
RESEARCH PAPER

ISA-Hypoplasticity accounting for cyclic mobility effects
for liquefaction analysis

William Fuentes1 • Torsten Wichtmann2 • Melany Gil1 • Carlos Lascarro1

Received: 25 September 2018 / Accepted: 11 June 2019 / Published online: 1 July 2019
� Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271, 1996) combined with

the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254, 2015)

is herein extended to account for cyclic mobility effects to allow for the simulation of liquefaction phenomena. The

extension is based on the introduction of an additional state variable that permits the detection of cyclic mobility paths. The

simulation capabilities of the model is compared with undrained triaxial tests of Karlsruhe fine sand. At the end, a finite

element simulation of an offshore monopile embedded in sand, exposed to environmental forces from the Caribbean Sea, is

constructed and analyzed.
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1 Introduction

The intergranular strain anisotropy (ISA) is a mathematical

extension of conventional hypoplastic models for soils

(e.g., [7, 15, 17, 18, 24, 25, 46, 50, 51]) to enable the

simulation of cyclic loading. It can be considered as an

enhancement of the intergranular strain (IS) theory pro-

posed by Niemunis and Herle [31] for the same purpose.

Both theories are based on the introduction of a state

variable, which provides information of recent changes in

the strain rate direction. ISA was originally proposed by

Fuentes and Triantafyllidis [11] to reproduce the following

characteristics: (a) a threshold strain amplitude dividing the

plastic and elastic regime; (b) the stiffness increase upon

reversal loading; and (c) the reduction of the plastic strain

rate for same conditions. Successful simulations of cyclic

loading were achieved for a low number of repetitive

cycles (N\10) under undrained cyclic conditions [11].

Subsequently, an improved version of ISA was proposed in

[10, 12, 35] to simulate larger numbers of repetitive cycles

(N[ 10) upon one-dimensional and multi-dimensional

paths. In particular, the hypoplastic model for sands pro-

posed by Wolffersdorff [49] and extended by ISA, here-

after referred to as HP ? ISA, has proved to capture well

the accumulation of pore water pressure under undrained

triaxial cycles [12, 35], but lacks congruence on the sim-

ulation of cyclic mobility effects. The latter limitation has

disabled, for example, the proper simulation of the effec-

tive stress reduction on analyses related to liquefaction

phenomena. So far, the cyclic mobility effect has never

been tackled on hypoplastic models extended by ISA. To

the authors opinion, two reasons explain the lack of this

effect on these models: The first is the fact that hypoplastic

models have shown to reproduce well the stress–dilatancy

ratio (q / p vs. _ev= _es, see notation in ‘‘Appendix A’’) under

cyclic drained triaxial tests with constant mean stress (p ¼
const), property considered as a formal advantage of this

model family by some authors [29, 51]. Modification of the

constitutive equation to account for cyclic mobility effects

may eventually compromise its capabilities on the men-

tioned property. The second is related to the fact that

extensions based on the intergranular strain (IS) concept,

such as [31, 45] and [11, 12, 35], are focused only on the

behavior at small strain amplitudes, contrasting to cyclic
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mobility effects which are exhibited on cycles of large

strain amplitudes.

The present work introduces an extension of the

hypoplastic model for sands proposed by Wolffersdorff [49]

implementing ISA (HP ? ISA) to account for cyclic

mobility effects. Attention is given on the formulation to

guarantee the correct assessment of the stress–dilatancy

ratio (q / p vs. _ev= _es) under drained triaxial p ¼ const tests.

For this purpose, a strain-type state variable is proposed to

provide information about the recent direction of the strain

rate after reaching large strain amplitudes. With this, a

mechanism to detect paths at which the cyclic mobility

effect should be activated is proposed, and the hypoplastic

model extended by ISA is modified to account for cyclic

mobility effects. The modification is simple and introduces

two additional parameters and a state variable. In addition, a

modification is also introduced to improve simulations

under transverse loading. The work is ended with a finite

element (FE) simulation of an offshore monopile founded

on a sandy soil. The simulation is performed under dynamic

analysis to reproduce an extreme event typical for the

Caribbean Sea. The resulting liquefaction zones of the FE

model are carefully analyzed. The work begins with a brief

description of the ISA-hypoplastic model. Subsequently,

the proposed extension accounting for cyclic mobility

effects is explained. Following this, the assessment of the

proposed model on simulations of some cyclic tests is

evaluated. Finally, the FE example of the offshore monopile

is qualitatively analyzed. Notation and conventions adopted

in the current work are given in ‘‘Appendix A’’.

2 Brief description of ISA-hypoplastic model

The following general form of hypoplasticity is considered

in the present work:

_r ¼ Lhyp : _eþ Nhyp k _e k ð1Þ

where _r is the stress rate tensor, _e is the strain rate tensor

and Lhyp and Nhyp are the (fourth rank) linear stiffness and

(second rank) nonlinear stiffness, respectively, formulated

as functions of the stress r and the void ratio e only, i.e.,

Lhyp ¼ Lhypðr; eÞ and Nhyp ¼ Nhypðr; eÞ. The same relation

can be rewritten in terms of its continuum tangent modulus

M ¼ ðo _rÞ=ðo _eÞ as:

_r ¼ Lhyp þ Nhyp _e
!� �

: _e ¼ M : _e ð2Þ

Tensors Lhyp and Nhyp are adjusted to simulate the behavior

of the soil under medium and large strain amplitudes, or

equivalently, under monotonic loading [15, 17, 18, 24,

50, 51]. For this work, definitions of tensors Lhyp and Nhyp

follow from relations proposed by Wolffersdorff [49] for

sands. For paths with complex cyclic loading, Eq. 2 is not

well suited, and an extension to capture small strain effects

is required.

