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Abstract
We investigate shear band initiation and propagation in fully saturated porous media by means of a combination of strong

discontinuities (discontinuities in the displacement field) and XFEM. As a constitutive behavior of the solid phase, a

Drucker–Prager model is used within a framework of non-associated plasticity to account for dilation of the sample. Strong

discontinuities circumvent the difficulties which appear when trying to model shear band formation in the context of

classical nonlinear continuum mechanics and when trying to resolve them with classical numerical methods like the finite

element method. XFEM, on the other hand, is well suited to deal with problems where a discontinuity propagates, without

the need of remeshing. The numerical results are confirmed by the application of Hill’s second-order work criterion which

allows to evaluate the material point instability not only locally but also for the whole domain.

Keywords Extended finite element method � Saturated porous media � Second-order work � Strain localization �
Strong discontinuity

1 Introduction

Numerical simulation of shear band propagation near or

after failure which is a progressive phenomenon is a

demanding task from numerical and mathematical per-

spectives. Rudnicki and Rice [33] recommended bifurca-

tion analysis for these problems, while Simo and co-

workers [37] showed that the onset of localization coin-

cides with the instability of the equilibrium condition

associated with the singularity of the acoustic tensor.

Modeling shear band propagation in saturated porous

media is affected by the fluid phase for both shear band

initiation and direction. The formulation of the localization

condition in terms of effective stress allows to evidence the

role of the pore pressure in fully coupled systems [4]. As

far as the angle of shear band propagation is concerned,

there are several suggestions: a formulation based on the

friction and dilation angle has been reported in [36]; on the

other hand, in [34] and [43] it has been shown that the

angle of shear band depends on strain rates and

permeability.

The ill-posedness of boundary value problem during the

post-localization has to be considered to circumvent mesh

dependency present in conventional models. Well posed-

ness is guaranteed with enhanced constitutive models. For

this matter, several regularization techniques exist to

enhance the classical methods, such as non-local [11],

high-order [21], gradient-dependent [42], viscous [12] and

strong discontinuity methods [38].

XFEM is utilized for many problems like modeling

localization within Cosserat materials [16], growth of crack

in saturated porous media subject to large deformation

[14], 3D non-planar crack propagation [1] and bimaterials

with new tip enrichment functions [40]. On the other hand,

strong discontinuities have been adopted successfully for

simulation of strain localization in dry materials in

[2, 3, 28]. Combined with XFEM, they have been used for
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the same problem in [6, 22] and for crack propagation in

dry materials in [23, 29, 39, 41]. Strong discontinuities

have also been applied in [26] for the fracturing process in

saturated materials. Upon mesh refinement stepwise crack

advancement was obtained with small time steps, whereas

a monotonic crack growth was obtained with a large time

steps. To our best knowledge, strong discontinuities toge-

ther with XFEM have not yet been applied for strain

localization problems in saturated geomaterials.

In this paper, we combine hence strong discontinuities

with XFEM to investigate strain localization in saturated

porous media. Following [37] we make use of instability of

the equilibrium condition associated with the singularity of

the acoustic tensor. To check whether we actually capture

the material instability with the proposed combination of

strong discontinuities and XFEM, we invoke the second-

order work criterion based on Hill’s sufficient condition of

stability [13]. For this purpose we compute and check the

sign of the second-order work in the domain. The second-

order work criterion has been proved mathematically to be

the first bifurcation criterion to be reached along a loading

path [17] with respect to failure by divergence instabilities.

It has been applied successfully in [15] to capture both

developing shear bands and diffuse failure of slopes.

The paper is structured as follows. Section 2 describes

the governing equations of the saturated porous medium,

the elastoplastic criterion used, the concept of strong dis-

continuity in the framework of strain localization in dila-

tant porous materials, the XFEM formulation adopted and

the second-order work theory. In Sect. 3, applications of

the extended finite element formulation for a fully coupled

saturated porous medium are presented. The numerical

simulations are discussed in detail in the concluding

remarks.

