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Abstract
This paper develops the 2D and 3D kinematically admissible mechanisms for analyzing the passive face stability during

shield tunneling using upper-bound analysis. The mechanisms consider trapezoidal distribution of support pressure along

tunnel face and partial failure originated at tunnel face above invert. For cohesionless soils, the support pressure is a

function of soil effective frictional angle u0 which determines the inclination of failure block and the normalized soil cover

depth C/D (soil cover depth/tunnel diameter) which affects the origination of the passive failure. For cohesive soils, the

support pressure is a function of u0, C/D, and the effective cohesion c0. The cohesion c0 has a relatively smaller impact on

the support pressure than u0 and C/D have. The mechanisms are verified by comparing the current solutions with a previous

upper-bound solution. The comparison shows that the current solutions are a general solution which is capable of pre-

dicting the passive face failure originated at any depth along tunnel face and the previous solution is a particular solution

with the assumption that the face failure originated at tunnel invert. The mechanisms are validated through application to a

practical project of shallowly buried, large diameter underwater tunnel. The validation shows that the mechanisms are

capable of assessing the tunnel face passive instability rationally.
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1 Introduction

Recent decades have seen an increasing pace of urban

tunnel construction driven by the demand of underground

space utilization and the advancement of tunneling tech-

nique. For example, in China, approximately 2500 km of

subway tunnels was constructed in the past two decades

and additional 5000 km of subway tunnels was planned for

the next two decades [24]. Most of the soft ground urban

tunnels were mechanized tunnels driven by earth pressure

balanced (EPB) shield or slurry shield (SS). Compared

with EPB shield tunneling, the SS tunneling controls

ground movement better in loosely saturated soils and is

used more widely in densely populated urban areas

underlain with unstable subsurface strata [11, 17].

During SS tunneling, the stability of excavation face is

protected by maintaining the slurry pressure in the front

cabin to support the external earth pressure. Inadequate or

excessive slurry pressure may cause active or passive

ground failures which generate large ground deformation

consequently. The active ground failure may cause the

collapse of the excavation face and has been investigated

intensively [1, 2, 4, 6, 8, 12–14, 16, 18, 20, 21, 28]. The

passive ground failure may cause blowout of the ground.

Field observation shows that the passive failure is poten-

tially more likely to occur during the excavation of shal-

lowly buried tunnels [3, 7, 32]. The field observation is also

supported by laboratory model tests [22, 29]. Typical

tunnel design requires 1–1.5 times of tunnel diameter of

soil cover above the crown to reduce the risk of passive

failure [30]. For large diameter tunnels, this criterion is
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difficult to meet under certain conditions, for example,

when crossing rivers. Recently, there have been several

large diameter tunnels crossing rivers in China, for exam-

ple, the 15.4-m-diameter tunnel crossing the Yangtze River

with 11.69 m of soil cover in Shanghai and the 11.6-m-

diameter Huanbei tunnel crossing the Dong River with

2.5 m of soil cover in Hangzhou. For these tunnels, the

passive failure creates a major risk during tunneling and

requires care examination during design.

The stability of tunnel face is typically analyzed using

limit analyses which include lower-bound and upper-bound

analyses. The lower-bound analysis determines the external

loads of the system based on the stress distribution that

satisfies the equilibrium equation, boundary conditions and

material yield criterion. The upper-bound analysis deter-

mines the external loads on a kinematically admissible

mechanism by balancing the rate of work done by external

forces with the rate of work which can be dissipated

internal the system. The velocity field applied in the upper-

bound analysis is convenient and is contained in actual

collapse mode or mechanism [5]. Therefore, the upper-

bound analysis is popularly used for face stability analysis.

During SS tunneling, the soil and hydrostatic pressures

are balanced by the slurry pressure which is adjusted by

controlling the inflow and outflow of the slurry in the cabin.

The slurry pressure follows a trapezoidal distribution with

a linear increase with depth at a rate of the unit weight of

the slurry, typically ranging between 10 and 12 kN/m3

[11, 15]. For small diameter tunnels, the slurry pressure can

be approximated as a uniform distribution with the resul-

tant force acting on the center of the working face [1].

Based on this assumption, Davis et al. [8] proposed a 2D

block failure model to investigate the face stability using

upper-bound analysis. Leca and Dormieux [14] introduced

a 3D conical model into the upper-bound analysis to

evaluate the support pressure against passive failure. Their

model was improved into a multi-block model along the

sliding surface to investigate the passive failure by Oberlé

[23] and Soubra [25, 26]. Mollon et al. [20, 21] proposed a

rational model using spatial discrete technique to investi-

gate the full-face failure of circular tunnels. Zhang et al.

[31] recently investigated the face collapse and blowout

failure of circular tunnels with the extension of the three-

dimensional mechanism of a continuous velocity field with

a toric envelope for slope stability [10, 19].

