical state soil mechanics

(CSSM) [48]. Therefore, upon sufficient shearing, sand

would deform and finally reach the critical state, where

infinite plastic flow with no change of the stress ratio and

volumetric strain took place. Such kind of critical state can

be defined by using two separate equations in the p0 � q

and e� p0 planes, respectively. According to available

experimental and numerical studies [4, 12, 39], the critical-

state line in the p0 � q plane was linear and not influenced

by the breakage of sand particles. Similar to that of clay, it

can be defined as:

q ¼ Mcp
0 ð1Þ

where p0 ¼ ðr01 þ 2r03Þ
�

3 is the mean effective principal

stress, while q ¼ r01 � r03 is the deviator stress; r01 and r03
are the first and third effective principal stresses, respec-

tively. To obtain the effective stress (r0i) from the total

stress (ri), the Terzaghi’s effective stress principle is

applied, where r0i ¼ ri � u; i = 1, 2, 3; u is the excess pore

water pressure. Moreover, in Eq. (1), Mc is the critical-state

stress ratio, which indicates the slope of the critical-state

line in the p0 � q plane, as shown in Fig. 1. Before reaching

critical state, there would be possibly two relative positions

of the current stress point, i.e., above or below the critical-

state line, as shown in Fig. 1. If the soil was sheared from

the ‘‘wet’’ side, it would possibly stay below the critical-

state line in the p0 � q plane, i.e., point B, until reaching the

final critical state. If the soil was sheared from the ‘‘dry’’

side, it could be initially below the critical-state line in the

p0 � q plane and then cross the critical-state line to stay at

point A, until reaching the final critical state. Inspired by

this laboratory observation, Sun et al. [61] suggested a

unified equation to connect the current stress state with the

critical-state line, such that:

qc ¼ qþMc p0 � p0c
� �

ð2Þ

where qc and p0c are the critical-state stresses on the critical-

state line, as shown in Fig. 1. It is easy to find that the

solution of Eq. (2) depends on the determination of p0c,

which can be obtained by using the critical-state line in the

e� p0 plane. Note that the critical-state line of sand in the

e� p0 plane was totally different from that of clay. Due to

significant breakage of sand particles during loading, the

critical-state line in the e� p0 plane shifted with the

varying void ratio (e) and pressure (p0) [68, 69, 72, 79], as

Fig. 1 Current stress state and critical-state line
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evidenced in a number of studies [24]. In order to capture

such unusual behaviour, a variety of nonlinear critical-state

lines in the e� p0 plane had been proposed [10, 32, 33, 45].

However, the most commonly used one was suggested by

Li and Wang [30] in the e� ðp0=paÞn plane, such that:

e ¼ eC � k
p0

pa

� �n

ð3Þ

where pa = 100 kPa is the atmospheric pressure for nor-

malisation; eC, k and n are the material constants describ-

ing the critical-state line in the e� ðp0=paÞn plane, as

shown in Fig. 2. Specifically speaking, eC and k are the

intercept (at p0 ¼ 0) and gradient of the critical-state line,

respectively, while n is adaptive for a better linear corre-

lation between e and ðp0
�
p0aÞ

n
. Then, rearranging Eq. (3),

p0c can be determined as [67]:

p0c ¼ pa

eC � e

k

� �1=n
: ð4Þ

2.2 Caputo’s fractional derivative

In the theory of fractional calculus, fractional derivative

usually has two expressions: one is the left-sided deriva-

tive, the other is the right-sided one [44]. Following Caputo

[1, 8, 9], they can be defined as:

aD
a
r0gðr0Þ ¼

1

Cðn� aÞ

Zr0

a

gðnÞðvÞdv
ðr0 � vÞaþ1�n

; r0 [ a ð5Þ

r0D
a
agðr0Þ ¼

ð�1Þn

Cðn� aÞ

Za

r0

gðnÞðvÞdv
ðv� r0Þaþ1�n

; a[ r0 ð6Þ

where Eqs. (5) and (6) are the left-sided and right-sided

fractional derivatives, respectively. D (= oa=or0a) denotes

the partial fractional derivative of function, g; a 2 ðn�
1; nÞ is the fractional order [59], in which we restrict n = 1

or 2. As shown in Sun et al. [61], through strict mathe-

matical derivation instead of empirical correlation, the

state-dependent nonassociated plastic flow of granular soils

can be captured by using the fractional derivatives. The

fractional order, a, determines the (geometric) non-nor-

mality of a vector with respect to a surface; it also reflects

the (physical) extent of state-dependent nonassociated

plastic flow of granular soils in geomechanics. Moreover, v
is the independent variable for integration; CðvÞ ¼
R1

0
expð�sÞsv�1ds is the gamma function; r0 is the current

stress in this study while a is the lower or upper limit for

integration. In order to capture the state dependence of

sand flow, a ¼ r0c, where r0c denotes the critical-state stress

in this study, because the final state a soil can reach is its

critical state [48]. r0c should keep positive throughout the

whole test. However, some previous studies [58] on frac-

tional modelling only used the left-sided fractional

derivative with a = 0, which, however, would make the

model confronted with a dilemma: complex loading con-

ditions cannot be easily captured [60], for example, (a)

triaxial extension carried out by reducing r01, where the

current deviator stress would be less than zero; (b) loading

after anisotropic consolidation, where the initial stress (i.e.,

a) could be no longer equal to zero; (c) stress reversal

during cyclic loading, where a would be unrealistically

larger than r0 in Eq. (5).