2 Mathematical model

2.1 Governing equation for saturated porous
media

We present here briefly the macroscopic setup of the

governing equations obtained with averaging approaches in

[19]. Small strain theory is used as in most papers dealing

with shear band formation in saturated porous media, e.g.,

[4, 12, 34, 36, 42, 43]. The encountered strains in the

examples justify this assumption. For quasi-static condi-

tion, the linear momentum balance equation is given by

r:rþ qb ¼ 0 ð1Þ

where r: is the divergence operator, b is the associated

body force vector, and q is the total density defined for

saturated porous media as

q ¼ ð1� nÞqs þ nqf ð2Þ

with qs and qf density of solid and fluid phases, respec-

tively, and n the porosity of the medium. The total stress r
is set in terms of effective stress r0 and fluid pore pressure p
with the assumption of stresses being tension positive for

the solid phase and pore pressure compressive positive for

the fluid

r ¼ r0 � apI ð3Þ

where a is the Biot constant, (a ¼ 1� KT

Ks
), expressed in

terms of the bulk moduli of porous matrix KT and solid

grains Ks, and I is the unit tensor.

According to the u� p formulation, with u being the

displacement, the fluid mass balance equation reads

a� n

Ks

þ n

Kf

� �
_pþ ar: _uþ v ¼ 0 ð4Þ

where v is the Darcy velocity given as

v ¼ r:
k

lf
�rpþ qbð Þ

" #
ð5Þ

with k the permeability tensor and lf the dynamic vis-

cosity. Equations (1) and (4), after incorporation of Eq. (5)

have to be solved in a coupled manner.

2.2 Material nonlinearity and shear band
formation

The part relating to the solid phase has been published in

[22]. It is repeated here for sake of completeness.

The elastoplastic constitutive model of bulk, considered

as pressure dependent, can be defined as [10]

Pðr0; cÞ� 0; dr0 ¼ C : ðde� depÞ; dep ¼ dk
oP
or0

ð6Þ

where P is the yield function, c is cohesion stress, C is the

elastic constitutive tensor, e is total strain tensor, ep is the

plastic strain tensor, and dk is plastic consistency

multiplier.

The Drucker–Prager model is chosen for describing the

elastoplastic behavior of the solid phase,

Pðr0; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

2
s : s

r
þ 3 tanuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12 tan2 u
p �p

� 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12 tan2 u

p c ð7Þ

where s is the deviatoric stress tensor, �p is the hydrostatic

stress, and u represents the friction angle.

The non-associated plasticity model accounts for dila-

tancy during plastic flow. The direction of plastic strain is

obtained from the potential function
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K ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

2
s : s

r
þ 3 tanWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12 tan2 W
p �p ð8Þ

where K is the potential function and W is the dilation

angle. By inserting the effective stress dr0 ¼ C : ðde�
depÞ into the yield function and using the plastic strain

increment dep ¼ dkoP
or0, the plastic consistency parameter

for non-associated case is derived

dk ¼ or0P : C : de
or0P : C : or0Kþ Hðor0PÞðor0KÞ

ð9Þ

where H is the hardening modulus. The corresponding

elastoplastic tangent modulus is

Cep ¼ C� C : or0N� or0H : C

or0H : C : or0Nþ Hðor0HÞðor0NÞ
ð10Þ

The localization of plastic deformations along a zero

thickness shear band is here modeled as a displacement

jump termed strong discontinuity. Across the shear band

surface, the traction must satisfy equilibrium [32]. For a

body X as shown in Fig. 1, this condition is written as

n: _r0½ �½ � ¼ 0; n ¼
cos g

sin g

( )
ð11Þ

where n is the unit vector normal to the shear band surface

and g represents the angle between the unit vector n and

axis x (see Fig. 1). Expressing the effective stress rate by

means of the effective strain rate yields

n:Cep: _e½ �½ � ¼ 0 ð12Þ

The symbol ½½ �� indicates the jump of the corresponding

field across the discontinuity. The associated displacement

field after shear band initiation may be written as

_u ¼ _̂uþ _u½ �½ �Hs ð13Þ

where the _̂u and _u½ �½ � are the continuous and jump compo-

nents of the displacement field. Hs is the Heaviside step

function, centered at the discontinuity, and is defined as

HsðxÞ ¼ 1 x 2 Xþ

0 x 2 X�

�
ð14Þ

The strain rate during strain localization can then be

obtained from

_e ¼ _̂eþ _u½ �½ � � nð Þd ð15Þ

where _̂e is the continuous component of strain field and d is

the Dirac Delta function.

