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Abstract
The small-strain elastic shear wave velocity (VS) is a basic mechanical property of soils and is an important parameter in

geotechnical engineering. Recently, VS has been adopted as one of the indices for development of liquefaction charts. This

implies that if a parameter affects VS, it may also affect liquefaction resistance. Some of the parameters whose effects have

been accounted for include relative density, stress state and geologic age. An important parameter that affects both

liquefaction resistance and VS is fabric. Quantification of in situ fabric is still an open problem and hence, considerable

judgement is needed in order to map laboratory test results to field conditions. In this paper, we conduct numerical

simulations at the grain-scale to investigate the effect of fabric on VS. We start by showing that two granular assemblies,

with the same stress state and void ratio but different fabrics, can exhibit different trends in liquefaction behavior.

Furthermore, via a numerical implementation of the bender element test, we obtain two distinct trends of VS anisotropy for

the two granular assemblies. Finally, we consider three different fabric measures based on contact properties and explore

correlations between VS anisotropy and fabric anisotropy. We also look at fabric tensors of the ‘strong’ and ‘weak’

network, respectively, of the granular assemblies. Our results suggest that for liquefiable soils, i.e., recent Holocene-age

deposits with negligible cementation and with a stress history of seismic loading, a knowledge of VS anisotropy can give

information about fabric anisotropy. A knowledge of in situ fabric could help in more accurately mapping laboratory test

results to field conditions.
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1 Introduction

The small-strain elastic shear wave velocity (VS) is a basic

mechanical property of soils and is an important parameter

in geotechnical engineering. Together with SPT (standard

penetration test) and CPT (cone penetration test) mea-

surements, it helps model the response of geomaterials to

dynamic loading processes such as earthquakes and

vibrations. Recently, VS has been adopted as one of the

indices for development of liquefaction charts [2, 11, 41].

Liquefaction charts are developed using the ‘‘simplified

procedure’’ and are used to evaluate liquefaction resistance

of soils in earthquake-prone regions [33].

The use of VS as an index to quantify liquefaction

resistance is based on the fact that both VS and liquefaction

resistance are similarly affected by many of the same

parameters (such as void ratio, stress state, stress history

and geologic age) [2]. Hence, an understanding of how

such parameters affect VS helps in understanding the effect

of such parameters on liquefaction resistance of soils.

However, the use of VS to quantify liquefaction resistance

is not without concerns. A major concern arises from the

fact that VS measurements are made at small strains, while

liquefaction is a medium- to high-strain phenomenon

[2, 41]. It is thought that this discrepancy causes VS mea-

surements to have a lower sensitivity to factors such as

relative density, critical friction angle and dilatancy, when

compared to SPT and CPT measurements [11, 21]. The

results of this paper help address the aforementioned con-

cern. VS-based liquefaction assessments are important

supplements to the more traditional penetration-based

approaches, especially in areas where penetration tests may

be unreliable (gravelly soils) or not permitted (landfills). In

addition, VS measurements can be made on small
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laboratory specimens, allowing direct comparisons

between laboratory and field behavior [2, 41].

An important parameter that affects both liquefaction

resistance and VS is fabric [11]. The term ‘fabric’ refers to

the microstructure of a granular assembly that quantifies

the packing of discrete particles and associated voids

[10, 15, 42]. Experiments have shown that the method of

sample preparation, or the depositional environment, can

significantly affect soil fabric and cause soils with the same

stress states and relative densities to behave differently

[16, 17, 24]. Stokoe et al. [36] proposed empirical corre-

lations relating VS to confining stresses where the propor-

tionality constant is believed to be a function of soil fabric.

More recently, micro-mechanical studies have also been

conducted that explore the effect of soil structure or fabric

on elastic properties (such as small-strain shear modulus

Gmax or VS) by means of empirical correlations with stress

or void ratio (e.g., [1, 8, 25, 42]). Such studies have proved

to be very useful; however, the inherent empiricism in the

correlations means that they tend to be soil-specific and

have a limited range of application.

The effect of fabric has been established as a major

concern when it comes to testing field samples in the lab-

oratory, on account of sampling disturbance destroying the

grain fabric. Quantification of in situ fabric is still an open

problem and hence, considerable judgement is needed in

order to map laboratory test results to field conditions.

Given that VS can be measured both on laboratory speci-

mens and in the field, we are motivated to explore the

possibility of quantifying soil fabric using VS. In this paper,

we conduct numerical simulations in two dimensions to

investigate the effect of fabric on liquefaction resistance

and shear wave velocity (VS) of soils. We use the ‘level set

discrete element method’ (LS-DEM) [12, 14]—a variant of

the discrete element method (DEM) [6] that can accurately

depict irregular particle shapes. We conduct our numerical

analysis in four steps. First, we generate two granular

assemblies that have the same stress state and void ratio but

different fabrics. We achieve this by subjecting the two

granular assemblies to different stress histories—simple

shear and biaxial loading, respectively. Second, we conduct

constant-volume biaxial tests and observe that the two

assemblies have a different shear strength which manifests

in distinct static behaviors. This is expected due to the two

assemblies having a different fabric. Third, we conduct a

numerical bender element test [18, 27, 35] to determine the

trends in VS anisotropy of the two assemblies. Finally, we

consider three different representations of contact fabric to

determine whether it is possible to use VS anisotropy as a

proxy for fabric anisotropy.

The novelty of the present study is that it looks at the

relationship between fabric and VS using a more physics-

based lens. Our results suggest that a knowledge of fabric

anisotropy can give us information about VS anisotropy, but

the reverse—which is arguably more important from an

engineering standpoint—may not always be true. For a

simple shear stress history, a knowledge of VS anisotropy

could help us in quantifying fabric anisotropy and give us

useful insight into the liquefaction resistance of the gran-

ular assembly. The same cannot be said for a stress history

of biaxial loading. Our micro-mechanical analysis suggests

that this discrepancy may be attributed to the differences in

behavior of fabric anisotropies for the two stress histories.