For large diameter tunnels, the difference between the

slurry pressure at the crown and invert of the tunnel face

becomes large and the error associated with the assumption

of a uniform slurry pressure distribution becomes high. At

the same time, the earth pressure on the tunnel face also

follows a trapezoidal distribution. The earth pressure con-

sists of hydrostatic pressure, which linearly increases with

depth at a slope of 9.8 kN/m3, and the soil pressure, which

linearly increases with depth and ranges between active

and passive earth pressures, dependent on the speed of

machine penetration. As the tunnel diameter increases, the

difference of the earth pressure between the crown and

invert increases, making the control of the slurry pressure

difficult. Due to the insufficient support pressure, some

patterns of partial face collapse which are restricted to a

zone around the upper part of the tunnel face were illus-

trated by Anagnostou and Kovári [1]. On the other hand,

Dias et al. [9] found that during large diameter SS tun-

neling, the excessive support pressure caused a so-called

partial passive failure based on numerical simulations. At

the working face, the partial passive failure originates from

the lower part instead of the invert of tunnel face and

extends to the ground surface. Li et al. [15] analyzed the

partial passive failure during large diameter SS tunneling in

clay and found that the partial passive failure may take

place before the full-face failure under excessive support

pressure. This research indicates that the upper part of the

face is vulnerable to passive failure as the support pressure

is significantly higher than the earth pressure.

This paper develops the 2D and 3D kinematically

admissible mechanisms for analyzing the partial passive

instability during SS tunneling using upper-bound analysis.

After Introduction, the 2D and 3D kinematically admissible

mechanisms are derived in Sect. 2. The effects of soil

parameters and tunnel burial depth on the support pressure

are explored, and the support pressure from the current

solutions is compared with that from the previous upper-

bound solution in Sect. 3. The mechanisms are applied to a

practical project of shallowly buried large diameter

underwater tunnel in Hangzhou, China, in Sect. 4, followed

by the conclusions presented in Sect. 5.

2 Upper-bound solution for passive face
stability

2.1 Support pressure

Figure 1 shows the distribution of support pressure during

SS tunneling in a homogenous soil stratum. The diameter

of the shield is D. The soil cover depth above tunnel crown

is C which is normalized with the tunnel diameter D to

define a dimensionless parameter C/D. The surcharge on

the ground surface is rs. The groundwater table is assumed

at the ground surface. The water depth at tunnel crown is

H. The unit weight of water is cw, and the effective unit

weight of the soil is c0. The slurry pressure follows a

trapezoidal distribution with a linear increase with depth at

a rate of slurry weight cF . The origination of the passive

failure is characterized by a normalized depth g ¼ DL=D
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where DL is the height of failure origination measured from

tunnel crown.

The trapezoidal support pressure rt is divided to two

parts: the rectangular part r1 and the triangular part. At

depth z, the total support pressure is

rt ¼ r1 þ cFz: ð1Þ

The effective support pressure r0t is

r0t ¼ r1 þ cF � cwð Þz� cwH: ð2Þ

2.2 Upper-bound analysis

The ultimate support pressure at tunnel face during passive

failure was evaluated through upper-bound analysis which

estimates the support load by considering a kinematically

admissible failure mechanism for which the work rate Pe of

the external loads applied to the system is equaled to the

work rate Pv dissipated within the system (Pe ¼ Pv) [5, 14].

Two mechanisms MI for two-dimensional (2D) and MII for

three-dimensional (3D) analyses were performed. The soil

mechanical behavior is modeled by means of a rigid–per-

fectly plastic constitutive relationship with a failure con-

dition defined according to the Mohr Coulomb criterion

and an associated flow rule. The shear strength of the soil is

characterized by the effective cohesion c0 and frictional

angle u0. In both mechanisms, along any failure surface
P

d, the angle hd between the discontinuity velocity and
P

d satisfies u0 � hd � p� u0 [14].

Mechanism MI assumes a planar rigid block sliding

under the plain-strain condition. The dimension perpen-

dicular to the plane is taken as unity. As shown in Fig. 2,

the failure is triggered by the sliding of the rigid tetragonal

block ABCD. The length of AB is DL. Segment DC rep-

resents the length of the failure block at ground surface.

Lines BC and AD are the sliding surfaces intersecting at

point O, and the angle AOB is 2u0. Line OE is the internal

bisector of angle AOB. The velocity V
*

of the movement of

the tetragonal block ABCD is parallel to axis OE which has

an inclination angle of a with respect to the horizontal

direction. The a value determines the inclination angle of

the failure block. The higher the a value is, the steeper of

the failure block is. The origination of the face failure is

defined by the depth ratio g ¼ DL=D. The higher the value

of g is, the deeper the failure face originates, and the larger

the failure block is.