The ISA approach by Fuentes and Triantafyllidis [11],

understood as an extension for hypoplastic models to

enable simulations on cyclic loading, was proposed to that

end. This approach is based on the concept of intergranular

strain (IS), originally introduced by Niemunis and Herle

[31] in a former formulation. The main difference of the

ISA formulation [11] with respect to conventional IS [31],

is the introduction of an elastic locus to describe the small

strain behavior. According to the ISA theory, the rate of the

intergranular strain h evolves through an elastoplastic

formulation:

_h ¼
_e for FH\0 (elastic)

_e� _kN for FH ¼ 0 (plastic)

�
ð3Þ

where FH is a yield surface function, _k is the plastic mul-

tiplier and N is an associated flow rule ðN ¼ oFH=ohÞ. The

yield function FH was formulated to consider an elastic

threshold strain k De k¼ R. Considering that under elastic

conditions FH\0, increments in strains are equal to

increments in intergranular strain, i.e., De ¼ Dh (see

Eq. 3), the elastic strain amplitude is simply described

through the following yield surface function FH :

FH ¼k h� c k �R=2 (yield surface) ð4Þ

where tensor c defines the center of the yield surface

(kinematic hardening variable). To account for small strain

effects, the ISA approach reformulates the continuum

tangent stiffness M from Eq. 2 according to the following

relation:

M ¼ mðLhyp þ qvNhypNÞ for FH ¼ 0 (plastic)

mRL
hyp for FH\0 (elastic)

(

ð5Þ

where m is a scalar function (1�m�mR) controlling the

stiffness decay upon different strain amplitudes, mR � 1 is a

parameter, q is a scalar function (0� q� 1) controlling the

increase of plastic strain rate for increasing strain ampli-

tudes and v is an exponent to control the mentioned

behavior (see ‘‘Appendix C’’ for their definitions). These

equations depend on the IS tensor h and other internal state

variables which are carefully explained in [11, 12, 35].

Complete set of equations is given in ‘‘Appendix C’’ while

details are found in [11, 12, 35].

One of the advantages of ISA-hypoplasticity is the ease

to adapt its equation to a convenient mathematical relation

depending on the strain amplitude: For small strain

amplitudes (k De k \10�4), the response is elastic and the
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model delivers _r ¼ mRL
hyp : _e with (m ¼ mR, q ¼ 0).

Under medium strain amplitudes (10�4\ k De k \10�2),

the transitional equation _r ¼ mðLhyp þ qvNhypNÞ : _e with

(0\q\1 and 1\m\mR) is rendered providing a smooth

response. Finally, under large strain amplitudes

k De k [ 10�3, the model coincides with the hypoplastic

equation _r ¼ ðLhyp þ NhypNÞ : _e with (m ¼ q ¼ 1), favor-

able for the simulation of monotonic loading.

In Fig 1, some simulations of the degradation of the

shear secant stiffness Gsec of the Karlsruhe fine sand are

shown (parameters of Table 1). For its construction, several

cyclic drained triaxial tests of different strain amplitudes

were simulated, considering an initial void ratio of e0 ¼
0:85 and different confining pressures p0 ¼ f200; 300g
kPa. The 5th cycle of the cyclic tests was considered for the

computation of Gsec. For comparison purposes, the

empirical relation proposed by Wichtmann and Tri-

antafyllidis [47] based on a large number of experiments is

included in Fig. 1b, see ‘‘Appendix B’’ for details. This

empirical relation can only be considered as an approxi-

mation of the real behavior, since it depends only on the

uniformity coefficient cu, and has been calibrated on

measurements with bender element tests on different sands.

The results show that the estimation of Gmax and its sub-

sequent degradation approximately coincides with the

empirical relation. It is noted, however, that the transition

from elastic to plastic is not smoothly described, as by

other elastoplastic models.

3 Incorporation of cyclic mobility effect

Under undrained large deformations, the dilative behavior

of the material is accompanied by a strong rearrangement

of particle contacts depending on the shearing direction

[6, 22]. When the shearing direction is reversed, the pre-

vious tendency to dilate is followed by a contractant

behavior with positive pore pressure build-up, which cau-

ses the cyclic mobility effect. The effect has been repro-

duced under large shearing deformations through discrete

element method (DEM) simulations, and it has been shown

that during this mechanism, a strong rearrangement of

particle contacts is observed [19, 28, 37, 38, 43]. For

constitutive modeling purposes, some authors have shown

that paths at which the cyclic mobility effect is activated

can be detected through the incorporation of an additional

tensorial state variable, which evolves only at large strain

amplitudes exhibiting a dilatant behavior [1, 4, 6,

21, 30, 39]. Following a similar strategy, we introduce a

second-rank state variable tensor, denoted by Z, which

provides information related to the recent history of the

shearing loading direction under large strain amplitudes.

For convenience, the shearing loading direction is in this

work described by the IS flow rule tensor N, considering

that under monotonic paths, the relation N ¼ _e
!

holds

[9, 11]. Hence, a suitable relation for the evolution equa-

tion of tensor Z is:

_Z ¼ czhFdiðN� ZÞ k _e k ð6Þ

where cz is a material constant, the operators h i are the

Macaulay brackets (h[i ¼ [ for [[ 0 and h[i ¼ [ ¼ 0

otherwise), and Fd is a scalar function to be defined. Notice

that the general form of Eq. 6 is similar as in other works

[1, 4, 6, 21, 39]. Accordingly, factor hFdi is only different

from zero for positive values of Fd. For the sake of con-

venience, Fd is a positive function (Fd [ 0) only when the

strain amplitude is sufficiently large to activate the rear-

rangement of the particle contacts producing a dilatant

behavior under triaxial shearing. Some constitutive models

have proposed the use of a ’’dilatancy surface function’’ for
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versus k De k, and sketch of model response. b Simulation against empirical relation by [47]. Karlsruhe fine sand. Parameters from Table 1.

