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Abstract
The transversely isotropic (TISO) constitutive and frost heave models for the freezing of fine-grained soils are more

accurate than the isotropic model and simpler than the orthotropic models. First, in combination with the mesoscopic

composition of freezing soils, a mechanical model for the interaction between the equivalent ice lens and the soil in frozen

soils is established based on the series and parallel models in the theory of composite mechanics. Second, the TISO

constitutive model together with the analytic expression of five elastic constants is provided for analysis of the freezing

soils. Third, a preliminary elastoplastic model for TISO freezing soil is established based on the Hill plastic model. Fourth,

the heat–moisture–deformation coupling TISO model and the hydrodynamic frost heave model are derived according to a

thermodynamics equation, a soil water motion equation, and generalized Hooke’s law. Synchronization and uniformity of

the TISO constitutive model and the TISO frost heave model are realized for analyzing the interaction between permafrost

soils and buildings. Finally, an indoor standard frost heave test and the frost heave of a prototype canal are simulated based

on the above models. The numerical results indicated that the models presented in this paper accurately described the frost

heave and revealed the interaction between permafrost and buildings.
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1 Introduction

Approximately 17% of the northern hemisphere is perma-

nently frozen ground (permafrost) and another 34% are

seasonally frozen soils [42]. In China, seasonal frozen soils

occupy an area of 513.7 km2, which is 53.5% of the total

area of the 13 related provinces’ municipalities and

autonomous regions. The areas underlain by permafrost

and seasonally frozen soils experience serious engineering

problems. Statistics indicate that 83% of the canals in the

highly irrigated district of Heilongjiang have suffered frost

damage due to inappropriate anti-frost heaving measures.

In Jilin and northern Xinjiang, more than half of the con-

crete trunk and branch canals exhibit different degrees of

frost heave damage. In the Hetao region of Inner Mongolia,

approximately 70% of the hydraulic buildings exhibit

various degrees of freezing and thawing damage. In the

Shule area of the Gansu Province, before repair operations,

54% of the canals had serious frost heave damage and lost

their anti-seepage properties. Therefore, safe operation of

the canals cannot be guaranteed. Both construction and safe

operations of these systems in cold areas are severely

restricted by permafrost foundations. For example, before

2015, frost-induced uplifting of foundation piles resulted in

the Harbin–Dalian and Panjin–Yingkou high-speed rail-

ways reducing their operating speeds to 200 km/h in win-

ter, which is considerably lower than the standard speed of

300–350 km/h. The physical and mechanical properties of

frozen soil and frost heave models must be thoroughly

understood for construction projects in cold regions.
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There are two main reasons that cause damage of

structures in seasonally frozen ground: the heaving and

thawing settlement of the foundation soil. Owing to wider

capillary water migration under the same temperature and

moisture conditions, fine-grained soil has a higher frost

heave sensitivity than other soil types. In addition, a recent

study [25] has demonstrated that with a sufficient water

supply, significant frost heave can also occur in gravel with

a limited amount of fine material. Frost heaving and

freezing in soils are complex physical processes. Frost

damage appears during repeated freezing and thawing

cycles of the soil throughout the engineering life cycle. In

particular, frost damage is the result of long-term repeated

interactions between the soil and a superstructure. In this

process, soil heaving is caused by phase transitions of the

water in the soil from fluid to solid, but settlement is due to

reverse phase transition. For an accurate analysis of the

interaction between permafrost and buildings, accurate

models of permafrost constitutive and frost heave are

required. A frost heave model considers various factors,

such as soil hydrodynamics, the physics of frozen soils,

frozen soil mechanics, thermodynamics, and engineering

mechanics. For example, the rigid ice model [28, 32] and

the segregation potential model [12, 13, 27] can accurately

explain the formation of an ice lens. However, these

models are primarily used to simulate one-dimensional

freezing of saturated homogeneous soils. The dissipation of

an ice lens in the rigid ice model has been rarely reported.

In addition, the interaction between frozen soils and

building has rarely been considered. The HFHM

[5, 6, 8, 21, 23, 34], also known as the thermal–moisture–

deformation coupled model or physical field model, cannot

adequately describe the characteristics of the generation

and elimination of the ice lens, but they have an advantage

in the determination of the macro-characteristics of the

temperature distribution, water migration, frost heave, and

thaw settlement. Numerous indoor and field monitoring

results [8, 9, 11, 16, 31] have shown that HFHM is suit-

able to describe the energy and mass transfers during the

freezing and thawing processes. In addition, the physical

field model also can be used to describe the coupled pro-

cess in the frozen fringe. A separate-ice frost heave model,

proposed by Zhou et al. [44], can describe the growth of a

single ice lens by extending the thermal–moisture model

and the formation of a new ice lens using Gilpin’s theory.

Furthermore, HFHM is highly compatible both with the

nonlinear dynamics model [15, 40] and with the contact

model [20, 36, 43] for permafrost. A centrifuge model and

numerical modeling of a cold-region canal were conducted

by Li et al. [19]. The models indicated that the HFHM-

computed temperature perfectly agreed with the measured

results, but had less accurate results regarding deformation

along the lining. This was likely due to complicated mul-

tidirectional freezing.

Generally, the HFHM assumes that frost heave occurs

when the total water content (ice content plus unfrozen

water content) of the feature unit is larger than the critical

pore volume [5, 10, 18]. Deformation of the unit is then

assumed to be evenly distributed in all of the dimensions

and independent of the temperature gradient. The consti-

tutive and frost heave models are considered to be ISO

models. The empirical formula for the elastic constants of

the frozen soils can be obtained according to the compo-

sition of the physical components using the mixed law [24].

The aforementioned two assumptions imply that the mod-

els ignore the directionality and distribution of the growth

of the ice lens under a temperature gradient, which con-

flicts with the freezing and frosting evolution and

microstructure of the frozen soil. Therefore, a realistic

coupled thermal–moisture–deformation model is required

to accurately reflect the composition, mesoscopic structure,

and frost heave evolution. Additionally, the model should

be able to describe the orthogonality of the frost heave and

the microstructure of the frozen soil in the direction of the

temperature gradient and frozen fronts. An appropriate

coupled thermal–moisture–deformation model needs to

contain a constitutive model and a model for frost heave in

frozen soils.