The work rate of the external loads on block ABCD

consists of three components: from the pressure r0t on AB,

from the surcharge rs on DC and from the effective weight

Fig. 1 Distribution of earth pressure and slurry pressure

Fig. 2 Mechanism MI
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of soil within the block ABCD. The work dissipates during

the translational movement of the rigid block ABCD along

AD and BC. With Pe ¼ Pv, the support pressure can be

derived. The detailed derivation is presented in ‘‘Appendix

1’’. The 2D solution of the support pressure is

r2D1 ¼ c0DN2D
c þ rsN

2D
s þ c0N2D

c � cF � cwð ÞgD=2þcwH

ð3Þ

where

N2D
c

¼ tan a
2g

C=Dþ gð Þ2

tan a� u0ð Þ �
C=Dð Þ2

tan aþ u0ð Þ

" #

ð4Þ

N2D
s

¼ tan a
g

C=Dþ g
tan a� u0ð Þ �

C=D

tan aþ u0ð Þ

� �

ð5Þ

N2D
c ¼ cotu0 N2D

s � 1
� �

: ð6Þ

Given c0, u0 and C/D, the coefficients N2D
c , N2D

s and N2D
c

are a function of a and g. The support pressure can be

calculated by searching the optimal value of a and g
leading to a minimum support pressure. The calculation is

performed by the commercial software Mathematica 5.0.

The mechanism MII assumes a truncated conical block

failure mechanism in light of the Leca and Dormieux’s

model [14]. The failure mechanism is shown in Fig. 3. The

failure block B is defined by the cone C truncated by the

cone C0. The two cones C and C0 have the same an apex at

point X and opening angle 2u0. The base of the cone C is at

ground surface defined by the ellipse
P

with the semi-axis

a and b. The base of the cone C0 is at tunnel surface defined

by the ellipse
P0

with the semi-axis a0 and b0. The velocity

V
*

of the moving block B is parallel to the axis of cones C

and C0. The height of the failure block at the face is DL

equal to the long semi-axis a0. It is also characterized by

g¼DL=D.

The external loads applied on the moving block B

include the support pressure on
P0

, the surcharge on
P

,

and the effective soil weight of the block B. The dissipation

occurs along the discontinuity surface of the rigid block.

With Pe ¼ Pv, the support pressure is calculated. The

detailed derivation is presented in ‘‘Appendix 2’’. The 3D

upper-bound solution of the support pressure is

r3D1 ¼ c0DN3D
c þ rsN

3D
s þ c0N3D

c � cF � cwð ÞgD=2þ cwH:

ð7Þ

where

N3D
c ¼ tan a

3g2
RARB � g2RC

� �
; ð8Þ

N3D
s ¼ tan aRA

g2
; ð9Þ

N3D
c ¼ cotu0 N3D

s � 1
� �

: ð10Þ

The coefficients RA, RB and RC in Eqs. (8), (9) and (10)

are

RA¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan a� u0ð Þ tan aþ u0ð Þ

p

gþ C=D

tan a� u0ð Þ �
C=D

tan aþ u0ð Þ

� �2
;

ð11Þ

RB¼
g
2

1þ sin 2a
sin 2u0

� �

þ C

D
; ð12Þ

Fig. 3 Mechanism MII
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RC¼
g cos a� u0ð Þ cos aþ u0ð Þ

sin 2u0 : ð13Þ

Similar to the 2D solution, given c0, u0 and C/D, the

parameters N3D
c , N3D

s and N3D
c are a function of a and g.

The support pressure is obtained by searching the optimal

value of a and g resulting in a minimum support pressure.

The calculation is performed by Mathematica 5.0.

3 Support pressure analysis

3.1 Discussion on the coefficients

The support pressure r1 is a function of two variables a and
g which determine the inclination and origination of the

failure zone, respectively. To analyze the variation of the

parameters a and g, the example, as shown in Fig. 1, was

analyzed with three different C/D ratios 0.25, 0.5 and 0.75.

The effective unit weight of the soil was assumed as

c0 ¼ 9:8 kN/m3. The surcharge was taken as zero

(rs ¼ 0 kPa). Since the unit weight cF of the slurry is close

to that of water, it is assumed cF ¼ cw to simplify the

calculation, such that the item cF � cwð ÞgD=2 ¼ 0 in

Eqs. (4) and (8). The analyses show that the term

cF � cwð ÞgD=2 accounts for a very portion of the support

pressure even with high cF value.

The analyses started with cohesionless soil (i.e., c0 ¼ 0),

for which Eqs. (4) and (8) are simplified as r2D1 ¼
c0DN2D

c þcwH and r3D1 ¼ c0DN3D
c þ cwH, respectively. For

a constant cwH, r1 is solely depended on Nc. Table 1 lists

the a, g and Nc values for each case. This table shows that

the parameter a is a function of u0 and is virtually inde-

pendent on C/D. This means the inclination angle of the

failure block is solely determined by the soil frictional

angle but is not related to tunnel burial depth ratio. With

the same u0, a2D is a slightly higher than a3D. As u0 varies

from 10� to 30�, a2D varies from 48:7� to 58:6� while a3D

varies from 47:0� to 49:4�. The a3D value is approaching

the optimal a � 49� as calculated by Leca and Dormieux

[14] who assumed the failure originated from the tunnel

invert.