For the simple shear stress history, the strong and weak

fabrics seem to have a similar alignment. This imposes a

preferential direction for VS anisotropy. However, for the

biaxially loaded stress history, the strong and weak fabrics

seem to have different alignments. The orientation of the

weak fabric also contributes to VS anisotropy since VS is a

small-strain parameter. Hence, for such a sample, knowl-

edge of VS anisotropy alone is insufficient to uniquely

determine fabric anisotropy. This observation is consistent

with the well-known concern regarding the use of small-

strain VS to predict liquefaction behavior, which is a

medium- to large-strain phenomenon [2, 11, 41] and being

a measure of deviatoric strength, maybe considered to

depend on the strong fabric [29].

We close by suggesting that for recent (Holocene-age)

deposits with negligible cementation and with a seismic

history, VS anisotropy could provide useful information

about fabric anisotropy and consequently liquefaction

resistance. From a practical viewpoint, the constraints

placed on the soils are not a big concern since liquefaction

assessments are generally done on liquefiable soils—soils

that meet the aforementioned constraints, thus also sup-

porting the prevalent practice of using VS-based liquefac-

tion charts. A knowledge of in situ fabric obtained via VS

measurements could enable development of more physical

procedures to map laboratory or simulation results to field

conditions.

2 Simulation methodology

We conduct our numerical investigation using the ‘level set

discrete element method’ (LS-DEM) [12, 14]. LS-DEM is

a variant of the discrete element method (DEM), which is a

numerical method that describes the mechanics of an

assembly of particles [6]. LS-DEM enables an accurate

depiction of irregular particle shapes using level sets. In

this work, we use a 2D level set representation of caicos

ooid grains as obtained by Lim et al. [20], following the

characterization methodology proposed by Vlahinic et al

[39]. These grains are fairly well rounded, with aspect

ratios ranging between 1 and 2. They are obtained in

dimensions of pixels, which we rescale assuming a pixel
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size of 0.10952 mm2, yielding a mean grain area of 5.4

mm2. Thickness of grains is assumed to be 1 pixel length.

Table 1 outlines the values of model parameters used in the

LS-DEM model. The same model parameters were used for

both static (i.e., biaxial) and dynamic (i.e., bender element)

simulations. Our damping model involved the use of a high

value of global damping (5� 103 s�1), coupled with zero

contact damping. The simple approach of using only global

damping was checked by conducting a verification exer-

cise, as reported in Appendix. Our time step is equal to

1.36 ls, which is smaller than the critical time step required

for stable DEM analysis [37]. To determine the value, we

followed the approach of Tu and Andrade [37] using the

critical time step corresponding to conventional circular-

grain DEM as a starting point. The particle with the

smallest area was considered, and the radius of an equiv-

alent circle was used to calculate the critical time step for a

system with rotational degrees of freedom. Since the grain

shapes in the present work are more complicated, we used

a time step smaller than the calculated value as an extra

precaution.

2.1 Initial fabric quantification

We initially quantify fabric using the classic second-order

tensor based on contact normals [13], hereafter referred to

as the contact tensor:

Fij ¼
1

N

XN

c¼1

nci n
c
j ð1Þ

where nci is the i�th component of contact normal at

contact c. The fabric anisotropy A is defined as:

A ¼ 2ðF1 � F2Þ ð2Þ

where F1 and F2 are the major and minor principal values,

respectively, of the contact tensor. The orientation ðh1Þ of
F1 may be used to define the orientation of contact

anisotropy A. We can use a second-order Fourier expansion

to obtain the orientational distribution PðhÞ of contact

normals [4]:

PðhÞ ¼ 1

2p
f1þ A cos 2ðh� h1Þg ð3Þ

where h is the orientation of a contact normal. A perfectly

isotropic fabric will be circular in polar coordinates,

whereas an anisotropic fabric will tend toward a ‘peanut’

shape.

This gives us an initial understanding for the fabric of

our granular assemblies. There are many different ways to

quantify fabric [3, 15]. In Sect 5, we will discuss other

fabric representations.

2.2 Granular assembly generation

Our objective in this section is to obtain two granular

assemblies with respective stress histories of simple shear

and biaxial loading, such that they have similar stress states

and void ratio but different fabrics. Figure 1 summarizes

our methodology to obtain an initial assembly. The initial

assembly needs to be dense. This is because the numerical

analysis of the bender element test was based on the works

of O’Donovan et al. [28] where the numerical DEM

assemblies were dense. The need for dense assemblies

implies more computational effort, which is all the more

significant since we estimate that in 2D, LS-DEM simu-

lations cost an order of magnitude more time compared to

conventional DEM. Hence, we pursue an unconventional

approach to assembly generation. We initially generate a

hexagonal packing of 800 grains in an approximate aspect

ratio of 1:2. The assembly is isotropically consolidated to 5

Table 1 Model parameters and values used in the LS-DEM model

Model parameters Values

Inter-particle friction 0.3

Wall friction 0

Normal contact

stiffness (particle and wall)
2.74 �108 N/m

Particle shear contact stiffness 2.47 �108 N/m

Particle density 2.7 �103 kg/m3

Global damping 5 �103 s�1

Contact damping 0

Time step 1.36 �10�6 s

800 GRAIN ASSEMBLY 
(RECTANGULAR)

800 GRAIN ASSEMBLY 
(SQUARE)

3200 GRAIN ASSEMBLY 
(2X2 GRID OF 800 GRAIN 

ASSEMBLY)

3200 GRAIN ASSEMBLY
(INITIAL ASSEMBLY)

VERTICAL 
COMPRESSION

DUPLICATION

SHAKING AND
CONSOLIDATION 

Fig. 1 Initial assembly generation
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MPa and unloaded to 100 kPa, and then the horizontal and

vertical boundaries are moved to change the aspect ratio to

1:1. The assembly is then allowed to relax with the inter-

particle friction turned off to result in a dense stress-free

assembly. However, a larger assembly is desired to obtain

estimates of Vs in different directions, as described in

Sect. 4.2. Therefore, we duplicate the 800-grain assembly

in a 2� 2 grid, which results in clear interfaces at the

boundaries of the individual 800-grain assemblies. To

remove the interfaces, we shake the 3200 grain assembly.