To solve this limitation and consider the different

loading states indicated by points A and B in Fig. 1, a

series of constitutive approaches using both the left-sided

and right-sided fractional derivatives were then developed

[59, 61]. The choice of Eqs. (5) or (6) depends on the

relative location between the current stress state and the

critical-state line. For example, if the current stress was at

point A, then p0\p0c and q[ qc. Equation (5) would be

used for calculating p0D
a
pc
gðp0Þ, whereas Eq. (6) would be

used for calculating qc
Da

qgðqÞ; or if the current stress was at

point B where p0 [ p0c and q\qc, Eq. (6) would be used for

calculating p0cD
a
p0gðp0Þ, whereas Eq. (5) would be used for

calculating qD
a
qc
gðqÞ. Note that even though left or right

Caputo’s fractional derivative is required due to the

dependence of stress state, the final state-dependent stress–

dilatancy equation is unique, as will be shown later.

2.3 Constitutive relation

The deformation of sand is considered to be consisted of

two parts: elastic deformation and plastic deformation.

Accordingly, the increment of the total strain (De) can be

decomposed as:

Fig. 2 Critical-state line and current state
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De ¼ Dee þ Dep ð7Þ

where ee ¼ ½eev; ees �
T

is the elastic strain matrix, while ep ¼
½epv ; eps �

T
is the plastic strain matrix, respectively. The

superscripts, e and p, denote the elastic and plastic com-

ponents, respectively, and ev and es are the volumetric and

generalised shear strains, respectively. Moreover, ev ¼
e1 þ 2e3 and es ¼ 2ðe1 � e3Þ=3, in which e1 and e3 are the

first and third principal strains, respectively. Dee can be

determined by using Hooke’s law, such that:

Dee ¼ CeDr0 ð8Þ

where r0 ¼ ½p0; q�T is the stress matrix. The elastic com-

pliance Ce can be expressed as:

Ce ¼ 1=K
1=ð3GÞ

	 

ð9Þ

in which the shear modulus (G) and bulk modulus (K) can

be defined as:

G ¼ G0pa

ð2:97 � eÞ2

1 þ e

ffiffiffiffiffi
p0

pa

s

ð10Þ

K ¼ ð2 þ 2mÞ
3ð1 � 2mÞG ð11Þ

where G0 is the elastic constant; m is the Poisson’s ratio.

Following Pastor et al. [41], the plastic strain matrix can be

determined as:

Dep ¼ 1

H
nTmDr0 ð12Þ

where T denotes transpose, m and n are the plastic loading

and flow matrices, respectively; H is the plastic modulus.

Combining Eqs. (8) and (12), the elastoplastic constitutive

relation for sand can be defined as:

Dee ¼ Ce þ 1

H
nTm

	 

Dr0: ð13Þ

3 Model development

3.1 Plastic loading tensor

The plastic loading matrix defines the loading direction of

sand. During undrained loading condition, the loading path

in the p0 � q plane is approximately equivalent to the

yielding surface [46]. Therefore, the original MCC yielding

surface used by Sun et al. [61] may not well capture the

undrained behaviour of sand. For example, specimens with

low initial density would experience low elastic strain, and

quasi-steady-state flow with a temporary stress peak

(Fig. 3) before reaching critical state. To consider such

behaviour of sand, a modified yielding surface with

shrunken size (reduced elastic region) should be used.

Therefore, a modified yielding surface as shown in Fig. 3 is

suggested in this study:

f ¼ q2 þM2
cp

02 �M2
cp

01þbp
01�b
0 ð14Þ

where p00 represents the size of the yielding surface; similar

to Yao et al. [74, 77], b 2 ½0; 1� is a material constant,

which can be determined by fitting the undrained triaxial

loading path of loose sand specimen. It should be noted

that as b increases from 0 to 1, the yielding surface shrinks

more, where less elastic region exists. Then, the plastic

loading matrix can be defined as:

m ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ d2

f

p df ; 1½ �T ð15Þ

where df can be determined by:

df ¼
D1f ðp0Þ
D1f ðqÞ ¼ ð1 � bÞM2

c � ð1 þ bÞg2

2g
ð16Þ

It can be found from Eq. (16) that: when b ¼ 0, the

proposed plastic loading matrix reduces to the classical

modified Cam-clay (MCC) model. However, when b ¼ 1,

it reduces to the purely shear-induced plastic loading case

with f ¼ q� gp0; this yielding function was often used for

granular soils [13, 29].