The ISO constitutive model has been widely used.

However, it is inconsistent with the profile of layered ice

lenses. The orthotropic constitutive model is more realistic

than the ISO constitutive model. However, it is compli-

cated by having nine elastic constants, which cannot be

easily determined using tests. Transversely isotropic

(TISO) constitutive models combine the advantages of the

aforementioned two models. TISO models have been

widely used. Studies have indicated that fine-grained fro-

zen soils belong to TISO materials. Most frozen soil tests

involve triaxial tests with a constant temperature and

overburden without water supply, creep tests, and frost

heave tests. Up to now, there has been no feasible method

or device that can directly determine the TISO elastic

constants for frozen soils. Although a few mechanical

parameters can be obtained using tests, the testing process

is too complicated to effectively utilize in multiphysical

coupled simulations. Therefore, a TISO constitutive model

has been proposed for the theoretical calculation of the

elastic constants of frozen soils [38]. However, the con-

stitutive model does not consider the static balance

between the ice and soil and does not take into account

their deformation compatibility. Furthermore, the TISO

constitutive models are seldom built for frozen soils. Even

though plastic or creep models for ISO frozen soils have

been studied since the 1970s [14], related models for TISO

frozen soils have not been reported.
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In this study, the serial model and parallel model are

proposed on the basis of both the mesoscopic profile of

fine-grained frozen soils and the theory of composite

mechanics. This is done by assuming an ideal bond

between the ice layers and soil layers. The elastic constants

of TISO frozen soils with ice lenses are derived by com-

bining the primary equations of Hooke’s law, equilibrium

equations, and strain compatibility equations. In addition,

in terms of the strength index of frozen soil at the principle

directions, an elastoplastic model for TISO frozen soils is

proposed based on the Hill orthotropic plasticity theory.

Furthermore, a modified HFHM for freezing soils is pre-

sented that considers the evolution of the thermal–mois-

ture–deformation interaction and the TISO characteristics

of freezing soil.

2 Frost heave characteristics of freezing
fine-grained soils

The results of the indoor unidirectional freezing test [33]

indicated that when the freezing front is irregularly

developing during freezing, the ice lenses and the dehy-

drated soil layers form laminated structures in the frozen

zone on the mesoscale (Fig. 1). Furthermore, soil particles,

unfrozen water, crystal ice, air, and small serial cracks

were present in the frozen zone because of the complex

formation process of the fine-grained soils. Therefore,

obvious macroscopic differences were observed in the

linear and nonlinear mechanical performances of the frozen

soils along their principal directions. Arenson et al. [1]

considered that fine-grained soils had a clear stratification

in the frozen zone when the ice content was between 10

and 90%. Results from a series of unconfined unidirec-

tional freezing tests and an expanded foundation model test

[37] indicated that the frozen silt could be modeled as

TISO under natural freezing conditions. Correspondingly,

the nine elastic constants of the orthotropic constitutive

model can be reduced to five in the TISO constitutive

model. Moreover, Wang et al. [39] developed an empiri-

cally nonlinear constitutive model for TISO frozen silt on

the basis of the axial and lateral deformations observed in

unconfined uniaxial compression tests, which were per-

formed at temperatures ranging from -9 to -5 �C.
The physical properties of a frozen soil depend on the

freezing process. Uniaxial freezing tests of frost-suscepti-

ble soils indicate that migration of the moisture in fine-

grained soils exhibits directional dependence during

freezing. Initially, due to a high temperature gradient near

the cold boundary, the frozen fringe advances quickly from

the cool side to the warm side. Rapid cooling causes in situ

freezing of the water in soil. Heaving results in water

migration being impeded by a dispersive ice crystal. As the

temperature gradually decreases, the frozen front acts as a

sink. Water migrates continuously if a temperature gradient

exists and an external water supply is available. If the sum

of the unfrozen water and accumulated ice exceeds the pore

volume in the soil, layers of clear ice may form parallel to

the surface due to considerable frost heaving. Moreover,

unconfined uniaxial frost heave tests of fine-grained soil

indicate that thermal expansion along the temperature

gradient direction is larger than that along the perpendic-

ular direction. Thus, the frozen fine-grained soil deforms in

a TISO manner rather than in an ISO manner, which

determines different macroscopically mechanical proper-

ties and frost heave. Therefore, the TISO constitutive

model is more reasonable than the ISO constitutive model

for describing both frost heaving and the interaction

between frozen soil and a foundation.

To predict the mechanical behavior of a TISO frozen

soil in a construction project, the material constants must

be first obtained. However, few laboratory tests have been

conducted on the mechanics of an ice-embedded frozen

soil due to such reasons as inhomogeneous distribution,

environmental sensitivity, and large uncertainties of the

basic material properties. An analytical method for deter-

mining the elastic constants of frozen soil with a lenticular

structure is presented in this paper.

Fig. 1 Snapshots of a cylinder sample of frozen clay in a freezing test

by Taber [33], indicating that the ice lenses and dehydrated soil layers

formed alternately laminated structures during freezing. a Clay frozen
without overburden. b Clay frozen under pressure of 15 kilograms per

square centimeter
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3 Transversely isotropic elastic constants
for frozen soils with ice lenses

The elastic moduli and Poisson’s ratios can be used to

determine the characteristic features of the freezing pro-

cesses of frost-susceptible soils. Ice provides mechanical

bonds on the interface between a soil particle and the

bedding planes. The ice lenses and soil layers in the rep-

resentative volume element (RVE) are assumed to possess

deformability. Furthermore, the soil with lenticular struc-

ture can be considered as a single-layered composite when

the REV is suitably large. In the local Cartesian coordinate

system, anisotropy of material occurs in the 2-direction,

that is, the direction of the heat flow lines (Fig. 2). The

principal material axes are aligned with the coordinate

axes, respectively. Material in planes 1–3 shows isotropic

(ISO) behavior. The strain vector is defined as e = [e11, e22,
e33, c12, c23, c31]

T, and the stress vector is defined as

r = [r1, r2, r3, r11, s12, s23, s31]
T. eii and ri represent the

normal strain and stress along the i-direction, respectively.

cij and sij represent the shear strain and stress, respectively.