The assembly is then allowed to relax with the inter-par-

ticle friction turned off, resulting in a stress-free assembly.

Finally, we turn the inter-particle friction back on and

isotropically consolidate the assembly to 100 kPa. This

serves as our initial granular assembly.

Our initial granular assembly has a high inherent contact

anisotropy (Fig. 2a) and an isotropic stress state (Fig. 3a).

We subject this assembly to two different loading histo-

ries—simple shear and biaxial loading, respectively—with

the constraint that the two resultant assemblies should have

similar stress states and void ratio. This constraint helps

isolate the effect of fabric. We refer to the two assemblies

as ‘assembly 1’ and ‘assembly 2’. The loading history for

assembly 1 involves half a cycle of simple shear loading,

wherein the assembly is sheared to an angle of 20�, and
subsequently sheared back to 0�. This significantly alters

the initial contact anisotropy, giving the assembly a pro-

nounced diagonal anisotropy (Fig. 2b), with the principal

direction of the contact tensor at an angle of 34� clockwise
with the vertical. Furthermore, this loading history results

in the assembly having a residual deviatoric stress, owing

to the inherent non-elastic nature of the system. The

assembly has a resultant void ratio of e = 0.17, and a stress

state of p = 85 kPa, and q = 30 kPa. Here, p ¼ ðr11 þ

r22Þ=2 is the mean stress (or pressure), and q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr22 � r11Þ2 þ 2r212

q
is the deviatoric stress. r11 is the

horizontal stress, r22 is the vertical stress, and r12 is the

shear stress. Note that the drop in mean stress to 85 kPa is

on account of subjecting the assembly to a stage of relax-

ation (after simple shear loading) to allow any vibrations to

damp out and to let the assembly reach static equilibrium.

A visualization of the anisotropic stress state of assembly 1

(Fig. 3b) shows how the stress-induced anisotropy affects

the contact fabric (Fig. 2b).

The loading history for assembly 2 involves biaxial

loading, with the constraint that the final stress state and

void ratio should be similar to that of assembly 1. We first

subject assembly 2 to isotropic unloading, and subse-

quently to vertical compression at constant horizontal

stress, resulting in the same p and q as assembly 1. The

contact anisotropy of the second assembly is predomi-

nantly vertical, oriented at an angle of 5� counter-clock-

wise with the vertical (Fig. 2b). This is very similar to the

inherent contact anisotropy in the initial assembly, which is

oriented at an angle of 7� counter-clockwise with the ver-

tical (Fig. 2a). Assembly 2 has a resultant void ratio of

e ¼ 0:15. The void ratios of the two assemblies are similar

but not exactly the same and may have a small contribution

towards different macroscopic behaviors of the two

assemblies. However, it will become apparent in Sects. 3

and 5 that the different macroscopic behaviors of the two

assemblies can be attributed to them having a different

fabric.
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Fig. 2 Contact anisotropies of different assemblies—the rose diagrams show the orientational distribution of contact normals (clockwise from

vertical, in degrees). a Initial assembly with A ¼ 0:19; h1 ¼ �7 �. b Assembly 1 with A ¼ 0:34; h1 ¼ 34 �, Assembly 2 with A ¼ 0:25; h1 ¼ �5

�. Here A is contact anisotropy and h1 is the orientation of the maximum principal value measured clockwise from the vertical, as defined in

Sect. 2.1
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Remark 1 Since we have subjected assembly 1 to half a

cycle of simple shear loading, conceptually it may be

considered as being subjected to forces similar to those

imposed on soil elements during an earthquake. This fol-

lows Seed and Peacock [34], where it has been discussed

that the main forces acting on in situ soil elements during

an earthquake are due to an upward propagation of shear

waves. These waves impose reversible shear stresses on the

soil element. Furthermore, it has been discussed that an

irregular stress history during an earthquake may be con-

sidered equivalent to a number of uniform loading cycles,

for the purposes of determining liquefaction resistance

[32, 33]. Hence, assembly 1 may be considered to be

analogous to a recent soil deposit with seismic history; this

may be considered ‘‘liquefiable’’ for the purposes of liq-

uefaction strength assessment, as discussed in the intro-

duction. Note that we mean ‘recent’ to imply soil deposits

where aging effects due to cementation are negligible

(which is true for Holocene-age deposits). On the other

hand, assembly 2 may be considered to be analogous to a

recent soil deposit with no seismic history.