Initial void ratio e0 ¼ 0:85
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Fd, defined as the surface in the stress space at which the

plastic volumetric strains epii turn from contractant ( _epii\0Þ
to dilatant ( _epii [ 0Þ upon triaxial shearing, i.e., Fd ¼ 0

when _epii ¼ 0. This is convenient for conventional elasto-

plastic models, because it coincides with the phase trans-

formation line observed under undrained triaxial shearing,

which is dependent on the current stress r and void ratio e

according to experimental observations [20]. However,

hypoplastic models do not incorporate directly such surface

on its formulation considering that there is no explicit

definition of a plastic strain rate. Indeed, the resulting

contractancy–dilantacy behavior under undrained triaxial

shearing depends on both tensors Lhyp and Nhyp and not on

an explicitly defined flow rule as by some elastoplastic

models1. After a careful inspection of the simulations with

the hypoplastic model by Wolffersdorff [49], we propose

the following simple function for Fd suited to detect large

strain amplitudes responsible for the dilatant behavior

under undrained triaxial shearing:

Fd �
q=p

McFfd0

� 1 ¼ 0 ð7Þ

where q is the deviator stress, p is the mean (effective)

stress, M ¼ McF ¼ 6 sinðucÞ=ð3 � sinucÞF is the critical

state slope in the q� p space, fd0 is the pyknotropy factor

[49], F is a scalar function controlling the Matsuoka–Nakai

shape of the critical state surface [26] and is defined in

Eq. 39, and uc is the critical state friction angle. Note that

Eq. 7 depends on factor fd0 and therefore on the void ratio

e. Equation 7 does not represent exactly the phase trans-

formation line (PTL), but has proved to be a good

approximation of this line on simulations of undrained

triaxial tests with hypoplasticity. This is shown in Fig. 2

which presents simulation examples of undrained triaxial

tests with different void ratios using parameters of Table 1.

The curve resulting from the relation Fd ¼ 0, see Eq. 7, has

been also included for comparison purposes.

We now proceed to formulate a scalar factor aiming to

detect paths at which the cyclic mobility effect should be

active. To that end, the scalar factor fz depending on tensor

Z is introduced:

fz ¼ h�Z : Ni ð8Þ

Note that factor fz is bounded by 0� fz � 1. A value of

fz ¼ 0 indicates that the effect of the cyclic mobility is

negligible, while a value of fz ¼ 1 means that it must be

fully considered. Intermediate values of 0\fz\1 would

intend to describe a transition between these two states. In

this sense, factor fz controls the intensity at which the

cyclic mobility effect should be considered.

Having factor fz defined, an extension to the ISA ? HP

model is now carefully proposed to account for cyclic

mobility effects. Under a cyclically mobilized path, factor

fz is greater than zero, i.e., fz [ 0, and a more contractant

behavior should be simulated. It will be shown that this

contractant effect can be simply captured if a similar

contractant behavior of the material as by its loose state is

delivered, i.e., e � ec, where ec is the critical state void

ratio. Considering this, the following mathematical state-

ments are proposed to be fulfilled:

• For cyclic mobility states with fz ¼ 1, the scalar factors

fe and fd are set to one, i.e., fe ¼ fd ¼ 1. Note that this is

similar to replace e ¼ ec at the original definitions of

factors fe and fd (see Eqs. 38).

• For same conditions (fz ¼ 1), the effect of the inter-

granular strain must be reduced to avoid an excessively

stiff behavior on cyclic mobility paths.

To fulfill the first requirement, the scalar factors fe and fd
are modified according to the following relations:

1 On the other hand, Wu and Niemunis [52] showed that the direction

of tensor m ¼ �ðLhypÞ�1 : Nhyp coincides with the one of the

accumulated strain under a closed infinitesimal stress cycle, which

may be interpreted by some authors as a hypoplastic flow rule

[11, 29, 52]. However, one may also show that its resulting dilatancy

surface described by the condition mii ¼ 0 coincides with the critical

state surface, which does not depend on the void ratio and therefore

disagrees with experiments, see ‘‘Appendix D’’

Table 1 Parameters of proposed model (HP?ISA) for Karlsruhe fine

sand

Parameter Nomenclature Value Units

Critical state friction angle uc 32.6 �

Granular hardness hs 4.000.000 kPa

Barotropy exponent nB 0.27 –

Minimum void ratio at p ¼ 0

kPa

ed0 0.677 –

Critical void ratio at p ¼ 0 kPa ec0 1.054 –

Maximum void ratio at p ¼ 0

kPa

ei0 1.212 –

Dilatancy exponent a 0.14 –

Pyknotropy exponent b 2.5 –

Stiffness factor mR 5.0 –

Elastic strain amplitude R 1:4 	 10�4 –

Minimum IS hardening

parameter

bh0 0.25 –

Maximum IS hardening

parameter

bhmax 3.0 –

Minimum IS exponent v0 5 –

Maximum IS exponent vmax 17.7 –

Accumulation rate factor ca 0.018 –

Cyclic mobility factor cz 300 –
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fe ¼ fe0 � fzhfe0 � 1i; with fe0 ¼ ec

e

� �b
ð9Þ

fd ¼ fd0 þ fzh1 � fd0i; with fd0 ¼ e� ed

ec � ed

� �a

ð10Þ

where ed ¼ edðpÞ is the minimum void ratio (see ‘‘Ap-

pendix C’’), and a and b are material parameters. Note that

for fz ¼ 1, both factors render fe ¼ fd ¼ 1, and conse-

quently a contractant behavior as by loose sand is repro-

duced. For fz ¼ 0 their original formulations fe ¼ fe0 and

fd ¼ fd0 are recovered.

For the second requirement, factor bh is reformulated

aiming to reduce the strain amplitude at which the IS effect

acts. Increasing the value of bh would reduce the IS effect

avoiding a stiff behavior on cyclic mobility paths. In the

original model, factor bh ¼ bh0 is set to a constant for all

cases, however, we propose the following relation for bh to

provide the desired response:

bh ¼ bhmax þ ðbh0 � bhmaxÞð1 � fzÞfh ð11Þ

where fz was previously defined in Eq. 8, fh is a function,

and bhmax and bh0 are material parameters controlling the

maximum and minimum values of bh0 � bh � bhmax;

respectively. Under the assumption of fh ¼ 1, the lack of

cyclic mobility effects fz ¼ 0 would give bh ¼ bh0, while

for the opposite case fz ¼ 1, the relation bh ¼ bhmax holds.

It will be shown that this would reduce the effect on cyclic

mobility paths. Function fh has been additionally intro-

duced to improve simulations on transverse loading.

Accordingly, a value of fh ¼ 1 is only obtained on reverse

loading (one-dimensional cycles), such as cyclic undrained

triaxial tests. For other cases, as for example transverse

loading, values within the range 0� fh\1 are obtained.