3.1 Anisotropic character of frost heave

The frost heave of frozen fine-grained soil exhibited tem-

perature dependence due to the formation of the ice lens

[22, 37]. Hence, a dimensionless quantity, n (the frost

heave partition coefficient), is used to illustrate the aniso-

tropy of the volumetric growth. The plastic strain incre-

ment can be defined as follows:

evh;123 ¼ hw þ hi � n0ð Þ
1� nð Þ=2 0 0

0 n 0

0 0 1� nð Þ=2

2
4

3
5;

ð1Þ

where evh,123 is the plastic strain tensor for the entire frozen
composite due to volumetric growth in the local system.

The volumetric contents of unfrozen water and ice and the

initial porosity are represented as hw, hi, and h0, respec-
tively. The value of n ranges from 0.33 to 1.0 for the ISO

growth and unidirectional growth of ice lenses.

3.2 Stiffness matrix of frozen soil

Conventionally, the five independent elastic constants in

the TISO constitutive model are the Young’s modulus and

Poisson’s ratio in planes 1–3 (E1 and t13, respectively),
Young’s modulus and Poisson’s ratio in the 2-direction (E2

and t12, respectively), and the shear modulus in the 2-

direction (G12). The stiffness matrix reads:

D123 ¼

d11 d12 d13
d22 d12 0

d11
d44

sym d11 � d13ð Þ=2
d44

2
6666664

3
7777775
;

ð2Þ

where

d11 ¼
1� t12t21

1� t13 � 2t21t12ð Þ 1þ t13ð ÞE1;

d22 ¼
1� t13

1� t13 � 2t21t12
E2;

d12 ¼
t21 þ t13t21

1� t13 � 2t21t12ð Þ 1þ t13ð ÞE1;

d13 ¼
t13 þ t21t12

1� t13 � 2t21t12ð Þ 1þ t13ð ÞE1;

d44 ¼ G12;

t12=E1 ¼ t21=E2:

By assuming deformability, the serial model and the

parallel model [45] can be used to estimate the elastic

constants and unbalanced shear force between the ice and

(a) (b)

Fig. 2 RVE schematic of a single-layered composite model for frozen soil. a Serial model for estimating elastic constants E2 and t21 (= t23).
b Parallel model for estimating elastic constants E1, t12, and t13. RVE representative volume element
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soil layers due to different Poisson’s ratios of contents. The

elastic modulus and Poisson’s ratio for the ice and soil

matrix are represented as Ei, ti, Em, and tm, respectively.
The volume of the ice lenses and soil in an RVE are rep-

resented as hi and hm = 1 - hi, respectively. The stresses

at the interface are represented as rji and rjm (j = 1, 2, 3 are

the principal material axes in Fig. 2).

3.2.1 Serial model

A modified serial model that considers the deformability

and the interlayer interaction is used to estimate the elastic

constants of the frozen soil along the 2-direction (Fig. 2a).

The RVE is assumed to be subjected to an axial load, r2,
along the 2-direction. The equilibrium along the 2-direc-

tion suggests r2i = r2m. The frictional force between the

layers is absent if the deformation of an individual layer is

either independent or the layers have the same Young’s

modulus and Poisson’s ratio. Then, the effective elastic

constants of the RVE can be obtained using the general rule

of mixtures. For consistent lateral deformation of the two

layers, the interactions parallel to the interface (r1i, r3i,
r1m, and r3m) are nonzero because of the interfacial

adhesion and the differences between the Poisson’s ratios

for ice and soil. Considering symmetry in the planes 1–3,

then:

r1m ¼ r3m ¼ rm
r1i ¼ r3i ¼ ri:

ð3Þ

The equilibrium equations and deformability along the

principal axes yield:

r2i ¼ r2m ¼ r2
rm 1� hið Þ þ rihi ¼ 0;

ð4Þ

e1 ¼ e3 ¼
1

Ei

ri � miri � mir2ð Þ

¼ 1

Em

rm � mmrm � mmr2ð Þ:
ð5Þ

Hence,

rm ¼
mm � mi

Em

Ei

� �
r2

1� tm þ 1� tið Þ 1�hi
hi

Em

Ei

; ð6Þ

ri ¼ � 1� hi
hi

rm ¼ � 1� hi
hi

mm � mi
Em

Ei

� �
r2

1� tm þ 1� tið Þ 1�hi
hi

Em

Ei

:

ð7Þ

For a cubic element within the calculated domain,

Hooke’s law reads:

e2 ¼
1

Ei

r2 � 2tirið Þhi þ
1

Em

r2 � 2tmrmð Þ 1� hið Þ: ð8Þ

By substituting Eqs. 6 and 7 into Eqs. 5 and 8, the strain

components of the RVE along the principal axes can be

represented using the elastic constants of soil and ice.

Hence:

e1 ¼ e3 ¼
�r2
Ei

1� mmð Þmi þ mm 1� mið Þ 1�hi
hi

1� mmð Þ þ 1� mið Þ 1�hi
hi

Em

Ei

; ð9Þ

e2 ¼
r2
Em

1� hi þ hi
Em

Ei

� �
�

2 1� hið Þ mm � mi
Em

Ei

� �2

1� mmð Þ þ 1� mið Þ 1�hi
hi

Em

Ei

2
64

3
75;

ð10Þ

and the two elastic constants of the element, E2 and t21, can
be obtained. They are:

E2 ¼ r2=e2 ¼ Em

1� hi þ hi
Em

Ei

� �
�

2 1� hið Þ mm � mi
Em

Ei

� �2

1� mmð Þ þ 1� mið Þ 1� hi
hi

Em

Ei

2
6664

3
7775

�1

;

ð11Þ
m21 ¼ m23 ¼ �e3=e2

¼ Em

Ei

mi 1� mmð Þ þ mm 1� mið Þ 1� hi
hi

� �

1� hi þ hi
Em

Ei

� ��

1� mmð Þ þ 1� mið Þ 1� hi
hi

Em

Ei

� �

�2 1� hið Þ mm � mi
Em

Ei

� �2
)�1

:

ð12Þ

3.2.2 Parallel model

The parallel model accounts for deformability and is suit-

able for predicting the linear elasticity of frozen soil in the

symmetric plane (planes 1–3 in Fig. 2b). The RVE is

assumed to be subjected to an axial load, r1, along the 1-

direction. The equilibrium equations and deformability

along the principal axes satisfy the following:

r1ihi þ r1m 1� hið Þ ¼ r1 � 1
r3ihi þ r3m 1� hið Þ ¼ 0

ð13Þ

e1 ¼
r1i � mir3i

Ei

¼ r1m � mmr3m
Em

e3 ¼
r3i � mir1i

Ei

¼ r3m � mmr1m
Em

:
ð14Þ

Hooke’s law can be expressed as:

e2 ¼ � mihi r1i þ r3ið Þ
Ei

� mm 1� hið Þ r1m þ r3mð Þ
Em

: ð15Þ
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By combining Eqs. 13–15, we have:

r1i

¼ r1
hi

1� 1� hi
hi

Em

Ei

1þ 1�hi
hi

Em

Ei
� mi mm þ mi

1�hi
hi

Em

Ei

� �

1þ 1�hi
hi

Em

Ei

� �2
� mm þ mi

1�hi
hi

Em

Ei

� �2

2
64

3
75;

ð16Þ
r1m ¼ r1 � 1� r1ihið Þ= 1� hið Þ; ð17Þ

r3i ¼ � r1
hi

1� hi
hi

Em

Ei

mm � mi

1þ 1�hi
hi

Em

Ei

� �2
� mm þ mi

1�hi
hi

Em

Ei

� �2 ;

ð18Þ
r3m ¼ �r3ihi= 1� hið Þ: ð19Þ

By substituting Eqs. 16–19 into Eqs. 14 and 15, we

have:

e1 ¼
r1
hiEi

1� m2m þ 1� m2i
	 


1�hi
hi

Em

Ei

1þ 1�hi
hi

Em

Ei

� �2
� mm þ mi

1�hi
hi

Em

Ei

� �2 ; ð20Þ

e2 ¼ � r1
hiEi

mihiþf

1� hið Þ mm � mi
Em

Ei

� �
1� mið Þ

1þ 1�hi
hi

Em

Ei

� �2
� mm þ mi

1�hi
hi

Em

Ei

� �2

1þ mm þ 1þ mið Þ 1�hi
hi

Em

Ei

h i

1þ 1�hi
hi

Em

Ei

� �2
� mm þ mi

1�hi
hi

Em

Ei

� �2

9>=
>;

ð21Þ

e3 ¼
r1
hiEi

�mm
1�hi
hi

Em

Ei
� mi 1� mm � mi

1�hi
hi

Em

Ei

� �

1þ 1�hi
hi

Em

Ei

� �2
� mm þ mi

1�hi
hi

Em

Ei

� �2 : ð22Þ

The three elastic constants, E1, t12, and t13, can be also

obtained.

E1 ¼ r1=e1
¼ Eihi þ Em 1� hið Þ½ �

þ mm � mið Þ2hi 1� hið ÞEiEm

1� m2m
	 


hiEi þ 1� m2i
	 


1� hið ÞEm

;

ð23Þ

m12 ¼ �e2=e1
¼ mihi þ mm 1� hið Þ½ � þ mm � mið Þhi 1� hið Þ

mm 1þ mmð Þ � mi 1þ mið Þ Em

Ei

1� m2m
	 


hi þ 1� m2i
	 


1� hið Þ Em

Ei

;

ð24Þ

m13 ¼ �e3=e1

¼ mi þ
mm � mið Þ 1� m2i

	 

1� hið Þ Em

Ei

1� m2m
	 


hi þ 1� m2i
	 


1� hið Þ Em

Ei

:
ð25Þ

3.2.3 Shear modulus

It is assumed that the layers do not separate under shear

deformation if an ideal bond exists between them. Thus,

the two layers have the same shear strain. Therefore, the

equilibrium equation and Hooke’s law can be written as:

s12 ¼ sihi þ smhm; ð26Þ
s12 ¼ G12c12; si ¼ Gici; sm ¼ Gmcm; ð27Þ

where s12, c12, and G12 are the shear stress, engineering

shear strain, and effective shear modulus, respectively, in

the planes 1–2. Substituting ci = cm = c12 into Eqs. 26 and

27, G12 reads:

G12 ¼ Gihi þ Gmhm: ð28Þ

In most analyses of frozen ground engineering, the plane

strain model is adopted. The computation will be per-

formed in an arbitrary global coordinate system x–y. The

strain increments due to frost heave and the stiffness matrix

can be transformed to the x, y coordinate system using the

following transformation rule:

e0 ¼ ex; ey; ez; cxy; cyz; czx
� �T¼ T�1 e0;11; e0;22; e0;33; 0; 0; 0

� �T
D ¼ T�1D123T

T ¼

cos2 b sin2 b 0

sin2 b cos2 b 0

0 0 1

�2 cos b sin b 2 cos b sin b 0

0 0 0

0 0 0

2
666666664

cos b sinb 0 0

� cos b sin b 0 0

0 0 0

cos2 b� sin2 b 0 0

0 cos b � sin b

0 sin b cos b

3
777777775

ð29Þ

where b is the angle between axis y and the local 2-di-

rection (heat flow direction). It will be synchronously

updated as the temperature field changes.

3.3 Ideal plastic model for transversely isotropic
frozen soil

In this study, the Hill orthotropic plasticity was applied for

describing the elastoplastic behavior of transversely ISO

frozen soil. In a complex stress state, the plastic strain rate

is generally expressed as [29]:
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_ep ¼ k
oQp

or
: ð30Þ

A quadratic yield function, Fy (and associated plastic

potential, Fy = Qp), in a local coordinate system is given

by the orthogonal principal axes [7]:

Qp ¼ F r22 � r33ð Þ2þG r33 � r11ð Þ2þH r11 � r22ð Þ2þ2Ls223
þ 2Ms231 þ 2Ns212 � 1:

ð31Þ

The six parameters F, G, H, L, M, and N are related to

the state of anisotropy and can be expressed as:

F ¼ 1

2

1

r2ys2
þ 1

r2ys3
� 1

r2ys1

 !

G ¼ 1

2

1

r2ys3
þ 1

r2ys1
� 1

r2ys2

 !

H ¼ 1

2

1

r2ys1
þ 1

r2ys2
� 1

r2ys3

 !