3 Static behavior

Liquefaction behavior is associated with undrained loading

of saturated granular soils. A common approach to mod-

eling such behavior involves assuming that the bulk mod-

ulus of pore water is large with respect to the bulk modulus

of the soil skeleton. As a result, undrained loading of a

saturated soil can be simulated by imposing a constraint of

constant-volume on a dry assembly. In this section, we

consider the static behavior of the two assemblies under

two cases of biaxial loading, both under the constraint of

constant-volume. In the first case, both the assemblies are

compressed in the vertical direction. Results are shown in

Fig. 4a, b. Assembly 2, whose contact fabric anisotropy is

largely aligned with the direction of vertical compression,

shows stable strain-hardening behavior. However, assem-

bly 1, whose contact fabric anisotropy is oriented at an

angle of 34� to the vertical, shows extensive strain-soft-

ening associated with liquefaction behavior. In the second

case, both the assemblies are compressed in the horizontal

direction (Fig. 4c, d). Assembly 1 exhibits a behavior very

similar to the vertical compression case. Assembly 2,

however, behaves very differently under horizontal com-

pression. It starts by strain-softening spontaneously, almost

going through what may be considered an ‘unloading’

phase and reaches an almost isotropic stress state. Subse-

quently, it undergoes a phase of rebuilding and then liq-

uefies again, exhibiting the classic hook pattern. Note that

in field assessments of liquefaction resistance, it is behavior

under vertical compression that is relevant, and hence

assembly 1 may be considered to be liquefiable. Horizontal

compression was considered here for the purposes of

exploring the difference in behavior of the two assemblies.

Given the respective fabric anisotropies of the two

assemblies (Fig. 2 and insets of Fig. 4b, d), this difference

in static behavior is expected. It is well known that a high

contact anisotropy in the direction of loading facilitates

load transmission through the granular assembly [19, 30].

Assembly 1 has contacts largely oriented away from both

the horizontal and vertical, and hence has a low deviatoric

strength under both vertical and horizontal compression.

Assembly 2 has contacts largely oriented along the vertical,

hence it has a high deviatoric strength along the vertical

direction and has almost no strength along the horizontal

direction. This results in an immediate catastrophic failure

(more pronounced than assembly 1) when subjected to

horizontal compression. Presumably, during this process,
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Fig. 3 Stress anisotropies of different assemblies. a Initial assembly with an isotropic stress state, p ¼ 100 kPa, q ¼ 0 kPa. b Assembly 1 and

Assembly 2, both with p ¼ 85 kPa, and q ¼ 30 kPa
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the contacts re-align giving the assembly some strength to

support deviatoric loads in the horizontal direction, before

liquefying again. In this work, our focus is on the initial

state of the assemblies, prior to biaxial loading, so we do

not delve into what the intermediate state of the assemblies

may look like. The evolution of contact anisotropy during

such intermediate states is a subject of considerable interest

in the literature [9, 43]. Importantly, Fig. 4 clearly

demonstrates how two granular assemblies with the same

stress state and similar void ratio can exhibit different

behavior if their fabric is different.

4 Shear velocity tests

Having seen the two assemblies show distinct liquefaction

behaviors, we now seek to estimate the small-strain shear

velocities of the two assemblies. From the prevalent

understanding of VS-based liquefaction correlations, we

expect assembly 2 to have a higher vertical VS than

assembly 1. For horizontal VS, however, we might expect

assembly 1 to do better than assembly 2. However, the

results of this section are not as expected, thus bringing

into light a need to exhibit care while using VS to estimate

liquefaction resistance. We will discuss that further in

Sect. 5.

4.1 Numerical bender element test

We estimate the shear wave velocity (VS) by simulating a

‘bender element test’ [18, 27, 35]. The bender element test

is a common experimental test to measure shear wave

velocity in soils. It consists of a transmitter element that

generates a shear wave, and a receiver element that detects

the transmitted disturbance. We choose a bin of particles as

the transmitter element and implement rigid walls at the
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Fig. 4 Static behavior of the two granular assemblies under constant-volume compression. a, b show results for constant-volume vertical

compression; c, d show results for constant-volume horizontal compression. a, c deviatoric stress (q) versus volumetric stress (p). b Deviatoric

stress (q) versus vertical strain (�22). d Deviatoric stress (q) versus horizontal strain (�11). Insets in (b) and (d) show direction of compression in

relation to the initial fabric
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boundaries of the assembly. In simulations, as opposed to

experiments, it is possible to know the displacement of

each particle. Hence, instead of having a single particle act

as a receiver, we track the shear displacement for a central

column of grains (away from the boundaries) along the

entire length of the assembly (denoted by grains colored

with a black to white gradient in Fig. 5). This simplifies the

analysis as it becomes convenient to identify shear waves.

The assembly is discretized into bins with approximate

dimensions of 40 � 40 pixels, or 4.4 � 4.4 mm2. We plot

two-dimensional contours of the central column of particle

displacements along the direction of propagation. In the

contour plot, the zero crossings of the received signals are

clearly visible as a distinct contour line. The average slope

of this line is then taken as the shear wave velocity [28].

Figure 6 shows the bender element test results for an 800

grain assembly, isotropically consolidated to 50 kPa. The

transmitter bin is the bottom-most bin of the central col-

umn. The slope of the zero contour line yields a shear

velocity estimate of VS � 200 m/s.

A common input signal is a single sine wave. For a clear

output response, it is desirable for the frequency of the sine

wave to approach the resonant frequency of the system.

Since we need to estimate VS in different directions, we

need to know the resonant frequency in each direction

since it is affected by soil stiffness [18]. To circumvent this

issue, we use a square wave input with a rise time of 100

time steps and amplitude of 1 pixel length. A square wave

is a robust input signal that contains all the frequencies and

generates a clear response regardless of soil stiffness [18].

A drawback of the square wave is that the system response

necessarily exhibits a ‘near-field’ effect due to faster

moving compressional waves [31]. As a result, it is often

not straightforward to determine the arrival of the shear

wave. Although the point of first inflection is sometimes

considered to be a fair estimate of shear wave arrival [38],

research suggests that the arrival of the shear wave does not

correspond to a distinctive point in the signal [23]. Various

signal interpretation techniques exist to aid in estimating

shear wave velocity in an experimental bender element test

[28, 40]. For our purpose, since we have access to dis-

placement of each particle, we track the shear displacement

for a central column of grains along the entire length of the

assembly. Note that the area on the contour plot between

the initial noise and the zero contour line corresponds to the

near-field effect [28].