3.2 Plastic flow tensor

According to available experimental results [6, 7, 64, 70],

the plastic flow or stress–dilatancy of granular soils,

including sand, exhibited highly dependence on the mate-

rial state. To capture such state-dependent plastic flow of

granular soil, various state-dependent stress–dilatancy

Fig. 3 Comparison between MCC and modified yielding surfaces
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equations have been developed by using empirical state

parameters [10, 16, 17, 25, 31, 41, 57]. Without using

predefined empirical state parameters, Sun et al. [61] the-

oretically developed a state-dependent stress–dilatancy

equation, by conducting fractional derivatives of the MCC

yielding surface. To keep consistent with the previous

study, b ¼ 0 is used when deriving the plastic flow matrix.

Further substituting Eq. (14) into Eqs. (5) and (6), one has:

dg ¼ � p0D
a
p0c
f

qc
Da

qf
¼ � p0cD

a
p0 f

qDa
qc
f

¼ M1þa
c

ðp0 � p0cÞ þ ð2 � aÞðp0c � p00=2Þ
ðq� qcÞ þ ð2 � aÞqc

ð17Þ

As can be observed, if a ¼ 1, Eq. (17) would reduce to

the traditional MCC stress–dilatancy equation with no state

dependence. However, if a = non-integer, a clear state

dependence can be achieved via p0 � p0c and q� qc, which

are the horizontal and vertical distances from the current

stress point to the critical-state line. Thus, as a deviates

from unit, the extent of state dependence increases [61].

Moreover, with the increase of a, a higher volumetric

dilation could be also observed. For more details of the

effect on stress–dilatancy, one can refer to Sun et al.

[59, 61]. In triaxial loading condition, the plastic flow

matrix can be defined as:

n ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ d2

g

q dg; 1
� T

: ð18Þ

3.3 Hardening modulus

Sand specimens tested from the ‘‘wet’’ side of the critical-

state line would exhibit strain hardening. In contrast, strain

softening behaviour would be observed in sand specimens

tested from the ‘‘dry’’ side of the critical-state line. The

transition from hardening to softening also depends on

material state [18, 19, 22]. To correctly capture such

hardening/softening behaviour of sand, a reasonable state-

dependent hardening modulus should be required. In this

study, the hardening modulus developed by Li and Dafalias

[29] is adopted, such that

H ¼ h0G
Mc

g
� exp #ðe� eC þ kðp0=paÞnÞ

h i� �
ð19Þ

where h0 ¼ h1 � h2e, in which h1 and h2 are the hardening

parameters; and # is a material constant. Note that by using

Eq. (19) as hardening modulus, pure compression-induced

soil hardening cannot be considered, which would result in

the inability of the model in predicting pure compressive

deformation. But, in engineering practice, soils are rarely

subjected to pure compressive load only. For isotropic or

oedometer compression of soils, specific modelling

approaches, using either empirical correlation [42, 43] or

theoretical derivation [38, 50], were usually reported,

which, however, is not within the scope of this study.

4 Identification of model parameters

It can be found that there are eleven parameters in the

developed a-plasticity model: Mc, eC, k, n, b, a, n, h1, h2,

G0 and m, which can be all identified from traditional tri-

axial test results. All the model parameters are

dimensionless.

The critical-state stress ratio, Mc, can be determined by

measuring the gradient of the critical-state line in the p0 � q

plane. The rest three critical-state parameters, eC, k and n,

can be identified by fitting the critical-state data points in

the e� p0 plane [30], through least square method.

The shape parameter, b, can be determined by fitting the

undrained stress path of the soil at its loose state [25].

The fractional order, a, can be obtained at the phase

transformation state where dg = 0, such that:

a ¼
2M2

cpa ðeC � eptÞ
�
k

� 1=n�2g2
ptp

0
pt

2M2
cpa ðeC � eptÞ

�
k

� 1=n�M2
cp

0
pt � g2

ptp
0
pt

ð20Þ

where ept, p0pt and gpt are the void ratio, effective mean

principal stress and stress ratio, respectively, at phase

transformation state.

The peak-state parameter, #, defines the state depen-

dence of the peak stress ratio during drained loading, where

H = 0. Therefore, it can be obtained by:

# ¼ lnðMc=gfÞ
ef � eC þ kðp0f

�
paÞn

ð21Þ

where ef , p0f and gf are the void ratio, effective mean

principal stress and stress ratio, respectively, at peak failure

state.

The two hardening parameters, h1 and h2, define the

hardening behaviour of soil, which can be determined by

fitting the es � q relationship [29, 63]. It can be also

determined from the drained triaxial test where _p0 ¼ _q=3.