L ¼ 1

2s2ys23
; M ¼ 1

2s2ys31
; N ¼ 1

2s2ys12
:

ð32Þ

Here, rysi represents the tensile yield stress in the

principle direction and sysij represents the yield shear stress

on the planes i–j.

For transversely ISO material, F = H and L = N. Hence,

the yield function can be rewritten as:

Qp ¼ F r22 � r33ð Þ2þ r11 � r22ð Þ2
h i

þ G r33 � r11ð Þ2þ2L r223 þ r212
	 


þ 2Mr231 � 1;

F ¼ 1

2

1

r2ys2
; G ¼ 1

r2ys1
� 1

2

1

r2ys2
;

L ¼ 1

2r2ys12
; M ¼ 1

2r2ys31
:

ð33Þ

For ISO plasticity, the elastic region satisfies Qp\ 0,

and the yield surface is defined by Qp = 0.

4 Frost heave modeling with the coupled
heat–moisture–deformation model

4.1 Thermal field

The principles of energy, mass, and energy dissipation can

be formalized within a multiphase media. Similarly, con-

sidering water migration and phase change, the energy

conservation principle can be written as:

Cv

oT

ot
¼ r � krTð Þ þ Lfqi

ohi
ot

: ð34Þ

By neglecting the volumetric heat capacity of air, the

semiempirical formulas are used to estimate Cv and k [4]:

Cv ¼ Cphp þ Cwhw þ Cihi
k ¼ kphp þ kwhw þ kihi þ kaha;

ð35Þ

where T is the temperature; Cv is the effective volumetric

heat capacity; k is the thermal conductivity; h is the volume

of the soil; Lf is the latent heat of fusion of water per unit

mass; and t is time. The subscripts p, w, i, and a represent

the soil particles, water, ice, and air, respectively. Equa-

tion 34 does not contain the terms with respect to the heat

transport through water flow and the mechanical work.

4.2 Hydraulic field

Recently published research that used molecular dynamics

[41] indicated that the unfreezable threshold corresponds to

pore diameter and the adsorption of the soil. This is further

evidence for the analogy of the freezing and drying pro-

cesses [2]. Therefore, Richard’s equation can be used to

describe the fluid movement with a source term related to

ice formation [3]:

C
oh

ot
¼ r � kr hþ ið Þð Þ � qi

qw

ohi
ot

: ð36Þ

The simplified van Genuchten [35] equation for the soil–

water characteristic curve (SWCC) can be extended to

describe the relationships among the unfrozen water con-

tent, matric potential, and hydraulic conductivity:

C ¼ am
1� m

hs � hrð ÞS1=me 1� S1=me

� �m
; ð37Þ

k ¼ ksSe 1� 1� S1=me

� �mh i2
; ð38Þ

Se ¼
hw � hr
hs � hr

¼ 1þ ahj j1= 1�mð Þ
� �m

: ð39Þ

where h is the matric potential (negative water suction);

C = dhw/dh is the specific moisture capacity; k and ks are

the hydraulic conductivities for unsaturated and saturated

soils, respectively; Se is the effective saturation; and hs and
hr are the volumes of the saturated and residual water,

respectively. Water density qw = 1000 kg/m3 and ice

density qi = 931 kg/m3. i is the unit vector in the direction

of gravity. a and m are the empirical parameters of the

SWCC.

Assuming thermodynamic equilibrium at the ice–pore–

water interface is maintained in an infinitesimal time

interval, the rate of ice content can be derived using the

chains rule with the generalized Clapeyron equation, as

follows:
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ohi
ot

¼ � qw
qi

dhw
dh

dT

dt
¼ � qw

qi
C

Lf

gT0

dT

dt
; T\Tf

Tf ¼ T0 þ
gT0

Lf
h;

ð40Þ

where T0 = 273.15 K is the nominal freezing temperature

and Tf is the freezing temperature for unsaturated soil.

4.3 The stress–strain field

The governing equation for the stress field is the Navier

equation, which incorporates the equation of motion,

strain–displacement correlation, and constitutive relation-

ship. For a static problem, the equation of motion can be

written in the general tensor format as:

r � Druð Þ þ F ¼ 0; ð41Þ

where u is the displacement vector; D is the fourth-order

tensor of material stiffness; and F is the body force vector.

The strain–displacement equation is:

e ¼ 1

2
ruþ ruð ÞT
h i

: ð42Þ

The constitutive equation is:

r ¼ Deel ¼ D e� evh � ep
	 


; ð43Þ

where r is the Cauchy stress tensor and e, eel, evh, and ep
are the infinitesimal strain tensor, elastic strain tensor,

volumetric plastic strain tensor by frost heave, and plastic

strain tensor by stress, respectively.

4.4 General boundary condition

The general boundary conditions, which include one or

more of the Dirichlet, Neumann, and Robin boundary

conditions, are expressed as:

n � cruþ fu� cð Þ þ qu ¼ d� hTl; ð44Þ

where n is the outward normal unit vector of a boundary;

u is the dependent variable of the individual field; c is a

conductivity term; f is the conservative flux convection

coefficient; c is the source in the subdomain; q is the

boundary absorption coefficient; d is the boundary source;

hT is a matrix representing the flexibility of the constraint

type; and l is the matrix of the Lagrange multiplier.

5 Model implementation

Equations 1 and 34–40 express the variables and the governed

equations that frame heat–moisture–deformation coupling in

frozen soil. A frost heavemodel that accounts for the lenticular

structure of the fine-grained soil can be developed by

combining Eqs. 2, 11, 12, 23–25, and 28–33. The equations

must be solved numerically because of the high nonlinearity of

the variables and the immediate updating of the local coor-

dinate system for each element with respect to the temperature

gradient. The coupled multiphysical model was solved by

using COMSOL for the cross-platform finite element analysis

of the coupled systems of partial differential equations.

6 Validation of the transversely isotropic
frost heave model

A standard laboratory uniaxial frost heave test and field

measurements of canals were performed to validate the

TISO model for frozen soil. Moreover, a generalized ISO

frost heave model was applied for comparison. For the ISO

constitutive model, the dimensionless quantity, n, was set

as 1/3, and the elastic constants were given by the general

rule of mixtures:

EISO ¼ hiEi þ 1� hið ÞEm

mISO ¼ himi þ 1� hið Þmm:
ð45Þ

For ISO plasticity, yield stresses satisfied rys1 = rys2-
= rys3 = rys0 and sy23 = sys31 = sys12 = sys0.