Considering this, the following function has been

proposed:

fh ¼j _e
!

: db
! j; db

!¼ ðR _e
!� hÞ! ð12Þ

where R _e
!

is the image of tensor h mapped by _e
!

at the IS

bounding surface, and R is a parameter. Hence, it gives

fh ¼ 1 only for one-dimensional cycles, because j _e
!

: db
! j

¼ 1 holds. Otherwise, factor fh gives fh\1. A special case

of transverse loading is depicted in Fig. 3, corresponding to

undrained triaxial shearing after isotropic compression.

One may note that the new parameter bhmax controls the

behavior of the q� p path at the beginning of the curve.

This would allow the calibration of bhmax by trial and error

on such curves.

Figure 4 shows a simple simulation example to illustrate

the evolution ofZ. It consists of a cyclic undrained triaxial test

(initial conditions e0 ¼ 0:8, p0 ¼ 100 kPa, parameters from

Table 1), with constant deviator stress amplitude qamp ¼ 60

kPa. Figure 4a, b (q vs. e1 and q vs. p) shows that for such

simulation, the material requires only 4 cycles to activate the

cyclic mobility effect. According to Eqs. 6 and 7, tensor Z

evolves towardNwhenFd [ 0 (see Fig. 2). This can be noted

in Fig. 4c, where close to the 4th cycle, the evolution of Z is

activated. The cyclic mobility effect is considered in the

model when the condition fz ¼ h�Z : Ni[ 0 holds, which

usually occurs on paths after reversal loading (Z : N\0).

The extended model requires the calibration of the new

parameters cz and bhmax. While bhmax can be calibrated on

transverse loading paths, as depicted in Fig. 3, cz can be

calibrated on the butterfly-shaped loops exhibited on

undrained triaxial cycles, as shown in Fig. 5. In this figure,

a cyclic undrained triaxial test with constant deviator stress

amplitude (qamp ¼ 40 kPa) has been simulated with cz ¼ 0

and cz ¼ 300. For instance, parameters of Table 1 have

been borrowed. One may intermediately note the ability of

the model to reproduce cyclic mobility effects with the new

extension through the selection cz ¼ 300.
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4 Simulation of element tests

Some simulations of element tests (homogeneous stress–

strain field assumption) of a sand are now shown with the

proposed model. The testing sand corresponds to the

Karlsruhe fine sand, previously analyzed in other works

[12, 35, 48]. The selected parameters are summarized in

Table 1 and were found as follows: parameters of the

hypoplastic model without extension (uc, hs, nB, ed0, ec0,

ei0, a, b) were directly adopted from the calibration per-

formed in [48]. Parameters R, mR are the same reported by

Poblete et al. [35] for the same material. Parameters v0,

vmax, bh0, ca were found following the calibration guide

proposed in [35] to improve their accuracy on simulations,

while the new parameters cz, bhmax were calibrated

according to the explanation given in Sect. 3. The numer-

ical implementation developed in [35], written in FORTRAN

code under the syntax of the subroutine UMAT from the

commercial software ABAQUS Standard, has been herein

extended to account for the cyclic mobility effects

according to the relations of Sect. 3. The implementation

was performed in the following way: A substepping

scheme, with very small strain subincrements

(k De k \R=4), was implemented to achieve numerical

convergence. For the intergranular strain model, which

now is elastoplastic, a trial step as elastic predictor is

performed in order to check the yield condition FH ¼ 0.

The relations were explicitly implemented within the

substepping scheme and delivered for all cases numerical

convergence. Details of numerical implementation of

hypoplastic models can be found in [44]. Analysis of the

performance of the model under monotonic loading is out

of the scope of the present work, but some simulations of

oedometric tests and undrained triaxial tests with mono-

tonic loading for different densities are included in ‘‘Ap-

pendix E’’ and showed to capture fairly well the behavior.

Similar simulations of monotonic loading can be also

found in [48].

Before comparing the model with the experiments, we

begin with a simple simulation of a drained triaxial test

under constant mean pressure p ¼ constant (such as by

[36]). As mentioned before, this permits to evaluate the

stress–dilatancy response under such conditions. The test is

performed under p ¼ 100 kPa (constant), with an initial

void ratio of e0 ¼ 0:600 (dense state). Three different

simulations are presented in Fig. 6, where the variation of

parameter cz ¼ f0; 100; 300g is considered. From the

results, one may note that increasing values of cz deliver a

higher degradation of the shear stiffness accompanied with

an increase of compressive volumetric strains, see Fig. 6.a,

b and c. Hence, one may also calibrate cz by trial and error

through drained tests as an alternative. Figure 6.d presents

the stress–dilatancy response within the space of q / p

versus _ev= _es. The results show that the response of the

model is bounded by two lines independently of parameter

cz, as shown by experiments [5, 36, 53].

Simulations of cyclic undrained triaxial tests with con-

stant deviator stress amplitudes are shown in Fig. 7, while

their pore pressure accumulation paccw against the number of

cycles is presented in Fig. 8. Three different tests with

equal confining pressure p0 ¼ 200 kPa but slightly differ-

ent void ratios e ¼ f0:800; 0:813; 0:842g were considered.

The deviator stress amplitudes qamp are different on each

test, and correspond to qamp ¼ f60; 50; 40g kPa. The but-

terfly-shaped effective stress paths during the last cycles

were satisfactorily simulated by the model while the pore

pressure accumulation was also well captured. In Fig. 8, it

is noted that the accumulation of the pore water pressure pw
is successfully captured. The accumulation rate of the pore

water pressure _paccw gradually decreases, while it grows

again on the last cycles. This effect was achieved due to the

enhancement of the ISA-hypoplastic model proposed by

Poblete et al. [35], whereby exponent v controlling the

accumulation rate of paccw changes gradually from v0 to vmax

to capture such effect (see Eqs. 34 and 35). The increase on

the last cycles is captured due to the development of large

strains, where exponent v is again reduced to v ¼ v0, see

Eq. 34. Details of this mechanism are found in [35].

Lastly, we show some simulations of undrained triaxial

tests with constant axial strain amplitude eamp
1 ¼ 0:01.