Assuming the elastic strain is small and substituting _p0 ¼
_q=3 into Eq. (13), one has:

h0 ¼
gð1 þ df=3Þ _q

.
_es

. ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ d2

f

p . ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ d2

g

q

G Mc � g exp nðe� eC þ kðp0=paÞnÞ
h in o ð22Þ

Then, h0 can be calibrated from the es � q relationship,

where h1 and h2 can be further identified by fitting the

relationship between e and h0, as clearly shown in Taiebat

et al. [63].
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The two elastic constants, G0 and m, can be obtained

from the es � q relationship at the initial loading stage

(es � ees ) [61], where G0 can be obtained by rearranging

Eqs. (8)–(10):

G0 � ð1 þ eÞG
ð2:97 � eÞ2 ffiffiffiffiffiffiffiffi

p0pa

p ð23Þ

m � 3es � 2ev
6es þ 2ev

: ð24Þ

5 Model validation

In this section, the proposed model will be validated

against a series of drained and undrained triaxial test results

of six different sands, including Hostun RF sand [40]

(Figs. 4, 5), Hostun III sand [15] (Fig. 6), Firoozkuh sand

[3] (Fig. 7), Fuji River sand [20] (Figs. 8, 9), Toyoura sand

[64] (Figs. 10, 13) and Sacramento River sand [27]

(Figs. 14, 16). It is noted that test results are represented in

coloured data points, while model predictions are shown by

black solid lines. Detailed values of each model parameter

are shown in Table 1. Note that as analytical solutions of

the fractional derivative with respect to the assumed

yielding function have been obtained, the subsequent

numerical computation of the model would not involve any

resolution of the fractional derivative. Therefore, the

computational overhead of this approach should be

equivalent to the traditional approaches using integer-order

derivative.
Fig. 4 Drained response of Hostun RF sand: model predictions versus

test results [40]

Fig. 5 Undrained response of Hostun RF sand: model predictions

versus test results [40]

Fig. 6 Drained response of Hostun III sand: model predictions versus

test results [15]
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Figures 4 and 5 show the model simulations of the

drained and undrained triaxial tests of Hostun RF sand

carried out by Meghachou [40]. It was found that the sand

mainly consisted of angular quartz particles, with a median

Fig. 7 Undrained response of Firoozkuh sand: model predictions

versus test results [3]

Fig. 8 Drained response of Fuji River sand: model predictions versus

test results [20]

Fig. 9 Undrained response of Fuji River sand: model predictions

versus test results [20]

Fig. 10 Drained response of Toyoura sand: model predictions versus

test results [64]
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particle size (d50) equal to 0.35–0.38 mm and a coefficient

of uniformity (Cu) equal to 1.8. The maximum (emax) and

minimum (emin) void ratios were tested to be 1 and 0.656,

respectively. All the specimens were prepared by moist-

tamping technique in laboratory. A wide range of the initial

densities from dense state (e0 = 0.574) to medium dense

(e0 = 0.8) and loose states (e0 = 0.897) were used for

conducting the drained triaxial tests at an initial confining

pressure r03 of 300 kPa. As shown in Fig. 4, the developed

a-plasticity model can well capture the hardening and

softening behaviour of Hostun RF sand. For dense and

medium dense sands, the specimen volume initially con-

tracted, and then continuously dilated; while for loose sand,

a general volumetric contraction is observed, which can be

all accurately predicted by the proposed model. Figure 5

shows the model predictions of the undrained test results of

Hostun RF sand with two different e0 (= 0.94, 0.87) and r03
(= 200 kPa, 397 kPa). As observed, the proposed model

can also reasonably characterise the undrained behaviour

of Hostun RF sand. With the increase of shear strain, the

predicted deviator stress of Hostun RF sand increases and

then decreases rapidly towards a state of liquefaction

instability, which matches well with the corresponding test

results.

Figure 6 presents the model simulations of the drained

triaxial behaviour of Hostun III sand [15] under a wide

range of pressures (100–1200 kPa). The sand was reported

to consist of sub-angular particles with a d50 of 0.307, Cu of

2.3, emax of 0.953 and emin of 0.612. The e0 of 0.646, 0.646,

0.650 and 0.646 were used for tests carried out at r03 of

100 kPa, 400 kPa, 800 kPa and 1200 kPa, respectively. It

can be found that all specimens were tested under medium

to dense states, and thus exhibited volumetric dilation at

the end of the test. Comparisons between the model sim-

ulations and the corresponding test results show that: the

model can appropriately predict the stress–strain response

of Hostun III sand, where strain hardening/softening and

volumetric dilation with varying degrees can be all

captured.

Figure 7 shows the model predictions of the undrained

liquefaction behaviour of Firoozkuh sand [3] under

different initial loading pressures. The Firoozkuh sand was

a crusher-run sandy soil that consisted of sub-angular

quartz particles. It had a d50 of 0.26, Cu of 1.9, emax of

0.943 and emin of 0.568. All the specimens were prepared

by using moist-tamping method. Three different r03 of

243 kPa, 180 kPa and 154 kPa, with the corresponding e0

of 0.975, 0.964 and 0.972, were used, respectively, for

model simulations. As the specimens were initially at loose

state, it can be found that they all liquefied and become

instable at the end of the tests. The proposed model can

accurately capture such liquefaction instability behaviour

of Firoozkuh sand.