The parameter g is a function of both u0 and C/D. In

general, the g value increases with the increase in u0 and C/
D. The increase in the g value means the origination of the

failure block moving toward the tunnel invert. The increase

rate of g is higher in the 3D solution than the 2D solution.

When C/D = 0.25, as u0 increases from 10� to 30�, g2D

increases from 0.18 to 0.25 and g3D increases from 0.31 to

0.47. Both g2D and g3D are smaller than 0.5, indicating that

the failure originates from the upper part of the tunnel face.

When C/D = 0.5, g2D increases from 0.36 to 0.50 while g3D

increases from 0.62 to 0.94, indicating that the failure zone

originates from the upper part of the tunnel face in the 2D

solution and from the lower part of the tunnel face in the

3D solution. Particularly, g3D ¼ 0:94 indicates that the

failure zone originates from a depth near the invert of the

tunnel. When C/D = 0.75, the 2D solution predicts the

failure originates from the lower part of the tunnel face and

the 3D solution predicts the failure originates near or at the

tunnel invert.

Figures 4 and 5 show the failure pattern of mechanisms

MI and MII as a function of u0 and C/D. Figure 4a shows

the variation of failure block when C/D varies from 0.25 to

0.75, while u0 keeps at a constant of 20�. With the increase

in the C/D value, the inclination angle a2D of the failure

block keeps constant, while the depth ratio g2D linearly

increases, indicating that the failure block originates

toward down the tunnel invert. At the same time, the area

of the failure block increases and the failure zone expands

at the ground surface. The area of the failure block

increases by 879% from 16.5 to 145 m2 and length of

failure block at ground surface triples when the C/D

increases from 0.25 to 0.75. Figure 4b shows the variation

of failure block when u0 varies from 10� to 30�, while C/D

Table 1 Optimal value of a, g and Nc

C/D = 0.25 C/D = 0.5 C/D = 0.75

a2D g2D N2D
c a2D g2D N2D

c a2D g2D N2D
c

u0¼ 10� 48.7 0.18 0.61 48.5 0.36 1.22 48.7 0.54 1.83

u0¼ 20� 53.4 0.23 0.97 53.4 0.45 1.93 53.4 0.67 2.91

u0¼ 30� 58.6 0.25 1.50 58.6 0.50 3.00 58.6 0.75 4.92

a3D g3D N3D
c a3D g3D N3D

c a3D g3D N3D
c

u0¼ 10� 47.0 0.32 1.02 47.0 0.62 2.03 47.0 0.93 3.05

u0¼ 20� 48.9 0.41 2.46 49.0 0.84 4.91 48.9 1.00 7.48

u0¼ 30� 49.4 0.50 7.22 49.4 0.94 14.45 49.4 1.00 22.57
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keeps at a constant of 0.5. The variation of failure pattern is

more complicated because both the a2D and the g2D

increase with the increase in u0. As u0 increases from 10�
to 30�, the area of the failure block increase by about 230%

from 38.8 to 91.4 m2.

The three-dimensional mechanism MII shows a similar

variation pattern with that of the two-dimensional mecha-

nism MI. Figure 5a shows that with the increase in the C/D

value while keeps a constant u0, the inclination angle a3D

of the failure block keeps constant, while the depth ratio

g3D increases almost linearly. The volume of the failure

block increases, and the failure block expands at the

ground surface. As C/D increases from 0.25 to 0.75, the

volume of the failure block increases by about 1800% from

174 to 3137 m3. It is noted that when g3D ¼ 1 the failure

mode in mechanism MII is identical to that derived by

Leca and Dormiuex [14]. This means that the general

solution developed in this study converges to the particular

3D solution developed by Leca and Dormiuex [14]. Fig-

ure 5b shows the variation of failure block when u0 varies,
while C/D keeps at a constant, both the inclination angle

a3D and the depth ratio g3D increase. As u0 increases from
10� to 30�, the volume of the failure block increases by

nearly 950% from 437 to 4154 m3. The volume of failure

block is sensitive to both u0 and C/D.

Figure 6 plots the variation of Nc with the variation of

the frictional angle u0. Both N2D
c and N3D

c increase non-

linearly with the increasing u0. Compared with the N2D
c ,

N3D
c is much more sensitive to the u0. In particular, when u0

is higher than 30�, the N3D
c value tends to diverge. The

significant increase in N3D
c with the increase in u0 is con-

sistent with the passive coefficient Kpc found by Soubra

et al. [27].