6.1 Simulation case I: standard uniaxial frost
heave test and simulation

First, two of the experimental results presented by Penner

[30] were repeated using numerical simulations. Both the

length and the diameter of the soil column were 10 cm.

The level of the external water supply was controlled to be

aligned with the top of the cell. The temperature ramp rate

was - 0.50 �C/day, and the temperature gradient was

0.33 �C/m in Test 1. In Test 2, the temperature ramp rate

was - 0.50 �C/day with a temperature gradient of 0.12 �C/
m. The initial temperature of the cold end was set at 0 �C.
The sides of the samples were thermally insulated. More-

over, an axial load of 50 kPa was applied. The simulation

parameters listed in Table 1 were set according to the

experimental data and the relevant literature [26]. The

dimensionless quantity, n, was 0.9 for anisotropic defor-

mation in the TISO model [22]. Under such a small axial

load, the plastic behavior of the soil was not considered.

Comparisons of the experimental and simulated results

are shown in Fig. 3. The TISO and ISO models indicated

that the total frost heaving increases approximately linearly

with time. Obviously, the TISO model agreed more accu-

rately in both tests. The absolute errors for the TISO model

were 0.64 mm in Test 1 and 0.57 mm in Test 2, whereas

those for the ISO model were - 2.90 mm in Test 1 and

- 1.29 mm in Test 2.
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6.2 Simulation case II: monitoring
and simulation of prototype canal frost
heave

Li [17] observed a prototype of frost heave in a large

U-shaped concrete canal. The test was conducted at the

loess terrace on the east coast of the Qianhe River in the

Fengjia mountain irrigation area in Baoji, China. The test

canal flows from west by south to east by north, where

sunny and shady slopes are clearly distinguished. The

designed discharge is 58 m3/s. The canal depth is 5.1 m,

with a 7.1-m-wide opening. The arc radius of the canal

bottom is 3.2 m, and the canal is inclined against a wall at

10�. The canal featured a 10-cm thickness of shotcrete

lining. Eleven points of measurement, N1–S1, were sym-

metrically deployed in the canal basin for observing and

measuring the frozen depth and frost heave. Figure 4a

illustrates the cross section of the canal and the distribution

of the measurement points.

Four rows of water inlets with an 8-cm-diameter and

1.5–4-m-deep opening were established on both sides of

the test canal to supply water and soak the soil in the canal

with water for two months before freezing occurred in the

canal. The perched water table was observed 3.5–4 m

beneath the canal after water was supplied. Observation

started from November 14 to March 28 of the subsequent

year when the daily average temperature was higher than

0 �C. Maximum frost depth and frost heave were observed

on January 24.

The observed soil was silty clay containing 6.8–12.8%

gravel, 55.2–62.6% fine particles, and 27.0–38.0% clay,

indicating frost-susceptibility. The following properties

were also experimentally determined: specific grav-

ity = 2.71; liquid limit = 29.2–31.6%; plastic limit =

17.7–19.0%; cohesive force = 11–68 kPa; and the internal

friction angle = 24.5�–31.5�. Regarding thermodynamic

parameters, Cp = 3.09 9 106 J m3/K and kp = 1.85 W/

(m K). In terms of hydraulic parameters, hs = 0.41, hr-
= 0.03, a = 0.21 m-1, m = 0.22, and ks = 3 9 10-6 m/s.

Em = 10.2 MPa and tm = 0.44. The dimensionless quantity

of frost heave for loess was n = 0.7 [39]. Other funda-

mental physical constants are listed in Table 1. The basic

material parameters of concrete are: density qc = 2300 kg/

m3, thermal conductivity kc = 1.8 W/(m�K), volumetric

heat capacity Cc = 2 9 106 J�m3/K, elastic modulus Ec-

= 25 GPa, and Poisson’s ratio tc = 0.33.

For the TISO plasticity of the frozen soil, rys1 = 0.2877

|T| ? 0.5, rys2 = 0.2549 |T| ? 0.5, sys12 = 0.18 |T| ? 0.10,

and sys31 = 0.425 |T| ? 0.10. The unit of yield stress is

MPa, and if the soil temperature is greater than 0 �C, only
constant terms are used. It is noted that the slope terms of

the yield shear stresses, sys12 and sys31, were determined

from the adfreeze bond strength test and shear test,

respectively. For the ISO model, the yield stresses are

conventionally taken as rys0 = rys2, sys0 = sys31.
A two-dimensional thermal–moisture–deformation

coupled finite element model of the test canal was devel-

oped. Analysis was performed for 72 days, which began on

November 14 to January 24 of the subsequent year.
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Fig. 3 Comparison among the simulation results using the ISO and TISO models and the experimental results for total heave versus elapsed

time. a Test 1, b Test 2. ISO isotropic, TISO transversely isotropic

Table 1 Soil index properties of test samples

Variable Values Variable Values

qs (kg/m
3) 2700 Lf (kJ/kg) 334

qw (kg/m3) 1000 hs (1) 0.37

qi (kg/m
3) 931 hr (1) 0.01

Cp (J m
3/K) 2 9 106 a (m-1) 0.22

Cw (J m3/K) 4.22 9 106 m (1) 0.27

Ci (J m
3/K) 1.935 9 106 ks (m/s) 3 9 10-8

kp (W/m K) 0.907 Em (MPa) 50

kw (W/m K) 0.552 tm (1) 0.4

ki (W/m K) 2.22 Ei (MPa) 5 9 103

ka (W/m K) 0.0243 ti (1) 0.33
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Figure 4b shows the mesh and boundary condition control

of the finite element model.

The origin of the global Cartesian coordinate system of

the model was consistent with the circle in the bottom arc

of the canal. The dimensions of the model are of 20 m in

length and 13.38 m in width. According to Saint–Venant’s

Principle and numerical analysis experience, uneven dis-

tribution of hydraulic, thermal, and stress fields in the canal

only occurred within one to two times the area of canal

sections. The left and right boundaries of the model were

kept to be thermally insulated (qT/qn = 0) and imperme-

able (qh/qn = 0), and the left and right and bottom

boundaries were set as a directional hinged constraint (qu/
qn = 0). It was assumed that the underground water level

was located 3.2 m from the bottom of the canal

(y = - 7 m) and, before calculation, the water content of

soil had reached equilibrium under gravity. Therefore,

Richards’ equation for a steady-state solution was used to

obtain the initial hydraulic field of the base soil. It was

assumed that the soil had completed consolidation before

testing. Therefore, the initial stress field of the model could

be determined by using the gravity static analysis method.