Considering that the strain amplitude is large, cyclic

mobility effects are expected. Two different void ratios e0

were considered: the first with e0 ¼ 0:804 and the second

with e0 ¼ 0:698. Experiments and simulations with cz ¼ 0

and cz ¼ 300 are shown in Figs. 9 and 10. Simulations

without the proposed extension (cz ¼ 0) show that the

model is not able to reduce properly the mean pressure p

under undrained cycles with large strain amplitudes (e.g.,

eamp
1 ¼ 0:01). Actually, for the dense case (e ¼ 0:698 in

Fig. 10), the mean pressure p increases for cz ¼ 0. The

observed limitations are overcome when using the current

extension (cz ¼ 300).

5 Simulation example of an offshore
monopile

We now present a simulation example of an offshore tur-

bine–monopile system founded on a sand. The structure is

subjected to environmental loads typical for an extreme

storm event. The FE model is three-dimensional and has

been built using the software ABAQUS Standard. Its

dimensions follow from the reference geometry NREL 5-

MW established in [16] and are shown in Fig. 11. The
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structure is founded on a steel monopile embedded in an

homogeneous sand, with an embedment length of Lp ¼ 30

m, diameter of Dp ¼ 6 m and wall thickness of tp ¼ 0:06

m. The water depth above the mudline is of d ¼ 20 m. The

tower height above the mean sea level (MSL) is 87.6 m,

while the hub height is 90 m. Other important properties of

the geometry and weights of the different parts of the

model are given in Table 2.

The discretized model is shown in Figs. 12 and 13. The

FE model consists of six main parts, namely tower, sub-

structure, monopile, soil inside the monopile, soil around

the monopile and a surrounding part of soil with large finite

elements to permit an appropriate numerical wave dissi-

pation. The substructure has the same diameter and wall

thickness as the monopile. In contrast, the tower presents a

diameter and wall thickness which gradually reduces from

6 m at the base to 3.87 m at the top and from 0.027 m at the

base to 0.019 m at the top, respectively. The foundation

and the structure were modeled with four-node shell

elements and the soil domain with eight-node brick ele-

ments and six-node wedge elements. The turbine rotor and

nacelle were considered through lumped masses located at

their corresponding centers of mass, see Table 2.

Rigid constraints were set between the monopile, sub-

structure and tower to consider it as a continuum structure.

The soil–monopile interface behavior was customized

through a small sliding surface-to-surface interaction con-

figuration. The frictional behavior was controlled using a

penalty method with a coefficient of friction assumed as

l ¼ 0:3. The normal behavior was controlled with a hard

contact relation which allows any pressure to be transmit-

ted between surfaces in contact.

The material used for the monopile and the structure

was simulated through a linear elastic model representing

the steel, with an elastic modulus of E ¼ 210 GPa and

Poisson ratio of m ¼ 0:3. As recommended by Jonkman

et al. [16], a density of 8500 kg/m3 was used in order to

account for the weight of paint, bolts, welds and flanches.

The material model for the soil corresponds to the extended

(a) (b)

(c) (d)

Fig. 6 Simulation of a p ¼ const triaxial test under drained conditions. Karlsruhe fine sand parameters. p0 ¼ 100 kPa
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7 Simulation of cyclic undrained triaxial tests with different deviator stress amplitudes in the q versus e1 and q versus p space. Karlsruhe fine

sand. a qamp ¼ 40 kPa, b qamp ¼ 50 kPa, c qamp ¼ 60 kPa. Experiments by [48]
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ISA-hypoplastic model of the present work, calibrated for

the Karlsruhe fine sand according to parameters in Table 1.

5.1 Description of loads

Offshore wind turbines are subjected to a combination of

loads mainly caused by the action of wind and waves and

Number of cycles N [-]

5

0
/

5
6

Number of cycles N [-]

(a) (b)

Fig. 8 Simulation of cyclic undrained triaxial tests with different deviator stress amplitudes. Accumulation of pore water pressure. Karlsruhe fine

sand. p0 ¼ 200 kPa. Experiments by [48]

cz cz

cz cz

(a) (b) (c)

(d) (e) (f)

Fig. 9 Simulation of cyclic undrained triaxial test with variation of cz. cz ¼ 0 indicates the proposed model without cyclic mobility effects,

whereas cz ¼ 300 implies simulation of this effect. Constant axial strain amplitude eamp
1 ¼ 0:01 and void ratio of e0 ¼ 0:804. Karlsruhe fine sand.

p0 ¼ 200 kPa. Experiments by [48]
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cz cz

cz cz

(a) (b) (c)

(d) (e) (f)

Fig. 10 Simulation of cyclic undrained triaxial test with variation of cz. cz ¼ 0 indicates the proposed model without cyclic mobility effects,

whereas cz ¼ 300 implies simulation of this effect. Constant axial strain amplitude eamp
1 ¼ 0:01 and void ratio of e ¼ 0:698. Karlsruhe fine sand.

p0 ¼ 200 kPa. Experiments by [48]

(b)(a)

(c)

Fig. 11 Offshore wind turbine conceptual model and geometry
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the self-weight of the structure. Other type of loads acting

on the structure is caused by currents, aerodynamic

imbalances at the hub level and blade shadowing effects

[3]. However, a simplified estimation of the environmental

loads that only accounts for the wind and wave action is

here adopted as shown in Fig. 14. The wind and wave loads

are assumed as codirectional and are estimated considering

the site conditions of the Colombian Caribbean Sea. Fol-

lowing the findings in [8], a typical extreme event in the

Colombian Caribbean Sea for offshore applications could

be defined by a surface wind speed at the height of 10 m

above the mean sea level (U10m) between 15 and 20 m/s,

Table 2 Properties of the finite element model

Property Value Units

Mean sea level (MSL) 20.0 m

Hub height above MSL 90.0 m

Tower top height above MSL 87.6 m

Pile embedment depth 30.0 m

Pile diameter 6.0 m

Pile wall thickness 0.06 m

Rotor mass 110,000 kg

Nacelle mass 240,000 kg

(a) (b)

(c)

Fig. 12 Main parts and mesh of the 3D finite element (FE) model

(b)(a)

Fig. 13 Geometry of the 3D finite element (FE) model
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and a significant wave height with values between Hs [ 3

m for nearshore locations and Hs [ 5 m for other locations

in the Caribbean Sea. For this work, the following envi-

ronmental parameters were chosen: U10m ¼ 17 m/s and

Hs ¼ 6 m. In addition, the sea state was also defined by a

wave spectral peak period of Tp ¼ 8 s [34]. These values

are considered to be conservative and simulate a storm in

the Colombian Caribbean Sea.