Remark 2 For a verification of our implementation of the

bender element test, refer to Appendix. The verification

exercise involves obtaining a true value of VS—via a static

biaxial test—of the assembly shown in Figure 5. The value

of VS obtained in Fig. 6 is checked against the aforemen-

tioned true VS. The true VS is also used as a basis for

determining the appropriate discretization of the assembly

into bins—as mentioned earlier in the section. It is also

used as a basis for checking the appropriateness of our

damping model, as well as for checking the amplitude of

the input square wave. Amplitudes larger than 1 pixel

length (0.1095 mm) resulted in plastic deformations and

the shear velocity obtained did not correspond to small-

strain or elastic stiffness.

4.2 Shear velocity results

We use the numerical bender element test technique

described in Sect. 4.1 to obtain VS estimates for the two

3200-grain assemblies. We estimate VS in different direc-

tions to investigate the correlation of anisotropy of VS with

the fabric. Recall from Sect. 2.2 that both assembly 1 and

assembly 2 have similar macroscopic stress states (p = 85

kPa, q ¼ 30 kPa) and void ratios (e ¼ 0:17 and 0.15,

respectively).

We start by estimating VS in the vertical direction.

Figure 7 shows sample contour plots with slope estimates,

for the 3200-grain assembly 1 and 3200-grain assembly 2.

For these plots, the transmitter bin is not always the bot-

tom-most bin of the central column. Different locations of

the transmitter bin along the central column yield slightly

different VS estimates, owing to the inherent heterogeneity

of the assembly. It is also possible that our technique of

assembly generation induced further heterogeneities in the

grain fabric. Hence, multiple tests (at least three) are

simulated with transmitter bins placed at different locations

along the central column in order to obtain statistical

estimates of VS. For certain tests, contour plots do not yield

TRANSMITTER 
BIN

CENTRAL COLUMN 
WITH RECEIVER BINS

Fig. 5 Illustration of how shear displacement is tracked for a central

column of grains. The central column is denoted by grains that are

colored with a black to white gradient
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distinct contour lines corresponding to zero crossing. Fig-

ure 8 shows one such test, where there is a high signal

dissipation resulting in the lack of a distinct contour line

beyond the first few receiver bins. A distinct contour line is

necessary in order to estimate its average slope, and con-

sequently VS. While estimating the slope, we consider a

subset of the contour line to ensure that the average slope

line (dashed blue line in Figs. 6 and 7) passes the trans-

mitter bin near the time step corresponding to initiation of

the input wave. Following this approach, the mean vertical

VS for assembly 1 was estimated to be 110 m/s, while for

assembly 2 it was estimated to be 131 m/s. A preliminary

justification for these values can be obtained from Fig 2b.

Assembly 2 has contacts largely oriented along the verti-

cal—facilitating faster load transmission in the vertical

direction resulting in a higher vertical VS. This is not the

case for assembly 1. This is also consistent with the

respective behavior of the two assemblies under constant-

volume vertical compression (Fig. 4a, b), as discussed in

Sect. 3.

In order to investigate correlations between VS aniso-

tropy and fabric anisotropy (Sect. 5), we need to obtain

estimates of VS in different directions for both the assem-

blies. We conduct an ‘angle sweep’, i.e., we conduct tests

where the transmitter bin is sheared at an angle to the

horizontal to transmit a shear wave at an angle. Figure 9

illustrates one such test configuration. The central column

(denoted by grains with a black to white gradient) which

acts as the receiver is inclined, or rotated, at the same angle

with the vertical. Furthermore, the transmitter bin is placed

away from the boundaries to prevent wave reflections from

corrupting the test results. Different locations of the

transmitter bin along the central column yield slightly

different VS estimates, owing to the inherent heterogeneity

of the assembly. Hence, multiple tests (at least three) are

simulated with the transmitter bin placed at different

(a) (b)

Fig. 6 Shear velocity estimate for the assembly in Fig. 5. The blue line in the contour plot in (b) is the average slope estimate for the zero

crossing of the received signal. 1 bin = 40 � 40 pixels, 1 pixel length ¼ 0.1095 mm, 1 time step ¼ 1.36 ls

(a) (b)

Fig. 7 Example contour plots for transverse displacement. a assembly 1. b assembly 2. The dashed blue line on the plots is the average slope

estimate for the zero crossing of the received signal, which yields a VS estimate (110 m/s for assembly 1 and 148 m/s for assembly 2). 1 bin

¼ 40� 40 pixels, 1 pixel length = 0.1095 mm, 1 time step ¼ 1:36ls. Note that the assembly 1 example showing a more distinctive crossing than

the assembly 2 example has no special meaning and can be attributed to the inherent heterogeneity of the assemblies
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locations along the central column to obtain statistical

estimates of VS. As with the vertical VS tests, not all tests

yield contour plots with distinct contour lines correspond-

ing to zero crossing. For the ‘angle sweep’, the inclination

angle h of the central column is varied from ð�90; 90��, in
increments of 30�. The angle is positive when measured

clockwise from the vertical. This yields VS estimates for

the entire rotation of 360� since the central column is the

same for rotation of h and hþ 90 (�). Figure 10 shows the

results of the ‘angle sweep’ for assemblies 1 and 2.