Boundaries of the initial soil temperature and bottom

constant temperature were consistent with the temperature

of the supplied water, that is, 13 �C. Ambient temperature

was described in terms of a trigonometric function based

on the measurement results of the three groups of daily

average temperature as follows:

Tamb ¼ 9:584þ 17:46sin
2p
365

t � 26:5ð Þ � p
2

� �
; ð46Þ

where Tamb (�C) denotes the daily average ambient tem-

perature of the upper surface of the model and t(d) denotes

the number of days in a cycle starting from January 1.

Combined with the observation date, the equation yields

t = 318 days when the observation commences and

t = 389 days when frost depth and frost heave reach peak

values.

Under the influence of solar radiation and a local winter

monsoon, the canal test exhibited distinctive characteristics

of sunny and shady slopes. To eliminate the effects of the

two aspects on the hydraulic, thermal, and stress fields, the

convective heat transfer coefficient (hc) along the upper

surfaces was determined using an inversion thermal–

moisture–deformation coupled finite element analysis

through the observed frost depth data at t = 389 days. The

obtained convective heat transfer coefficients (unit:

W/m2 K) for each measurement point are as follows:

hcN1 = 0.45, hcN2 = 0.30, hcN3 = 0.60, hcN4 = 1.10, hcN5-
= 1.40, hc0 = 1.85, hcS5 = 1.50, hcS4 = 1.60, hcS3 = 1.28,

hcS2 = 0.95, hcS1 = 1.45. The convective heat transfer

coefficients of the ground surfaces in the north and south

coast of the canal are hcNW = 0.55 and hcSE = 0.99,

respectively. The inversion results, displayed in Fig. 5,

indicate that the calculated frost depth and the observed

results are basically consistent, with an absolute error

ranging from - 3.38 cm to 2.63 cm.

Similar to the comparative analysis method adopted in

Case I, the ISO model and TISO model of frozen soils were

compared. The numerical results of the normal frost heave

in the lining of the canal and the normal stress at the bot-

tom of the lining at t = 389 days are shown in Fig. 6. The

numerical results demonstrate that the normal frost heave

deformation and the normal stress distribution considering

TISO are both fundamentally consistent with actual mea-

surements. The normal frost heave of the canal lining

increased with frost depth, and the frost heave of the shady

(north-facing) slope was greater than that of the sunny

(south-facing) slope. Maximum frost heave appeared along

the top of the canal because of a lesser lining constraint and

12
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its double-direction freezing of the lining surface and

ground surface. The bottom of the canal exhibited rela-

tively distinctive frost heave deformation because of the

frost depth and water supply. At measurement point 0, the

absolute error of the normal frost heave and normal stress

were 0.64 mm and - 25 kPa. The normal frost heave and

normal stress were 8.96 mm and - 104 kPa with respect to

the actual measurement 8.32 mm and - 129 kPa,

respectively.

The frost heave analysis result using the ISO model

showed a nonpositive correlation between frost heave and

frost depth at the measurement points. The U-shaped lining

was subjected to symmetrical extrusion, which caused the

bottom of the canal to deform toward the base soil. The

normal frost heave at measurement point 0 at the bottom of

the canal was - 3.52 mm, and the actual measurement was

8.32 mm, indicating an absolute error of - 11.84 mm.

As shown in Fig. 6c, the amount of frost heave was

positive and was primarily related to the depth of freezing.

However, due to asymmetric frost heaving of the shady

slope and sunny slope, the canal lining tended to tilt toward

the sunny slope. At the beginning of the frost heave

(t = 357–373 days), N4 showed a distinct normal dis-

placement toward the foundation because of the hysteresis

of freezing at the sunny slope. After that, the lining played

a certain role of constraint in the frost heaving process of

the foundation soil, especially at the canal bottom. Also,

the normal displacements of the measured points at shady

slope (N5–S2) exhibited a stepped increase with freezing

time.

The effective plastic strain distribution calculatedwith the

elastoplastic model at t = 389 days is shown in Fig. 7. It can

be seen that the ground frost within a 70 cm depth received

various degrees of yielding due to the lining confining. The

effective plastic strain occurred in the range of N3–S2. The

maximum of the effective plastic strain was approximately

0.019 and occurred at approximately point S5.

7 Discussion

7.1 Equivalence of micro-ice lenses and soil

In the derivation of TISO elastic constants, the freezing of

microstructures into ice lenses was considered. However, it

was found that an accurate approach needs to be developed

to distinguish distribution problems concerning pore ice

and ice lens volume. The mixing rule model should be

adopted for individual elastic constants estimations of the

soil layers with dispersive pore ice. Hence, series models

and parallel models should be further employed for finding

the equivalent elastic behavior of frozen soil that contains

ice lenses and soil layers. However, in freezing fine-

grained soils, the soil layers between ice lenses showed

dewatering rather than a constant saturation during

decreasing temperatures. Therefore, this influence was not

considered in the present study.

7.2 Quantitative analysis of transversely
isotropic elastic constants and ice contents

A comparison of E1 in Eq. 23 and the mixing rule calcu-

lation, Eq. 45, shows that the first two terms in both

equations are identical, but Eq. 23 contains the correction

term of the elastic constants and volumes for the ice and

soil. A dimensional analysis revealed that this value was

slightly smaller than the square (1%) of the difference of

the soil–ice Poisson’s ratios. The removal of this correction

term led to a negligible error when compared with the

elastic modulus (MPa) of the soil matrix, Em. Similarly, a

comparison of t12 in Eqs. 24 and 45 showed that the

equivalent Poisson’s ratio obtained using the mixing rule

equation was identical to that of the first two terms in the

t12 equation. The difference was also the square of t.
However, compared with t, it bore the same weight and

thus should not be omitted. In contrast, a greater difference

of the elastic constants was obtained in other main

directions.