Figures 8 and 9 show the model simulations of the

drained and undrained triaxial behaviour of Fuji River sand

[20]. The sand mainly consisted of sub-angular particles

with a d50 of 0.22 mm, Cu of 2.21, emax of 0.99 and emin of

0.55. All the specimens were prepared by using pluviation

method. For drained tests, the e0 of 0.750, 0.747 and 0.751

with the respective r03 of 98 kPa, 196 kPa and 294 kPa

were used to carried out, whereas for undrained tests, the e0

of 0.740, 0.731 and 0.718 with the respective r03 of 98 kPa,

196 kPa and 294 kPa were used. It can be found that both

the drained and undrained behaviour of Fuji River sand can

be well predicted by using the a-plasticity model. Partic-

ularly, the model predictions exhibit an accurate match

with the strain hardening data during drained loading. In

addition, all the specimens underwent steady-state flow at

the end of the undrained tests, which can be also reason-

ably captured by the model.

Figures 10, 11, 12 and 13 show the model predictions

of the drained and undrained triaxial behaviour of Toyoura

sand [64] with a wide range of initial void ratios and

pressures. It was found that the sand mainly consisted of

sub-round/sub-angular particles with a d50 of 0.17 mm, Cu

of 1.7, emax of 0.977 and emin of 0.597. The moist place-

ment method was used for specimen preparation. For

drained tests, two different confining pressures were used:

r03 = 100 kPa for the corresponding e0 of 0.831, 0.917 and

0.996; r03 = 500 kPa for the corresponding e0 of 0.810,

0.886 and 0.960. For undrained tests, three different void

ratios representing the dense (e0 = 0.735), medium dense

Table 1 Model parameters

Soil type eC k n Mc a # b h1 h2 G0 m

Hostun RF sand [40] 0.955 0.094 0.3 1.30 1.050 1.5 0.85 2 2 80 0.04

Hostun III sand [15] 0.953 0.010 0.7 1.40 1.002 0.45 0.84 0.9 0.9 290 0.10

Firoozkuh sand [3] 0.923 0.057 0.5 1.22 1.000 1.2 0.75 3 3 100 0.11

Fuji River sand [20] 0.810 0.033 0.7 1.49 1.060 0.5 0.30 1.5 1.5 90 0.30

Toyoura sand [64] 0.934 0.019 0.7 1.25 1.10 1.1 0.80 3.5 3.5 125 0.05

Sacramento River sand [27] 0.960 0.028 0.7 1.35 1.040 0.9 0.65 6 6.05 100 0.20
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(e0 = 0.833) and loose (e0 = 0.907) states of Toyoura sand

were used. As can be observed in Fig. 10, the proposed

model simulates well the drained triaxial behaviour of

Toyoura sand under different loading pressures. Irrespec-

tive of the applied confining pressure, specimens with low

void ratios (e0 = 0.810, 0.831) all exhibited some level of

volumetric dilation, while those with relatively higher e0

only experienced volumetric contraction throughout the

entire tests. Moreover, Figs. 11, 12 and 13 show the model

predictions of the undrained triaxial behaviour of Toyoura

sand. For dense specimens shown in Fig. 11, the deviator

stress increased continuously with the increase of shear

strain, whereas the mean effective principal stress firstly

decreased and then increased until reaching critical state,

which can be well predicted by using the a-plasticity

model. For medium dense specimens shown in Fig. 12, test

results under r03 of 100 kPa and 1000 kPa exhibited a

continuous increase of the deviator stress with the increase

of shear strain, while a temporary peak followed a slight

decrease of the deviator stress can be observed in test under

r03 = 2000 kPa. For test result obtained under

r03 = 3000 kPa, an initial increase followed by a decrease

of the deviator stress was reported. Irrespective of the

loading pressures, all the tested specimens reached the

critical state under sufficient triaxial shearing. These fea-

tures can be all addressed appropriately by the proposed

model. For loose specimens shown in Fig. 13, liquefaction

instability was observed in tests under r03 = 1000 kPa,

2000 kPa, whereas an increase of the deviator stress was

Fig. 11 Undrained response of dense Toyoura sand: model predic-

tions versus test results [64]

Fig. 12 Undrained response of medium dense Toyoura sand: model

predictions versus test results [64]

Fig. 13 Undrained response of loose Toyoura sand: model predic-

tions versus test results [64]
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reported in test under r03 = 100 kPa. These characteristics

can be also well captured by the developed model.

Figures 14, 15 and 16 show the model simulations of

the drained and undrained triaxial test results of dense and

loose Sacramento River sand [27]. The sand was reported

to contain fine and uniformly graded quartz particles with

sub-rounded shape. It had a minimum particle size (dm) of

0.149 mm, maximum particle size (dM) of 0.297, emax of

1.03 and emin of 0.61. For drained tests, the e0 of 0.87, 0.87,

0.87 and 0.85 are used for simulating loose specimens

tested under the r03 of 92 kPa, 196 kPa, 442 kPa and

1241 kPa, respectively, whereas the e0 of 0.61, 0.61 and

0.59 are used for simulating dense specimens tested under

the r03 of 98 kPa, 294 kPa and 589 kPa, respectively. For

undrained tests, the e0 for simulating loose specimens are

0.87, 0.87, 0.86, and 0.85, corresponding to the r03 of

98 kPa, 294 kPa, 490 kPa and 1069 kPa, respectively;

whereas the e0 of 0.63, 0.61, 0.59 and 0.59 are used for

simulating dense specimens tested under the r03 of 98 kPa,

1030 kPa, 1481 kPa and 1982 kPa, respectively. It is

shown in Fig. 14 that the model simulates well the drained

stress–strain behaviours of Sacramento River sand under

both loose and dense states. Loose specimens exhibited

strain hardening and volumetric contraction; however, a

clear peak state followed by a decrease of the deviator

stress and volumetric dilation can be observed in dense

specimens. These key features of the drained response of

Sacramento River sand can be appropriately captured by

the a-plasticity model. Figure 15 shows the observed and

Fig. 14 Drained response of Sacramento River sand: model predic-

tions versus test results [27]