Assembly 1 has a pronounced VS anisotropy, with a

markedly high VS at an angle of 30�, clockwise with the

vertical. Assembly 2 also shows some anisotropic behavior,

although less so compared to assembly 1. Interestingly,

assembly 2 has a high VS in the horizontal direction, sug-

gesting a high liquefaction resistance when compressed

horizontally. However, this is inconsistent with the results

in Fig. 4c, d. We will discuss some of the possible micro-

mechanics responsible for this discrepancy after quantify-

ing the fabric in the next section.

5 Quantification of fabric

In Sect. 2.1, we did an initial quantification of the granular

fabric using contact normals. We now consider a few more

fabric measures and gauge their correlations with VS ani-

sotropy. VS is considered to be a measure of shear stiffness

of a granular assembly, since it is related to the small-strain

elastic shear modulus via the wave equation. From a micro-

mechanical perspective, since force transmission takes

place through contacts between the grains, fabric measures

based on contact properties are considered to be closely

related to the stiffness response of a granular assembly, as

opposed to particle-based fabric measures [15]. Therefore,

we focus our investigation on fabric measures based on

contact properties.

Specifically, we consider three fabric tensors. These are

(1) contact tensor (same as Sect. 2.1), (2) branch tensor

(based on branch vectors), and (3) mixed tensor (based on a

mix of contact normals and branch vectors). In addition, we

also consider fabric tensors defined using subsets of all

contacts, namely the ‘strong’ and ‘weak’ contacts [29].

‘Strong’ contacts refer to contacts carrying forces greater

than the mean contact force. On the other hand, ‘weak’

contacts refer to contacts carrying forces lower than the

mean contact force. Strong contacts tend to be aligned with

the maximum principal stress and carry most of the devi-

atoric loads imposed on an assembly. The alignment of

weak contacts, however, tends to depend on stress history.

Under biaxial loading, weak contacts tend to be aligned

perpendicular to the strong contacts and ostensibly help in

propping them up [29]. Contrarily, under conditions of

simple shear, it has been shown that weak contacts have the

same alignment as strong contacts and ostensibly help in

carrying deviatoric load [7]. We will observe this history-

dependence of weak contacts in the next three Sects. (5.1–

5.3), which will inform our discussion regarding correla-

tions of fabric with VS in Sect. 5.4. The results of sec-

tions 5.1–5.3 will also help us discuss the oft-quoted

criticism against the use of VS for assessing liquefaction

susceptibility of soils—that VS is a small-strain elastic

parameter while liquefaction is a medium-to-large-strain

plastic phenomenon.

Fig. 8 Contour plot for transverse displacement, for assembly 1 with

transmitter at bin 7. Note the high signal dissipation and the lack of a

distinct contour line beyond the first few receiver bins, which disables

a VS estimation. 1 bin ¼ 40� 40 pixels, 1 pixel length ¼ 0.1095 mm,

1 time step ¼ 1:36ls

TRANSMITTER BIN

SHEAR INPUT 
DIRECTION

CENTRAL COLUMN 
WITH RECEIVER BINS

Fig. 9 Illustration of how VS estimates are obtained in different

directions. The central column (denoted by grains that are colored

with a black to white gradient) is rotated at a desired angle with the

vertical. The transmitter bin is located in the central column and is

sheared perpendicular to the inclination of the central column.

Compare with Fig. 5
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5.1 Contact tensor

The contact tensor is a fabric tensor based on contact

normals, as defined in Sect. 2.1. It was one of the first

fabric measures proposed to study stress-induced aniso-

tropy in granular assemblies [13]. This definition was

motivated by the fact that the macroscopic stress is trans-

mitted microscopically via contact forces in a granular

assembly. In addition to the fabric quantification in Eq. 1,

we consider the ‘strong’ and ‘weak’ subsets of contacts in

the assembly to define two more fabric tensors:

FS
ij ¼

1

jSj
X

c2S
nci n

c
j ð4Þ

FW
ij ¼ 1

jW j
X

c2W
nci n

c
j ð5Þ

where S refers to the set of strong contacts and W refers to

the set of weak contacts, respectively, in a granular

assembly. |S| and |W| are the cardinality of S and W,

respectively, which refers to the number of elements in

each set. The anisotropy of the fabric tensors in Eqs. 4

and 5 is defined in the same manner as in Eq. 2. The ori-

entational distribution of the contact normals in the strong

and weak subsets is defined using the second-order Fourier

expansion as shown in Eq. 3. Figure 11 shows the orien-

tational distribution of the contact tensor for (a) all contact

normals, (b) strong contact normals, and (c) weak contact

normals.

5.2 Branch tensor

The branch tensor is a fabric tensor based on branch vec-

tors and was proposed by Magoariec et al. [22] as a pos-

sible internal variable to account for the structural or

inherent anisotropy of a granular assembly. It is defined as:

Gij ¼
1

N

XN

c¼1

lci l
c
j ð6Þ

(a)

(b)

Fig. 10 Results of VS ‘angle sweep’, giving estimates of VS in different directions. a Assembly 1, b Assembly 2. Left: Polar plot with the radius

corresponding to VS in m/s, and angle corresponding to angle with vertical (clockwise in degrees). Right: Linear plot of VS or shear wave

velocity, in m/s versus angle with vertical (clockwise in degrees). The error bars correspond to one standard deviation

1198 Acta Geotechnica (2020) 15:1189–1203

123



where lci is the i-th component of the branch vector as

contact c, and N is the number of contacts in the granular

assembly. The anisotropy of the branch tensor is defined as:

A ¼ 2ðG1 � G2Þ
trðGÞ ð7Þ

where G1 and G2 are the major and minor principal values,

respectively, the boldface G refers to the branch tensor, and

trðGÞ ¼ ðG1 þ G2Þ refers to the trace of G. Note that for

ease of presentation, we use A to define anisotropy for all

types of fabric tensors considered in this work, where the

specific fabric tensor in question is clear from the context.