The wind thrust force Fwind is calculated by applying the

momentum theory to an idealized one-dimensional model

of the wind turbine (see more details in [14]). Thus, the

following relation results:

Fwind ¼ 1

2
qaArCTU

2
hub

ð13Þ

where qa ¼ 1:22 kg/m3 is the density of the air, Ar is the

rotor swept area of the NREL reference turbine [16], Uhub

is the wind speed at the hub level and CT is a thrust

coefficient, the latter defined later on. The wind speed Uhub

is estimated from U10m using a logarithmic wind speed

profile:

UðzÞ ¼ UðzrefÞ
ln z� ln z0

ln zref � ln z0

ð14Þ

where U(z) is the wind speed located at height z, zref is a

reference height, which in this case is zref ¼ 10 m, UðzrefÞ
= U10m is the wind speed at the reference height, and z0 is

the surface roughness length. For blown sea conditions, the

value of z0 can be assumed as 0.0005 m [23]. Hence, fol-

lowing Eq. 14 the obtained wind speed at the hub level is

Uhub ¼ 20:8 m/s.

On the other hand, an approximate value of the thrust

coefficient CT may be computed as a function of the tip

speed ratio (k) [13, 41]. For the obtained value of Uhub,

Jonkman et al. [16] report k ¼ 4. From this, [13] gives

CT ¼ 0:5. Improved calibration of the factor CT may be

obtained through sophisticated aerodynamic simulations

(see Example in [32]), but this is beyond the scope of the

present work. Finally, the wind thrust force Fwind is cal-

culated using Eq. 13 and is plotted in Fig. 15 against time.

In addition, the hydrodynamic load is estimated using a

simplified method proposed by [40, 42]. A calculation

based on the Airy linear wave theory and the Morison

equation [27] is used to obtain the inertial and drag com-

ponents of the hydrodynamic force and overturning

moment (Eqs. 15–18). The inertial components of the

hydrodynamic force and overturning moment are denoted

by FI
wave and MI

wave; respectively, while the drag compo-

nents are denoted by FD
wave and MD

wave, and read:

FI
wave ¼qwgHs

CmpD2
p

8
tanhðkdÞ ð15Þ

FD
wave ¼qwgH

2
s

CdDp

8

1

2
þ kd

sinhð2kdÞ

� �
ð16Þ

MI
wave ¼qwgHs

CmpD2
p

8
d tanhðkdÞ þ 1

kd

1

coshðkdÞ � 1

� �� �

ð17Þ

MD
wave ¼qwgH

2
s

CdDp

8

d

2
þ 2ðkdÞ2 þ 1 � coshð2kdÞ

4k sinhð2kdÞ

" #

ð18Þ

where qw ¼ 1000 kg / m3 is the water density, g ¼ 9:81

m / s2 is the gravitational acceleration, Hs ¼ 6 m is the

significant wave height, Cm and Cd are the inertia and drag

coefficients, and k is the wave number. The latter can be

determined by iterative procedures using the relation

x2 ¼ gk tanhðkdÞ, where x ¼ 2pfs is the wave circular

frequency and fs ¼ 1=Tp. The values for the inertia and

drag coefficients are assumed as Cm ¼ 1:6 and Cd ¼ 0:65;

respectively, following the recommendations in [2]. The

total wave force Fwave and moment Mwave acting on the

structure read:

FwaveðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFI

waveÞ
2 þ ðFD

waveÞ
2

q
sinxt ð19Þ

MwaveðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMI

waveÞ
2 þ ðMD

waveÞ
2

q
sinxt ð20Þ

Fig. 14 Loads applied on the structure
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Finally, the equivalent hydrodynamic loading is incorpo-

rated in the FE problem by applying FwaveðtÞ at an eleva-

tion of Mwave=Fwave above the MSL. Fwave is plotted

against time in Fig. 15.

5.2 Analysis steps and initial conditions

The numerical simulation was performed through two

analysis steps. In the first step, a geostatic equilibrium of

the initial stresses was achieved assuming oedometric

conditions. The vertical displacements were restricted on

the bottom boundary as well as the horizontal displace-

ments on the lateral boundaries. Thus, the initial stresses on

the soil domain and pore pressure distribution are gener-

ated due to the self-weight of the model components and

the hydrostatic pressure on the top surface. In the second

step, the wind and wave time histories were applied on the

structure under dynamic conditions. The total step time is

20 s with time increments of Dt ¼ 0:01 s.

The initial conditions for the vertical stresses r33 were

computed using a saturated soil density of qsat ¼ 1800 kg/

m3 and considering an additional surcharge load equivalent

to a 1 m column of soil to give numerical stability. The

lateral earth pressure coefficient was set to K0 � 1 �
sinuc ¼ 0:461; and the horizontal initial stresses were

obtained as r11 ¼ r22 ¼ K0r33. Since the material is fully

saturated, the initial pore pressure distribution corresponds

to a hydrostatic state assuming a water intrinsic density of

qw ¼ 1000 kg/m3 and a 20 m water column above the

mudline. Further on, the simulation is performed under

undrained conditions, i.e., the pore water pressure pw is

obtained from Eq. 21, in which Kw ¼ 2:2 	 105 kPa is the

water intrinsic bulk modulus, e the void ratio and _e the

strain rate tensor.

_pw ¼ �Kw

ð1 þ eÞ
e

tr_e ð21Þ

Of course, one may improve simulations using coupled

dynamic finite elements to consider consolidation effects,

but this would increase the complexity of the model. The

intergranular strain h and back-intergranular strain tensors

c were initialized by setting them at their fully mobilized

states pointing to the gravity direction, i.e., h33 ¼ �R and

c33 ¼ �R=2, where subindex 3 coincides with the vertical

direction. The initial void ratio e ¼ e0 follows the Bauer0s
relation:

e0 ¼ r0ec0 expð�ð3p=hsÞnBÞ ð22Þ

where r0 is an additional constant to control the initial

density and parameters ec0; hs; nB are found in Table 1. An

initial density with r0 ¼ 0:85 has been considered. This

would simulate an initial relative density of Dr ¼ 0:731 at

the pile toe (30 m depth) and of Dr ¼ 0:649 near the

mudline.