Fig. 15 Undrained response of loose Sacramento River sand: model

predictions versus test results [27]

Fig. 16 Undrained response of dense Sacramento River sand: model

predictions versus test results [27]
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predicted undrained behaviour of loose Sacramento River

sand, where a good agreement between the model predic-

tions and test results can be observed. All the specimens

are predicted to finally reach the critical-state flow, which

match well with the experimental observations. Figure 16

presents the model predictions of the undrained behaviour

of dense Sacramento River sand. It is found that the pre-

dicted deviator stress increased continuously with the

increase of axial strain, which agrees well with the corre-

sponding test results. Besides, with the increase of axial

strain, the mean effective principal stress of specimens

subjected to r03 of 1030 kPa, 1481 kPa and 1982 kPa ini-

tially decreased and then increased towards steady-state

flow. These features can be all reasonably depicted by the

proposed model. Note that the test data after 10% strain

cannot be provided here, because the original data in [27]

were not given.

6 Discussions on model limitations

Even though the developed approach has positive perfor-

mances when simulating the stress and strain behaviour of

different sands, it could have several limitations that are

associated with the type of critical-state line. Discussions

will be thus made in terms of the critical-state lines that are

usually used in engineering practice. It is easy to sum-

marise the following three typical critical-state lines: (1)

linear representation of the critical-state line in the e� ln p0

plane, (2) linear representation in the e� ðp0=paÞn plane

and (3) nonlinear representation in the e� ln p0 plane.

If the first type of critical-state line was used, then the

established model would not be able to characterise the

constitutive behaviour of sand with wide initial material

states, by only using one set of model parameters. This is

due to the significant particle breakage of sand that can

shift the critical-state points downwards [32, 79], which

would inevitably change the critical-state parameters in the

e� ln p0 plane. This type of critical-state line can be used

for modelling the stress–strain response of soft soils, e.g.,

clay, but should be avoided in current study.

For unified modelling of the critical-state behaviour of

sand with a wide range of initial material states, the linear

critical-state line in the e� ðp0=paÞn plane can be used.

However, this kind of critical-state line may also result in

some limitations of the developed model. As can be

observed in Fig. 2, if the material state was initially at

point C, where the e0 was quite large while p0 was quite

small, the calculated critical-state stress, p0c, at undrained

loading condition could be unreasonably negative. This

could be also encountered in classical models [67, 69]

using the state pressure index, Ip (p0; p0c). In this kind of

situation, p0c ¼ 0 could be probably assumed for conducting

the subsequent numerical simulation. However, in practical

engineering, for example, embankment and foundation

engineering, this kind of density and pressure conditions

should be infrequently reached. Possible ground treatment

technique would be applied to compact and consolidate the

soil towards initial state point D, before large-scale

geotechnical construction.

In addition to points C and D, if the material was ini-

tially at point E, where the e0 was small while p0 was

extremely large, the calculated critical-state void ratio, ec,

at drained loading condition would be unreasonably neg-

ative. However, this limitation can be readily resolved by

incorporating the dependence of Ip into hardening modulus,

as suggested by Wang et al. [67]. It may be also remedied

by using the third type of critical-state line, i.e., the non-

linear one, in the e� ln p0 plane, such as the one with three

segments [45, 46] and the one with inverted S-shape

[10, 31].

This model in current form is also unable to capture the

true three-dimensional behaviour of sand, due to the

ignorance of the dependence of Lode’s angle on the

strength and dilatancy behaviour of sand. However, this

limitation can be resolved by incorporating the effect of

Lode’s angle on the critical-state, peak-state and dilatancy

formulae, which had been well defined and applied in

practice [16, 23, 34] and thus not repeated here for sim-

plicity. It can be also extended by using some specific

three-dimensional methods, for example, the transformed

stress method [73–75] and the characteristic stress method

[35, 55]. As the emphasis of current study is not put on

three-dimensional modelling of sand, this aspect will not be

investigated. For more details on extending the a-plasticity

approach to consider complex loading, one can refer to Sun

and Sumelka [55] and Sun et al. [62]. In addition, not all

the functions have analytical solution when performing

fractional derivative. Therefore, only those yielding func-

tions with power-law form, for example, the modified

Cam-clay yielding function, have been adopted for model

development. Nonetheless approximate solutions can be

easily calculated also cf. Sumelka and Nowak [54].

Moreover, this approach did not consider the strength

anisotropy and pure compressive hardening of soil; thus, it

cannot simulate the stress–strain or consolidation beha-

viour of soils with inherent or induced anisotropy.