The orientational distribution of the branch tensor is cal-

culated in a manner similar to Eq. 3. The relationship in

Eq. 3 assumes that the trace of the fabric tensor is 1, which

is why we normalize the anisotropy of the branch tensor by

the trace. Furthermore, we also define branch tensors for

the strong and weak contacts of the granular assembly, in a

manner similar to Eqs. 4, 5.

The definition of branch tensor was motivated by

numerical tests on granular assemblies of non-spherical

particles where it was observed that the contact tensor was

unable to sufficiently predict the macroscopic stresses [26].

The branch tensor captures the relative positions of parti-

cles, which are relevant for quantifying the macroscopic

stress state [5]. It also helps capture the effect of shape in

non-spherical assemblies since contact normals and branch

vectors are not collinear. Figure 12 shows the orientational

distribution of branch tensor for (a) all contacts, (b) strong

contacts, and (c) weak contacts.

5.3 Mixed tensor

The mixed tensor is a fabric tensor based on both contact

normals and branch vectors and was proposed by Kuhn

et al. [15]. It may be defined as:

Hij ¼
1

N

XN

c¼1

lci n
c
j ð8Þ

The anisotropy of the mixed tensor is defined in a manner

similar to Eq. 7:

A ¼ 2ðH1 � H2Þ
trðHÞ ð9Þ

where H1 and H2 are the major and minor principal values,

respectively, the boldface H refers to the mixed tensor, and

trðHÞ ¼ ðH1 þ H2Þ refers to the trace of H. Mixed tensors

for the strong and weak contacts of the granular assembly

can also be defined in a manner similar to Eqs. 4, 5.

The definition of the mixed tensor was inspired by the

microscopic definition of stress in a granular assembly,

where the stress tensor is a volume average of the dyadic

product between contact forces and branch vectors [5]. The

orientations of contact forces are fairly similar to the ori-

entations of contact normals (differences are constrained

by the inter-particle friction), implying that the structural

anisotropy captured by the mixed tensor is likely related to

stress anisotropy. Figure 13 shows the orientational distri-

bution of mixed tensor for (a) all contacts, (b) strong

contacts, and (c) weak contacts.

5.4 Discussion of correlations between VS
anisotropy and fabric

An inspection of Figs 11, 12, 13 makes it apparent that

assembly 1 and assembly 2 show different trends.

Assembly 1 that has a stress history of simple shear has the

entire network, including the subsets of strong and weak

contacts aligned fairly uniformly, regardless of the type of

fabric measure. The uniformity is more intense for contact

and mixed tensors which incorporate information about
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contact normals. This is expected following the work by

Estrada et al. [7], where it was shown that in the presence

of rolling resistance—as is the case with non-spherical

particles—simple shear stress history causes weak contacts

to have the same alignment as strong contacts. This implies

a high shear stiffness and a high VS in the same direction,

which is consistent with the results of VS anisotropy in

Fig. 10. This suggests that for a stress history of simple

shear, VS anisotropy is an effective indicator of fabric as

well as liquefaction resistance. Note that the uniformity of

orientation for the branch tensor is less intense since branch

vectors are not collinear with contact normals. Neverthe-

less, it is clear that using branch vectors to quantify fabric

does not provide additional insight for a stress history of

simple shear.

Assembly 2, however, has a stress history of biaxial

loading and shows a tendency to have its weak network

aligned distinctly from the alignment of the strong network.

This behavior under a stress history of biaxial loading was

discussed by Radjai et al. [29] wherein the strong network

is load-bearing and carries the bulk of the deviatoric load,

while the weak network serves to support the strong net-

work like an interstitial fluid. In our case, this behavior is

most conspicuous in the anisotropic distributions of branch

tensor and mixed tensor. The strong network has a pre-

dominantly vertical alignment, which is reflected in (1) a

high VS in the vertical direction, and (2) stable behavior

under constant-volume vertical compression (Figs. 4

and 10). A high VS in two other directions—along the

horizontal direction and along 60� counter-clockwise from

the vertical—can be understood by looking at the
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anisotropy of weak contacts, especially for the case of the

mixed tensor. The weak network seems to be able to sus-

tain small elastic strains, resulting in a high value of VS in

directions where the weak network is aligned. Most of the

deviatoric load is still carried by the strong network, as was

evidenced by the spontaneous strain-softening behavior of

assembly 2 under constant-volume horizontal compression

(Fig. 4). The ability of the weak network to sustain small

elastic strains suggests that for a stress history of biaxial

loading, VS anisotropy is not an effective indicator of fabric

and should not be used to evaluate liquefaction resistance.

It is interesting to note that a knowledge of fabric ani-

sotropy can give us information about VS anisotropy and

liquefaction resistance for both assemblies. Furthermore,

for a stress history of simple shear, VS anisotropy seems to

give information both about fabric and liquefaction resis-

tance. This has useful implications for the geotechnical

community that uses VS to model liquefaction resistance

[2, 11, 41]. As discussed in Sect. 2.2, the simple shear

stress history can be conceptually compared to a seismic

history. This suggests that for sites with liquefiable soil

deposits, that is to say recent soil deposits with a seismic

history, the use of VS to model liquefaction resistance may

be justified from a micro-mechanical perspective. Caution

must be exercised if the stress history is analogous to

biaxial loading, for which our results suggest that the oft-

quoted criticism about VS being a small-strain elastic

parameter while liquefaction is a medium-to-large-strain

phenomenon seems to hold true.

Finally, we observe that the explanation of trends in VS

anisotropy seems to be most effective when using the

mixed tensor fabric measure. This observation about the

efficacy of the mixed tensor to capture stiffness anisotropy

is not surprising, given that Kuhn et al. [15] made similar

observations.