Figure 8 illustrates the relationship among the change of

ice content, hi, the TISO elastic modulus, and Poisson’s

ratio when Em = 46 MPa, tm = 0.4, and Ei = 6000 MPa,

tm = 0.3. Figure 8a shows that the curve of the elastic

modulus, E1, is parallel to the direction of the ice lenses,

which increases linearly with the ice content. As the cor-

rection term of E1 is omissible, based on the mixing rule

model, there is an overlap between E1 and the equivalent

elastic modulus EISO. The curve of E2, which is vertical to

the direction of ice lenses, performs as an S-shaped func-

tion and increases with the ice content, hi. In this case, the

two inflection points appeared at hi = 0.05 and hi = 0.8,
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respectively. Within the range of hi from 0.05 to 0.8, E1-

� E2 and had no significant change.

Similarly, Fig. 8b shows that Poisson’s ratio, t12, first
increases and then slowly decreases to the value of the ice

Poisson’s ratio, ti. t21 quickly dropped to ti when hi\ 0.2

and thereafter showed no significant change as hi increases.
The variation magnitude for t13 is maximized for

increasing hi, and t13 quickly decreases when hi\ 0.2.

When hi is between 0.2 and 0.8, t13 exhibits minimal

change (almost a straight line), quickly regressing to ti
when hi[ 0.8. The equivalent Poisson’s ratio, tISO, based
on the mixing rule model decreases linearly to the Pois-

son’s ratio of ice as hi increases. When hi = 0.1, tISO has

maximum difference with the Poisson’s ratio obtained in

the present study. The maximum difference between tISO
and t13 is approximately 0.32.

When hi is between 0.2 and 0.8, Poisson’s ratio of the

ice lens, t13, reflects a horizontal straight line. This result

matches well with the results given by Arenson et al. [1]

who reported that frozen soil can be considered a TISO

material when ice makes up 10–90% of the soil. Therefore,

additional verification is required to judge the feasibility of

determining the value of t13 using Eq. 25 to make sure the

frost-susceptible soil easily forms ice lenses, or to analyze

the problem of distinguishing pore ice and ice lenses by

using the initial and final points of the horizontal section of

a curve.
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7.3 Interaction between ice and soil layers

The assumption of an ideal bond between the ice layers and

soil layers is essential for the derivation of elastic constants

in this study. In fact, the clay characteristics of frozen soil

(e.g., unfrozen water content) and temperature directly

influence the bond and coordinated deformation. Hence,

when frozen soil temperature and unfrozen water content

are high during the initial freezing stage, the ice lens is

affected by unfrozen water film, which may result in a

minimal nonsynchronous slip or cause soil particles to

move. This slip process deviates somewhat from this

assumption. However, when frozen soil is constrained by

overburden pressure and ice crystals of the freezing fringe,

the effect of this slight deviation is negligible.

When the stress of the frozen soil is greater than the

yield stress, failure (bend, fold, and fracture) of ice lenses

in the soil easily occurs, with a possible slip between ice

lenses and the soil bodies. In fact, the mechanism of the

interaction between ice lenses and soil is complex.

Therefore, a reasonable approach should be developed to

examine and establish a standard thermal–moisture–de-

formation coupled transversely ISO nonlinear constitutive

model.

7.4 Frost heave partition coefficient n

Uneven frost heaving of frozen soil involves complex

coupling of multiple physical fields and is closely related to

the particle grade of soil and the interaction between soil

particles and ice crystals. The mechanism of uneven frost

heaving has never been reported. Estimations of frost heave

partition coefficients can only be obtained by using specific

tests or parameter inversion.

The calculation results of case I show that the frost

heave partition coefficient is not sensitive to the cooling

rate for a specified type of soil. In case II, the frost heave

partition coefficient can be approximated as a constant in

the two-dimensional frost heaving analysis of complex

temperature boundaries.

8 Conclusions

Based on the natural frost heaving deformation process and

mesoscopic composition of fine–grained soil, with the

assumption of an ideal bond between ice and soil, a typical

micro-soil–ice series model and parallel model for frozen

soil with ice lenses were established in this study by using

deformation coordination, force equilibrium, and Hooke’s

law. Subsequently, the TISO constitutive model of frozen

soil was presented, and the expressions for the five inde-

pendent elastic constants were derived on the basis of

mechanics of composites. The following conclusions were

drawn.

First, an improved theoretical method for solving TISO

elastic constants was improved in this study. It overcame

the disadvantage in the mixing rule theory, which can only

approximately describe the elastic constant in symmetry in

the plane (planes 1–3), but fails to reflect the other four

elastic constants of transversely ISO frozen soil.

Second, a preliminary elastoplastic model for TISO

frozen soil was established based on Hill plastic theory.

Third, a TISO frost heave model and numerical method

for frozen soils were established based on the thermal–

moisture–deformation coupling theory. Synchronous cou-

pling and uniformity of the TISO constitutive model and

the TISO frost heave model were realized for frozen soils

with alternately laminated ice lenses structures. This

approach overcame the drawbacks of previously used

models, such as the rigid ice and segregated ice models,

which are only applicable for one-dimensional freezing of

(a) (b)

Fig. 8 Relations between the elastic constants of frozen soils and ice content described using the ISO and TISO models with a soil elastic

modulus Em = 46 MPa, Poisson’s ratio tm = 0.4, and ice with Ei = 6000 MPa, ti = 0.4. a A comparison of the elastic moduli with increasing ice

content. b A comparison of Poisson’s Ratio with increasing ice content. ISO isotropic, TISO transversely isotropic
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saturated soil. Therefore, this approach bridged the

research gap of the hydraulic frost heave model, which

cannot consider the TISO mesoscopic composition of fro-

zen soil and the uneven frost heave evolution.

Fourth, a standard indoor ramped freezing test together

with the freezing process of a prototype canal freezing

process was simulated using the thermal–moisture–defor-

mation coupling finite element method. Results indicated

that the TISO constitutive model for freezing fine-grained

soil was more accurate than the ISO constitutive model.

The analytical expressions of the elastic constants for fro-

zen soil with ice lenses derived in this study are essential

for deeply understanding the interaction between freezing

fine-grained soils and buildings in a complex environment

and with complex boundaries.

Finally, the stress equations for ice lenses and soil

pressure were proposed for estimating ice pressure in fro-

zen soil.
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