7 Conclusions

To capture the state-dependent stress–strain behaviour of

sand with a wide range of initial densities and pressures, an

improved fractional-order (a) plasticity model was
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developed by using a modified yielding surface. Then, the

model was validated against a series of drained and

undrained triaxial test results of different sands. Discus-

sions on several limitations of the proposed approach were

also made. The main findings can be summarised as

follows:

1. The model contained nine parameters for describing

the plastic deformation and two parameters for

describing the elastic deformation. All of the model

parameters can be obtained from traditional triaxial test

results.

2. The model can well capture the drained and undrained

stress–strain behaviour of different sands with a wide

range of initial states. The strain hardening/softening

and volumetric dilation/contraction behaviour of sand

under drained loading conditions can be well captured.

In addition, compared with the previous fractional

models, this model used a modified yielding surface,

which made it capable of reasonably predicting the

steady-state flow, liquefaction, quasi-steady-state flow

and temporary peak behaviour of sand under undrained

loading conditions.

3. Due to the typical forms of the critical-state line, the

model may not be able to well capture the undrained

behaviour of sand with initially significant large void

ratio and small mean effective principal stress. It may

also fail to capture the drained behaviour of sand with

initially significant small void ratio and large mean

effective principal stress. The effect of Lode’s angle on

the critical-state, peak-state and dilatancy behaviour of

sand was also ignored in this study, which would make

the model unable to simulate the three-dimensional

behaviour of sand.

4. In addition, the above study was inspired by Sumelka

[52]; however, these two approaches have distinct

differences. As discussed in Sun and Sumelka [56], the

model in [52] was developed by accounting for the

effect of neighbouring stress point on the material point

of interest, where the lower and higher stress terminals

adopted in defining fractional derivative were collected

from neighbouring material points. On the contrary,

this study is proposed by considering the stress

distance from the current state to the corresponding

critical state of the material point of interest. All the

model parameters were proposed based on laboratory

observation.
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Appendix

In order to derive Eq. (17), the following analytical solu-

tions of the power-law functions, ðr0 � r0cÞ
l

and

ðr0c � r0Þl, are needed:

r0cD
a
r0 ðr0 � r0cÞ

l¼ Cð1 þ lÞ
Cð1 þ l� aÞ ðr

0 � r0cÞ
l�a ð25Þ

r0D
a
r0c
ðr0c � r0Þl¼ Cð1 þ lÞ

Cð1 þ l� aÞ ðr
0
c � r0Þl�a ð26Þ

where l is the power index. Details for deriving Eqs. (25)

and (26) can be found in [44] and thus not repeated here for

simplicity. Accordingly, Eq. (14) with b ¼ 0 should be

rearranged as:

f ¼ ðq� qcÞ2 þ 2qcðq� qcÞ
þM2

c ðp0 � p0cÞ
2 þ 2M2

cp
0
cðp0 � p0cÞ

�M2
cp

0
0ðp0 � p0cÞ þ q2

c þM2
cp

02
c �M2

cp
0
0p

0
c

ð27Þ

and

f ¼ ðqc � qÞ2 � 2qcðqc � qÞ
þM2

c ðp0c � p0Þ2 � 2M2
cp

0
cðp0c � p0Þ

þM2
cp

0
0ðp0c � p0Þ þ q2

c þM2
cp

02
c �M2

cp
0
0p

0
c

ð28Þ

Then, substituting Eqs. (27) and (28) into Eqs. (25) and

(26), respectively, one has:

dg ¼ � p0D
a
p0c
f ðp0Þ

qc
Da

qf ðqÞ

¼ M2
c

ðp0 � p0cÞ þ ð2 � aÞðp0c � p00=2Þ
ðq� qcÞ þ ð2 � aÞqc

p0c � p0

q� qc

	 
1�a

ð29Þ

dg ¼ � p0cD
a
p0 f ðp0Þ

qDa
qc
f ðqÞ

¼ M2
c

ðp0 � p0cÞ þ ð2 � aÞðp0c � p00=2Þ
ðq� qcÞ þ ð2 � aÞqc

p0 � p0c
qc � q

	 
1�a

ð30Þ

Further substituting Eq. (2) into Eqs. (29) and (30), a

unique stress–dilatancy equation is obtained:

dg ¼ M1þa
c

ðp0 � p0cÞ þ ð2 � aÞðp0c � p00=2Þ
ðq� qcÞ þ ð2 � aÞqc

: ð31Þ
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Acta Geotechnica (2020) 15:1423–1437 1435