Remark 3 The motivation behind the current work was to

incorporate more physics into the fabric-VS relationship

that may eventually help in mapping laboratory results to

field conditions. The state of the art accounts for the effect

of fabric on VS (or other elastic parameters) via empirical

correlations between VS and confining stress or void ratio,

where the empirical constants are assumed to quantify soil

structure or fabric (e.g., [1, 8, 25, 36, 42]). Such studies

have proven to be very useful but the inherent empiricism

in the correlations means that they tend to be very soil-

specific and have a limited range of application. By

showing parallels in trends between fabric anisotropy

(especially using the mixed tensor formulation) and VS

anisotropy, the current work complements the aforemen-

tioned state of the art. It now motivates the development of

the next generation of correlations that can be more phy-

sics-based. Such a future development could involve (1)

in situ measurements of VS, and (2) experiments and 3D

simulations over a range of confining stresses and void

ratios. Different sample preparation techniques could be

explored such that VS anisotropy in the experiments (or

simulations) matches the VS anisotropy in the field. Con-

currently, the experiments/simulations could be used to

develop correlations between VS and fabric, using fabric

quantification approaches similar to the types presented in

this work. Once correlations have been developed,

knowledge of in situ VS anisotropy (especially for liquefi-

able soils, i.e., soils that are recent deposits and have a

stress history of simple shear) may help determine in situ

fabric.

6 Summary and conclusions

Figure 4 shows that the two 3200 grain assemblies— that

are similar macroscopically but different microscopi-

cally— behave differently under constant-volume biaxial

compression, implying different liquefaction resistance.

Figure 10 shows that the two assemblies yield distinct

anisotropic estimates of VS. The macroscopic state of the

assemblies was characterized by the volumetric stress p,

the deviatoric stress q, and the void ratio e. The micro-

scopic state was characterized by the fabric, which was

quantified using the contact tensor, the branch tensor, and

the mixed tensor. Figure 13 shows the orientational dis-

tribution of the mixed tensor, which helps understand

trends in VS anisotropy. Our results suggest that for liq-

uefiable soil deposits, that is to say recent Holocene-age

deposits with negligible cementation and a seismic his-

tory, the use of VS to model liquefaction resistance may

be justified from a micro-mechanical perspective. Care

needs to be taken that inferring fabric and liquefaction

resistance from VS be done only for liquefiable soils under

the aforementioned conditions. If a soil deposit has sig-

nificant cementation and has a stress history that cannot

be approximated using simple shear loading, then VS—

which is a small-strain elastic property—may not be an

adequate measure to quantify fabric and consequently

liquefaction resistance—which is a medium- to large-

strain phenomenon. From a practical viewpoint, the con-

straints placed on the soils are not a big concern since

liquefaction assessments are generally done on soils that

meet the aforementioned constraints and are liquefiable,

thus also supporting the prevalent practice of using VS-

based liquefaction charts. Furthermore, for liquefiable

soils, a knowledge of VS anisotropy may give us knowl-

edge of in situ fabric, enabling development of a more

physical procedure to map laboratory or simulation results

to field conditions.
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Appendix

Verification exercise for numerical bender
element test

In order to verify our implementation of the bender element

test, we also estimate the shear wave velocity VS by cal-

culating Gmax in a biaxial test. The two quantities are

related as:

VS ¼
ffiffiffiffiffiffiffiffiffiffi
Gmax

q

s
ð10Þ

where q is the density of the granular assembly. To mea-

sure Gmax, an assembly in an isotropic stress state can be

subjected to infinitesimal strains such that the response is

linear or elastic. In our 3200 grain assembly, isotropic

consolidation also results in shear stresses on the walls,

typically of the order of about 1% of the confining pressure.

Such a small amount of shear stress turned out to be suf-

ficient to generate non-linear stress–strain curves, disabling

the approximation of elastic constants. Hence, we resort to

the smaller 800 grain assembly, prepared as described in

Sect. 2.2. When the smaller assembly is consolidated to a

pressure of 50 kPa, shear stresses on the wall are negligible

(� 0:2% of confining pressure). Vertical loading to

infinitesimal strains yields a linear stress–strain curve

(Fig. 14), making it suitable for computing Gmax, and

consequently VS, enabling a comparison with the VS esti-

mate obtained in Fig. 6.

Following the approach by O’Donovan et al. [27], we

conduct a biaxial stress at constant horizontal stress, till a

set value of vertical strain is achieved. As shown in Fig. 14,

the plot of deviator stress q versus vertical strain �22 is a

straight line. The slope of the plot yields the elastic

Young’s modulus E:

E ¼ dq

d�22
¼ 237 MPa ð11Þ

where dq is the increment in deviatoric stress, and d�22 is

the increment in vertical strain. Note that deviatoric stress

q ¼ r22 � r11. Furthermore, by monitoring the horizontal

strain �11, we also obtain the Poisson’s ratio m, as shown in

Fig. 14:

m ¼ �d�11
d�22

¼ 0:21 ð12Þ

where d�11 is the increment in horizontal strain. Gmax is

then calculated as:

Gmax ¼
E

2ð1þ mÞ ¼ 97:9 MPa ð13Þ

To obtain VS, we need the density q of the granular

assembly, which is calculated as:

q ¼
qgrains � Agrains

Atot

¼ 2:33� 103 kg=m3 ð14Þ

where qgrains ¼ 2:7� 103kg=m3 is the density of grains as

specified in Table 1, Agrains ¼ 4:3� 103 mm2 is the total

area of grains in the assembly, and Atot ¼ 4:99� 103 mm2

is the total area of the assembly. Finally using Eq. 10, the

shear velocity is found to be VS ¼ 205 m/s, which is in

good agreement with the VS estimate obtained in Sect. 4.1.
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