5.3 FE model results

Contours showing only zones with very low mean (effec-

tive) stress p\ 3 kPa, close to the liquefaction state p � 0,

are plotted in Fig. 16. These contours correspond to the

frame at the end of the simulations. For comparison pur-

poses, two simulations have been analyzed: the first with

cz ¼ 0 (no cyclic mobility extension) and the second with

cz ¼ 300 (with cyclic mobility). The zone depicted in

Fig. 16 corresponds to a section perpendicular to the wind

and wave loads direction. The condition p\ 3 kPa would,

in principle, be met on the superficial soil. However, since

the FE model considers surcharge load of 20 kPa at the

ground surface to represent a small column of superficial

soil, the condition p\3kPa shows only the zones with

reduced mean stress p\3 kPa below the superficial soil. As

expected, one may note that a larger zone with p\3 kPa is

exhibited by the model considering cyclic mobility

(cz ¼ 300).

To gain insight about the results, plots of the develop-

ment of the mean pressure p with time t, and shear stress

r23 versus mean pressure p are depicted in Fig. 17. They

present the results of a point A, adjacent to the monopile at
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Fig. 15 Time histories of the wind and wave loading
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4.8 m below the mudline, see sketch of the point position in

Fig. 17. The results indicate that the reduction of the mean

stress p is larger when considering cyclic mobility

(cz ¼ 300). Notice that the effect of the cyclic mobility is

evident after a time of 5 s.

6 Final remarks

An extension to an ISA-hypoplastic model for sands has

been proposed to account for cyclic mobility effects. As by

other models [1, 6, 21, 33, 39], the model is now able to

reduce drastically the effective mean pressure by undrained

cyclic loading. The mechanism to detect cyclic mobility

paths was similar as in other works, but the way to account

for this information on the constitutive model was differ-

ent: contractant behavior on cyclic mobility paths was

captured by modifying the pyknotropy and batotropy fac-

tors from the hypoplastic model denoted by fe and fb. In

this way, the capabilities of the model related to the correct

simulation of the stress–dilatancy ratio under drained tests

were maintained. The current modification requires the

calibration of two additional parameters, which may be

found by trial and error from a limited number of cyclic

triaxial tests. Some simulation examples with cyclic

undrained triaxial tests showed that the model captures

well the cyclic mobility effect. In addition, a dynamic FE

simulation of an offshore monopile subjected to environ-

mental cyclic loading, showed that the new extension

provides larger areas of reduced mean stress (p\3 kPa)

than the former model for same conditions.
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Fig. 16 FE simulation results. Liquefaction zones detected with p\3 kPa. a cz ¼ 0, b cz ¼ 300

(a) (b)

Fig. 17 FE simulation results at point A (z = 4.8 m). a time history of the mean pressure p. b stress path: shear stress r23 versus mean pressure p
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Notation and conventions

The notation and convention of the present work is as

follows: Italic fonts denote scalar magnitudes (e.g., a, b),

bold lowercase letters denote vectors (e.g., a; b), bold

capital letters denote second-rank tensors (e.g., A, r), and

special fonts are used for fourth-rank tensors (e.g., E; L).

Indicial notation can be used to represent components of

tensors (e.g., Aij), and their operations follow the Einstein’s

summation convention. The Kronecker delta symbol is

represented by dij, i.e., dij ¼ 1 when i ¼ j and dij ¼ 0

otherwise. The symbol 1 denotes the Kronecker delta

tensor (1ij ¼ dij). The unit fourth-rank tensor for symmetric

tensors is denoted by I, where Iijkl ¼ 1
2
dikdjl



þdildjk
�
.

Multiplication with two dummy indices (double contrac-

tion) is denoted with a colon ‘‘ : ’’ (e.g., A : B ¼ AijBij).

The symbol ‘‘
’’ represents the dyadic product (e.g.,

A
 B ¼ AijBkl). The brackets k
F

k extract the Euclidean

norm (e.g., k A k¼
ffiffiffiffiffiffiffiffiffiffiffi
AijAij

p
). Normalized tensors are

denoted by
G�!

¼
F

k
F

k, or in general as t!. The super-

script
Fdev

extracts the deviatoric part of a tensor (e.g.,

Adev ¼ A� 1
3
ðtrAÞ1). Components of the effective stress

tensor r or strain tensor e in compression are negative.

Roscoe variables are defined as p ¼ �rii=3,

q ¼
ffiffi
3
2

q
k rdev k, ev ¼ �eii and es ¼

ffiffi
2
3

q
k edev k. The stress

ratio g is defined as g ¼ q=p. The deviator stress tensor is

defined as rdev ¼ rþ p 1 and the stress-ratio tensor with

r ¼ rdev=p ¼
ffiffi
2
3

q
g rdev
��!

.

Empirical relation for shear degradation
curve by Wichtmann and Triantafyllidis [47]

The empirical relation provided by Wichtmann and Tri-

antafyllidis [47] is:

Gmax ¼ 74000
1 þ Dr

ð11:6 � DrÞ2

p

patm

� �0:48

patm ð23Þ

with the relative density Dr ¼ ðemax � eÞ=ðemax � eminÞ and

the reference stress patm ¼ 100 kPa. For Karlsruhe fine

sand emax ¼ 1:054 and emin ¼ 0:677. The secant shear

modulus Gsec is computed with the empirical relation

provided by Wichtmann and Triantafyllidis [47] :

Gsec

Gmax

¼ 1

1 þ Dc=crð1 þ a exp �Dc=crð ÞÞ ð24Þ

where Dc is the shear strain amplitude, a ¼ 1:070 lnðcuÞ is

a constant, cr ¼ smax=Gmax is the reference strain, smax ¼
p sinðupÞ is the maximum shear stress and up ¼

34� expð0:27D1:8
r Þ is the peak friction angle. cu is the uni-

formity coefficient (cu ¼ D60=D10). For Karlsruhe fine

sand, cu ¼ 1:5 and therefore a ¼ 0:433.