Figure 7 plots the variation of Nc with the variation of

the depth ratio C/D. Both N2D
c and N3D

c increase linearly

with the increase in C/D. When u0 is relatively low (i.e.,

u0 = 108), N2D
c

and N3D
c

are close to each other. However,

when u0 is relatively high (i.e., u0 = 308), N3D
c

is signifi-

cantly higher than N2D
c

and the difference between N2D
c

and

N3D
c

increase with the increasing u0. It indicates that the

sensitivity of N3D
c to C/D increases with increasing u0 .

When the soil has cohesion c0, Eqs. (4) and (8) contain

the variables Nc and Ns, which are the function of c
0, u0 and

g. To investigate the effect of cohesion c0 on the support

pressure, the tunnel, as shown in Fig. 1, is assumed to be

buried in soils with both c0 and u0.
Figure 8 shows the effect of c0 on Nc for a tunnel with

constant C/D = 0.25. It shows that with the same u0, both

N2D
c and N3D

c slightly increases with the increase in the c0.

Compared to u0, the impact of c0 on N2D
c and N3D

c is much

smaller. Figure 9 shows the effect of c0 on Ns for a tunnel

with constant C/D = 0.25. It shows that both N2D
s and N3D

s

increase nonlinearly with the increasing u0. Compared with

the N2D
s , N3D

s is much more sensitive to the u0. For the same

u0, both N2D
s and N3D

s slightly decrease with increasing c0.

Similar to Nc, the influence of c0 on N2D
s and N3D

s is much

smaller compared to that of the u0. In general, the cohesion

c0 has a much smaller impact on the support pressure than

that of the frictional angle u0.

(a)

(b)

Fig. 4 Failure mode in mechanism MI. Failure mode on a C/D

(u0 ¼ 20�), b u0 (C/D = 0.5)
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Figure 10 shows the effect of c0 on Nc for a tunnel with a

varying C/D value. Figure 10a shows that at a relatively

low frictional angle (i.e., u0 ¼ 10�), N2D
c and N3D

c slightly

increase with the increasing c0 for a small C/D (i.e., C/

D = 0.25) and the effect of c0 fades as C/D increases.

Figure 10b shows that for a relatively higher frictional

angle (i.e., u0 ¼ 30�), with the increase in c0, N2D
c changes

slightly while N3D
c keeps virtually constant. This indicates

(a)

(b)

Fig. 5 Failure mode in mechanism MII
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Fig. 6 Variation of N3D
c with u0 for cohesionless soil

Fig. 7 Variation of Nc with C/D for cohesionless soil

Fig. 8 Variation of Nc with c0 and u0 (C/D = 0.25)

Fig. 9 Variation of Ns with c0 and u0 (C/D = 0.25)

Fig. 10 Influence of c0 on Nc with different C/D values
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that the effect of c0 on Nc decreases with the increase in C/

D value.

Figure 11 shows the effect of c0 on Ns for a tunnel with

varying C/D value. Figure 11a shows that at a low fric-

tional angle (i.e., u0 ¼ 10�), with the increase in c0, N2D
s

and N3D
s decrease at a relatively low C/D value (i.e., C/

D = 0.25) and the effect of c0 on Ns fades at a relatively

high C/D value (i.e., C/D = 0.75). Figure 11b shows that at

a relatively higher frictional angle (u0 ¼ 30�), with the

increase in c0, N2D
s slightly decreases while N3D

s kept vir-

tually constant except for the relatively lower C/D = 0.25.

This indicates that the effect of c0 on Ns decreases with the

increase in C/D value.

3.2 Support pressure

The current solutions on support pressure are compared

with the Leca & Dormieux’s solution [14] which is a 3D

upper-bound solution with the assumption that the failure

zone originates from the tunnel invert, i.e., g ¼ 1. The

cohesionless soils are used as an example. Figure 12 shows

the comparison on the support pressure when C/D = 0.25.

The support pressure from all the solutions nonlinearly

increases with the increase in u0. The support pressure

from current 3D solution has similar variation trend as that

from Leca and Dormieux’s solution [14], but with con-

stantly smaller values. This is because the Leca and Dor-

mieux’s solution [14] assumes the failure originates from

the tunnel invert while the current solution predicts that the

failure originates at a depth above tunnel invert when C/

D = 0.25. The current 2D solution predicts much smaller

support pressures that then 3D solution due to the plain-

strain assumption. For real three-dimensional problems, the

Fig. 11 Influence of c0 on Ns with different C/D values

Fig. 12 Comparison on the support pressure for the case of C/

D = 0.25

Fig. 13 Comparison of the support pressure for the case of C/D = 0.5
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plain-strain mechanism typically overestimates the risk of

failure [5, 19].

Figure 13 shows the comparison when C/D = 0.5. This

figure shows that the current 3D solution is close to the

Leca and Dormieux’s solution and the difference between

these two solutions decreases with the increase in u0.
Referring to Table 1, as u0 increases from 108 to 358, the
g3D varies from 0.80 to 0.94 approaching to 1, as assumed

in the Leca and Dormieux’s solution [14]. The 2D solution

predicts much lower support pressures than the 3D

solutions.