123

https://doi.org/10.1016/j.ijsolstr.2018.06.003
https://doi.org/10.1016/j.ijsolstr.2018.06.003
https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1198)
https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1198)
https://doi.org/10.1016/0148-9062(85)90263-3
https://doi.org/10.1016/0148-9062(85)90263-3
https://doi.org/10.1139/t04-038
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1016/j.jcp.2014.11.012
https://doi.org/10.1016/j.jcp.2014.11.012
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001534
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001534
https://doi.org/10.1002/nag.2851
https://doi.org/10.1680/jgeot.17.p.023
https://doi.org/10.1680/jgeot.17.p.023
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622)
https://doi.org/10.1016/j.sandf.2017.12.004
https://doi.org/10.1016/j.sandf.2017.12.004
https://doi.org/10.1007/s11440-014-0351-y
https://doi.org/10.1007/s11440-014-0351-y
https://doi.org/10.1002/(SICI)1096-9853(19990810)23:9%3c925:AID-NAG19%3e3.0.CO;2-M
https://doi.org/10.1002/(SICI)1096-9853(19990810)23:9%3c925:AID-NAG19%3e3.0.CO;2-M
https://doi.org/10.1002/(SICI)1096-9853(19990810)23:9%3c925:AID-NAG19%3e3.0.CO;2-M
https://doi.org/10.1016/j.ijsolstr.2014.03.032
https://doi.org/10.1007/s11440-017-0599-0
https://doi.org/10.1007/s11440-017-0599-0
https://doi.org/10.3208/sandf1972.15.29
https://doi.org/10.1007/s11440-017-0586-5
https://doi.org/10.1007/s11440-017-0586-5
https://doi.org/10.1016/j.compgeo.2016.10.013
https://doi.org/10.1016/j.compgeo.2016.10.013
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000307
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000307
https://doi.org/10.1002/nme.1351
https://doi.org/10.1002/nme.1351
https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1302)
https://doi.org/10.1680/geot.2000.50.4.449
https://doi.org/10.1680/geot.2000.50.4.449
https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)
https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000759
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000759
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000513
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000513
https://doi.org/10.1002/nag.2269
https://doi.org/10.1002/nag.2269
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001361
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001361
https://doi.org/10.1016/j.compgeo.2018.10.004
https://doi.org/10.1016/j.compgeo.2018.10.004
https://doi.org/10.1016/j.sandf.2017.11.008


39. McDowell GR, Yue P, de Bono JP (2015) Micro mechanics of

critical states for isotropically overconsolidated sand. Powder

Technol 283:440–446. https://doi.org/10.1016/j.powtec.2015.05.

043

40. Meghachou M (1992) Stabilitédes sables laches: essais et
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68(3):189–204. https://doi.org/10.1680/jgeot.16.P.054

51. Shi XS, Herle I, Yin J (2018) Laboratory study of the shear

strength and state boundary surface of a natural lumpy soil.

J Geotech Geoenviron Eng 144(12):04018093. https://doi.org/10.

1061/(ASCE)GT.1943-5606.0001987

52. Sumelka W (2014) Fractional viscoplasticity. Mech Res Com-

mun 56:31–36. https://doi.org/10.1016/j.mechrescom.2013.11.

005

53. Sumelka W, Nowak M (2016) Non-normality and induced plastic

anisotropy under fractional plastic flow rule: a numerical study.

Int J Numer Anal Methods Geomech 40(5):651–675. https://doi.

org/10.1002/nag.2421

54. Sumelka W, Nowak M (2018) On a general numerical scheme for

the fractional plastic flow rule. Mech Mater 116:120–129. https://

doi.org/10.1016/j.mechmat.2017.02.005

55. Sun Y, Sumelka W (2019) State-dependent fractional plasticity

model for the true triaxial behaviour of granular soil. Arch Mech

71(1):23–47. https://doi.org/10.24423/aom.3084

56. Sun Y, Sumelka W (2019) Fractional viscoplastic model for soils

under compression. Acta Mech. https://doi.org/10.1007/s00707-

019-02466-z

57. Sun Y, Xiao Y (2017) Fractional order plasticity model for

granular soils subjected to monotonic triaxial compression. Int J

Solids Struct 118–119:224–234. https://doi.org/10.1016/j.ijsolstr.

2017.03.005

58. Sun Y, Indraratna B, Carter JP, Marchant T, Nimbalkar S (2017)

Application of fractional calculus in modelling ballast deforma-

tion under cyclic loading. Comput Geotech 82:16–30. https://doi.

org/10.1016/j.compgeo.2016.09.010

59. Sun Y, Gao Y, Zhu Q (2018) Fractional order plasticity mod-

elling of state-dependent behaviour of granular soils without

using plastic potential. Int J Plasticity 102:53–69. https://doi.org/

10.1016/j.ijplas.2017.12.001

60. Sun Y, Chen C, Song S (2018) Generalized fractional flow rule

and its modelling of the monotonic and cyclic behavior of

granular soils. In: Zhou A, Tao J, Gu X, Hu L (eds) Proceedings

of GeoShanghai 2018 international conference: fundamentals of

soil behaviours, Singapore, 2018//2018. Springer, Singapore,

pp 299–307

61. Sun Y, Gao Y, Shen Y (2019) Mathematical aspect of the state-

dependent stress-dilatancy of granular soil under triaxial loading.

Géotechnique 69(2):158–165. https://doi.org/10.1680/jgeot.17.t.

029

62. Sun Y, Gao Y, Song S, Chen C (2019) Three-dimensional state-

dependent fractional plasticity model for soils. Int J Geomech.

https://doi.org/10.1061/(ASCE)GM.1943-5622.0001353
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