For drained triaxial conditions, the strain amplitude k

De k is computed with the following approximation k De k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDe1Þ2ð1 þ 2m2Þ

q
where m is the Poisson ratio. For same

conditions, it can be shown that the relation Dc ¼ De1ð1 þ
mÞ holds. For the computations with Karlsruhe fine sand, a

value of m ¼ 0:3 was used.

The resulting parameters for e0 ¼ 0:85 and p ¼ 200 kPa

are cr ¼ 9:29 	 10�4, Gmax ¼ 130058 kPa. For e0 ¼ 0:85

and p ¼ 300 kPa are cr ¼ 1:14 	 10�3 and Gmax ¼ 158002

kPa.

ISA-hypoplastic model for sands

‘‘Appendix C’’ presents a summary of the constitutive

equations of the ISA-hypoplastic model. Details of the

equations below are found in [11, 35, 49].

_r ¼M : _e ð25Þ

M ¼ mðLhyp þ qvNhypNÞ for FH ¼ 0 (plastic)

mRL
hyp for FH\0 (elastic)

(

ð26Þ

where Lhyp and Nhyp are the (fourth rank) linear and (sec-

ond rank) nonlinear stiffness, respectively, N ¼ ðh� cÞ!
is the IS flow rule, mR is a parameter, and q, m, v and FH

are scalar functions defined in the sequel. The IS yield

surface function FH is defined as:

FH ¼k h� c k �R=2 ð27Þ

where h is the IS tensor, c is the back-IS tensor, and R is a

parameter. Factors m, yh and q are defined as:

m ¼ mR þ ð1 � mRÞyh ð28Þ

yh ¼ qvhN : _ei ð29Þ

q ¼ 1 � kdbk
2R

; with db ¼ hb � h; and hb ¼ RN

ð30Þ

The evolution equation for the IS tensor h is:

_h ¼ _�� _kHN; with N ¼ ðh� cÞ!;

and _kH ¼ hN : _ei
1 þ N : �c

ð31Þ

where _kH is the plastic multiplier of the IS model. The

evolution equation for tensor c is:
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_c ¼ _kH�c; with �c ¼ bhðcb � cÞ=R; and cb ¼ðR=2Þ _e
!

ð32Þ

where bh is a factor, which takes the value of bh ¼ bhmax

for the condition j hb
!

: db
! j¼ 0, and bh ¼ bh0 for

j hb
!

: db
! j¼ 1.

bh ¼ bhmax þ ðbh0 � bhmaxÞ j hb
!

: db
! j ð33Þ

The internal variable _eacc evolves according to:

_eacc ¼
ca

R
ð1 � yh � eaccÞ k _e k ð34Þ

Function v is defined as:

v ¼ v0 þ eaccðvmax � v0Þ ð35Þ

The equations of the reference hypoplastic model by

Wolffersdorff [49] are given below:

Lhyp ¼fbfe
1

r̂ : r̂
ðF2Iþ a2r̂r̂Þ ð36Þ

Nhyp ¼fdfbfe
Fa

r̂ : r̂
ðr̂þ r̂devÞ ð37Þ

fe ¼
ec

e

� �b

fb ¼
hs

nB

1 þ ei

ei

� �
ei0

ec0

� �b

� trr

hs

� �1�nB

3 þ a2 �
ffiffiffi
3

p
a

ei0 � ed0

ec0 � ed0

� �b
" #�1

fd ¼
e� ed

ec � ed

� �a

ð38Þ

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8
tan2ðwÞ þ 2 � tan2ðwÞ

2 þ 2
ffiffiffi
2

p
tanðwÞ cosð3hÞ

s
� 1

2
ffiffiffi
2

p
tanðwÞ

ð39Þ

a ¼
ffiffiffi
3

p
ð3 � sinðucÞÞ

2
ffiffiffi
2

p
sinðucÞ

tanw ¼
ffiffiffi
3

p
kr̂devk

cosð3hÞ ¼
ffiffiffi
6

p trðr̂devr̂devr̂devÞ
ðr̂dev : r̂devÞ3=2

ð40Þ

ei ¼ei0 exp � 3p=hsð ÞnBð Þ
ed ¼ed0 exp � 3p=hsð ÞnBð Þ
ec ¼ec0 exp � 3p=hsð ÞnBð Þ

ð41Þ

The set of parameters are uc, hs, nB, ei0, ec0, ed0, a, b, R, v0,

vmax, bh0, bhmax, ca. The state variables are e, c, h and eacc.

Inspection of hypoplastic flow rule tensor m

Substitution of Eqs. 36 and 37 in tensor m ¼ �ðLhypÞ�1 :

Nhyp gives (see procedure in [29]):

m ¼ �ðLhypÞ�1 : Nhyp

¼ � 1

F2
I� r̂r̂

ðF=aÞ2 þ r̂ : r̂

" #
: fda

2 F

a

� �
ðr̂þ r̂devÞ

ð42Þ

Splitting tensor m into volumetric and deviatoric compo-

nents mvol ¼ Ivol : m and mdev ¼ Idev : m, where Ivol
ijkl ¼

1=3dijdkl and Idev
ijkl ¼ Iijkl � Ivol

ijkl gives:

mvol ¼ Ivol : m ¼ 1

3
ffiffiffi
3

p a

F
fr1 ð43Þ

mdev ¼ Idev : m ¼ a

F
ðfr þ 1Þr̂dev ð44Þ

Where fuction fr is defined as:

fr ¼
ðF=aÞ2� k r̂dev k
ðF=aÞ2þ k r̂ k

ð45Þ

Simulations of monotonic loading

In this ‘‘Appendix’’, some simulations of the Karlsruhe fine

sand under monotonic loading are presented. Simulations

versus experiments are shown in Figs. 18 and 19. Param-

eters of Table 1 were used for the simulations.

Model

Fig. 18 Simulation of oedometer compression with one cycle

unloading–reloading with different initial void ratios
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