Figure 14 shows the comparison on the support pressure

when C/D = 0.75. Table 1 shows that the g3D ranges from

0.93 to 1 as u0 increases from 10 to 358 when C/D = 0.75.

As such, the current 3D solution converges to and Leca &

Dormieux’s solution when u0 � 15� at which g3D ¼ 1. The

convergence of the current solution to Leca & Dormieux’s

solution [14] verifies the current solution. The Leca &

Dormieux’s solution [14] solution is a particular solution of

the current 3D solution in which g3D ¼ 1.

4 Application of the analytical solutions

The derived 2D and 3D solutions were applied to a real

project for validation. The Huanbei tunnels, located in

Hangzhou, China, had a length of 1355 m and were driven

by 11.6 m slurry shield. As shown in Fig. 15, the left

tunnel was buried within stratum ` sandy silt and under-

lain with stratum ´ sandy silt and clay, stratum ˆ silty clay

and stratum ˜ clay. The properties of the soil strata are

summarized in Table 2.

As the SS shield launched from the shaft (SK5 ? 800),

the soil cover above tunnel crown is about 5 m. The

alignment slightly inclined to keep a thicker soil cover

above the tunnel crown. It is necessary to enhance the

support pressure to resist against the increasing earth

Fig. 14 Comparison of the support pressure for the case of C/

D = 0.75

Fig. 15 The profile of geological conditions

Table 2 Soil properties

Layer Soil type w (%) ctotal
(kN/

m3)

c’

(kPa)

u’
(�)

E (MPa) K0

� Fill 18 3 16

` Sandy silt 27.9 18.8 6 25 9.0 0.40

´ Sandy silt

and clay

40.5 17.5 15 10.7 2.8 0.56

ˆ Silty clay 30.7 18.9 37 16 5.5 0.37

˜ clay 36.4 18.0 30 14 4.2 0.37
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pressure. As the SS shield approached to the bottom of

Dong river (SK5 ? 860), the thickness of the cover above

the tunnel crown suddenly dropped to approximate 2.5 m.

The width of the riverbed is about 18 m and the water level

is 2 m above the riverbed. The sudden drop of cover depth

substantially reduced the earth pressure at the working

face. If the support pressure was not well controlled, it

might generate face passive instability.

For the calculation, the tunnel diameter and the depth of

soil cover above tunnel crown are idealized as 11.6 m and

2.5 m, respectively. The water level is 2 m above the riv-

erbed. The calculation results are listed in Table 3. Leca

and Dormieux’s solution [14] predicts an ultimate support

pressure of 680 kPa and the ratio g ¼ 1 indicating that the

face instability originated from the tunnel invert. The

current 2D solution predicts an ultimate support pressure of

252 kPa and a depth ratio of g ¼ 0:3 and the 3D solution

predicts an ultimate pressure of 625 kPa and a depth ratio

of g ¼ 0:56. The Leca and Dormieux’s solution [14] is

about 10% higher than the current 3D solution. The current

3D solution predicted relatively smaller support pressure as

well as the corresponding failure pattern. This solution

indicates that the upper part of face potentially fails before

the support pressure reaches the limit predicted by Leca

and Dormieux’s solution [14]. By taking a factor of safety

of 2.0, the design slurry pressure was limited to 300 kPa to

provide safety margin. The actual slurry pressure was

measured ranging from 200 to 275 kPa during the tunnel-

ing process, and the working face stability was well

controlled.

5 Conclusions

This paper develops the 2D and 3D kinematically admis-

sible mechanisms for analyzing the passive face stability

during slurry shield tunneling using the upper-bound

analysis. The mechanisms consider trapezoidal distribution

of slurry pressure along tunnel face and partial face failure.

The mechanisms are verified by comparing the current

solutions with the previous upper-bound solution. The

mechanisms are validated through application to a practical

project of shallowly buried large diameter underwater

tunnel.

For cohesionless soils, the support pressure is a function

of soil effective frictional angle u0 which determines the

inclination of failure block and the normalized soil cover

depth C/D (soil cover depth/tunnel diameter) which,

together with the effective frictional angle u0, determines

the origination of passive failure. The support pressure is

sensitive to both u0 and C/D. The 3D solution is more

sensitive to the effective frictional angle u0 and normalized

soil cover depth C/D than the 2D solution. For cohesive

soils, the support pressure is a function of u0, C/D and

effective cohesion c0. However, the effective cohesion c0

has a relatively smaller impact on the support pressure.

The comparison between the current solution with pre-

vious upper-bound solution by Leca & Dormieux [14]

shows that the current solution is a general solution to

tunnel passive stability analysis. The Leca & Dormieux’s

solution is a particular solution of the current solution by

assuming the face failure originating from the tunnel

invert. The two solutions converge when the burial depth

ratio g higher than 0.75. The application of the proposed

mechanisms to the Huanbei Tunnel in China shows that the

mechanisms are able to assess the tunnel face passive

failure rationally.
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Appendix 1: Derivation of upper-bound
solution for mechanism MI

As shown in Fig. 3, the triangles OAB and ODC have the

same apex O and the same axis OM. The moving quadri-

lateral block ABCD corresponds to triangle ODC minus

triangle OAB. The triangle ODC intersects the tunnel face

AE along the line AB. The length of AB equals the height

DL of the partial failure area. Line DC represents the

intersection between the ODC and the ground surface.

The power Prt of support pressure on AB is

Prt ¼
Z

AB

rt
* � V

*

ds ¼ r1 þ cFgD=2ð ÞgDV cos a: ð14Þ

The power Pc of soil weight within the block ABCD is

Table 3 Results of the case in Huanbei tunnel

Leca and Dormieux’s solution [14] This study

2D 3D

g 1 0.3 0.56

r1 (kPa) 680 252 625
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Pc ¼
ZZ

ABCD

c0
*

� V
*

ds ¼ cV sin a
ZZ

ABCD

ds

¼ c0V sin a
C þ gDð Þ2

2 tan a� u0ð Þ �
C2

2 tan aþ u0ð Þ

" #

: ð15Þ

The power Prs of surcharge on DC is

Prs ¼
Z

DC

r!s � V
!
dl

¼ �rsV sin a
C þ gD

tan a� u0ð Þ �
C

tan aþ u0ð Þ

� �

: ð16Þ

The power Pe of external loads consists of the power Prt

of support pressure, the power Pc of soil weight and the

power Prs of surcharge,

Pe ¼ Prt þ Pc þ Prs : ð17Þ

The power PvAD of dissipation along the discontinues

surface AD is

PvAD ¼ c0V cosu0
Z

AD

dl ¼ c0V cosu0

sin aþ u0ð Þ : ð18Þ

The power PvBC of the dissipation along the discontin-

uous surface

PvBC ¼ c0V cosu0
Z

BC

dl ¼ cV cosu0 C þ gDð Þ
sin a�u0ð Þ : ð19Þ

The power of dissipation is

Pv ¼ PvAD þ PvBC : ð20Þ

By substituting Eqs. (14), (15) and (16) into Eq. (17) and

substituting Eqs. (18) and (19) into Eq. (20), the upper-

bound solution can be obtained in term of Pe ¼ Pv. The 2D

upper-bound solution of r1 can be rewritten in the compact

form as

r2D1 ¼ c0DN2D
c þ rsN

2D
s þ c0N2D

c � cF � cwð ÞgD=2þcwH;

ð21Þ

where,

N2D
c

¼ tan a
2g

C=Dþ gð Þ2

tan a� u0ð Þ �
C2

	
D2

tan aþ u0ð Þ

" #

; ð22Þ

N2D
s

¼ tan a
g

C=Dþ g
tan a� u0ð Þ �

C=D

tan aþ u0ð Þ

� �

; ð23Þ

N2D
c ¼ cotu0 N2D

s � 1
� �

: ð24Þ

Appendix 2: Derivation upper-bound
solution for mechanism MII

As shown in Fig. 4, the conical block B corresponds to the

cone C truncated by the cone C0. The intersection between

cone C and the tunnel face is ellipse
P0

, while the inter-

section between cone C0 and the ground surface is
P

. The

coordinate system (O, x, y, z) is associated with the tunnel

face and the origin is located at the center of
P0

. The other

coordinates (X, X, Y, Z) are associated with the cones. The

relationship between the two systems is linked by the fol-

lowing equations,

X ¼ x; ð25Þ

Y ¼ DL

2
sin a tanu0 þ y cos a� z sin a; ð26Þ

Z ¼ DL cos a
2 tanu0 þ y cos aþ z sin a: ð27Þ

The height h of the cone C is

h ¼ DL

2
1þ sin 2a

sin 2u0

� �

þ C: ð28Þ

The height of the cone C0 is

h0 ¼ DL cos a� u0ð Þ cos aþ u0ð Þ
sin 2u0 : ð29Þ

The semi-axis a0 and b0 of the intersection
P0

are

a0 ¼ DL=2: ð30Þ

b0 ¼ DL

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a� u0ð Þ cos aþ u0ð Þ

p

cosu0 : ð31Þ

The area SP0 of the intersection
P0

is

SP0 ¼ pa0b0 ¼ pD2
L

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a� u0ð Þ cos aþ u0ð Þ

p

cosu0 : ð32Þ

The semi-axis a and b of the intersection
P

are

a ¼ C þ DL

2 tan a� u0ð Þ �
C

2 tan aþ u0ð Þ ; ð33Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin a� u0ð Þ sin aþ u0ð Þ

p

2 cosu0
C þ DL

tan a� u0ð Þ �
C

tan aþ u0ð Þ

� �

:

ð34Þ

The area SP of the intersection
P

is

SP ¼ pab ¼ p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin a� u0ð Þ sin aþ u0ð Þ

p

cosu0

C þ DL

tan a� u0ð Þ �
C

tan aþ u0ð Þ

� �2
:

ð35Þ

The volume V of cone C is
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V ¼ p
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin a� u0ð Þ sin aþ u0ð Þ

p

cosu0

C þ DL

tan a� u0ð Þ �
C

tan aþ u0ð Þ

� �2
DL

2
1þ sin 2a

sin 2u0

� �

þ C

� �

ð36Þ

The area S of the lateral surface of cone C is

S ¼ p
4

sin a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin a� u0ð Þ sin aþ u0ð Þ

p

sinu0 cosu0

C þ DL

tan a� u0ð Þ �
C

tan aþ u0ð Þ

� �2
:

ð37Þ

The volume V 0 and the lateral surface area S0 of cone C0

are

V 0 ¼ pd3

12

cos a� u0ð Þ cos aþ u0ð Þ½ �
3
2

cosu0 sin 2u0 ; ð38Þ

S0 ¼ pd2

4

cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a� u0ð Þ cos aþ u0ð Þ

p

sinu0 cosu0 : ð39Þ

The volume Vb and the lateral surface area Sb of block B

are obtained, respectively, by

Vb ¼ V � V 0; ð40Þ

Sb ¼ S� S0: ð41Þ

By introducing the coefficients

RA¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan a� u0ð Þ tan aþ u0ð Þ

p

gþ C=D

tan a� u0ð Þ �
C=D

tan aþ u0ð Þ

� �2
;

ð42Þ

RB¼
g
2

1þ sin 2a
sin 2u0

� �

þ C

D
; ð43Þ

RC¼
g cos a� u0ð Þ cos aþ u0ð Þ

sin 2u0 ; ð44Þ

The volume Vb and lateral surface area Sb can be sim-

plified as

Vb ¼
pD3

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a� u0ð Þ cos aþ u0ð Þ

p

cosu0 RARB � g2RC


 �

ð45Þ

Sb ¼
pD2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a� u0ð Þ cos aþ u0ð Þ

p

sinu0 cosu0 sin aRA � g2 cos a

 �

:

ð46Þ

The power Pe of external loads applying on the mech-

anism consists of the power Prt of the support pressure, the

power Prs of surcharge and power Pc of the soil weight,

Pe ¼ Prt þ Prs þ Pc: ð47Þ

The power Prt of support pressure is

Prt ¼ rt
pVg2D2

4

cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a� u0ð Þ cos aþ u0ð Þ

p

cosu0 : ð48Þ

The power Prs of surcharge on the ground surface is

Prs ¼ �rs
pVD2

4

sin a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a� u0ð Þ cos aþ u0ð Þ

p

cosu0 RA: ð49Þ

The power Pc of soil weight is

Pc ¼ �c0
pVD3

4

sin a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a� u0ð Þ cos aþ u0ð Þ

p

cosu0

RARB � g2RC


 �
:

ð50Þ

Substituting Eqs. (48), (49) and (50) into Eq. (47), Pe is

rewritten as

Pe ¼
pVD2

4

sin a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a� u0ð Þ cos aþ u0ð Þ

p

cosu0

rt cot a� rsRA �
cD
3

RARB � RCð Þ
� �

:

ð51Þ

The mechanism block is rigid so that the dissipation of

the plastic energy occurs along the discontinuous surface.

With the associated flow, the dissipation energy per area

dPv=d
P

is

dPv

d
P ¼ c0V cosu0: ð52Þ

The dissipation power Pv along the lateral surface of the

mechanism block B is

Pv ¼
ZZ

B

dPv

d
P ¼ c0V cosu0Sb; ð53Þ

where Sb is the area of lateral surface of the block B.

Substituting equation (46) for Sb, Eq.(53) can be written as

Pv ¼ c0
pVD2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a� u0ð Þ cos aþ u0ð Þ

p

sinu0

RA sin a� g2 cos a

 �

:

ð54Þ

By introducing Eqs. (51) and (54) into the equation

Pe ¼ Pv, the upper-bound solution can be obtained. Sub-

sequently, the 3D upper-bound solution of can be rear-

ranged as

r3D1 ¼ c0DN3D
c þ rsN

3D
s þ c0N3D

c � cF � cwð ÞgD=2þ cwH;

ð55Þ

where,

N3D
s ¼ tan aRA

g2
; ð56Þ

N3D
c ¼ tan a

3g2
RARB � g2RC

� �
; ð57Þ

N3D
c ¼ cotu0 N3D

s � 1
� �

: ð58Þ
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