Equation (12) can be rewritten in terms of the dis-

placement jump

n:Cep: _u½ �½ � � nð Þd ¼ 0 ð16Þ

and consequently

n:Cep:n _u½ �½ � ¼ 0 ð17Þ

The first part of Eq. (17) is known as the acoustic tensor

[37]

A ¼ n:Cep:n ð18Þ

The singularity of the acoustic tensor determines the

localization condition and consequently the components of

vector n.

Finally, the condition of localization in terms of singu-

larity of the acoustic tensor and unit localization vector

must be satisfied:

A:m ¼ 0 ð19Þ

The localization vector m consists of relative shear band

normal displacements across discontinuous interface,

m ¼
cosx

� sinx

( )
ð20Þ

where x is the angle of vector m with axis x.
For a body undergoing shear banding with nonzero

discontinuity value, matrix A must be singular. According

to Eq. (17), the initiation of localization occurs when

_u½ �½ � 6¼ 0, consequently;

detA ¼
A11

A21

"
A21

A22

#
¼ 0 ð21Þ

_u½ �½ � is rewritten in the form of its magnitude ( _u½ �½ �j j) mul-

tiplied by its unit vector (m =
_u½ �½ �1
_u½ �½ �2

( )
)

ðn � Dep � nÞ _u½ �½ �j j
_u½ �½ �1
_u½ �½ �2

( )
¼ 0;

_u½ �½ �1
_u½ �½ �2

( )�����
����� ¼ 1 ð22Þ

Thus,
Fig. 1 Body X containing a shear band and associated boundary

conditions
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ðn � Dep � nÞ
_u½ �½ �1
_u½ �½ �2

( )
¼ 0 ð23Þ

where _u½ �½ �1 and _u½ �½ �2 are the components of the unit dis-

continuity vector

Qij

_u½ �½ �1
_u½ �½ �2

( )
¼ 0 ð24Þ

To have a non-trivial answer, the determinant of matrix

Qij, the acoustic tensor, must be equal to zero,

det Qij

� �
¼ 0 ð25Þ

After obtaining the vector n from Eq. (25), and intro-

ducing it into Qij, its components are derived. Since

Q11Q22 � Q12Q21 ¼ 0 ð26Þ

Q11 ¼
Q12Q21

Q22

; Q21 ¼
Q11Q22

Q12

ð27Þ

The first equation obtained from the system of Eqs. (24)

is written as

Q11 _u½ �½ �1þQ12 _u½ �½ �2¼ 0 ð28Þ

By substituting Q11 in Eq. (28)

Q12Q21

Q22

_u½ �½ �1þQ12 _u½ �½ �2¼ 0 ð29Þ

The second equation obtained from Eq. (24) results in

Q21 _u½ �½ �1þQ22 _u½ �½ �2¼ 0 ð30Þ

Substituting Q21 in Eq. (30) yields

Q11Q22

Q12

_u½ �½ �1þQ22 _u½ �½ �2¼ 0; ð31Þ

therefore,

_u½ �½ �2
_u½ �½ �1

¼ �Q21

Q22

¼ �Q11

Q12

ð32Þ

Accounting for the components of vector m, _u½ �½ �1 and

_u½ �½ �2
_u½ �½ �2¼ sin c; _u½ �½ �1¼ � cos c ð33Þ

we obtain

_u½ �½ �2
_u½ �½ �1

¼ � sin c
cos c

¼ �Q21

Q22

¼ �Q11

Q12

or c ¼ arctan
Q21

Q22

	 


¼ arctan
Q11

Q12

	 

ð34Þ

Finally, the components of vector m in terms of the

components of the acoustic tensor are obtained as

_u½ �½ �
_u½ �½ �j j ¼ m ¼

_u½ �½ �1
_u½ �½ �2

( )
¼

cos arctan
Q21

Q22

	 
	 


� sin arctan
Q21

Q22

	 
	 


8>>><
>>>:

9>>>=
>>>;

¼
cos arctan

Q11

Q12

	 
	 


� sin arctan
Q11

Q12

	 
	 


8>>><
>>>:

9>>>=
>>>;

ð35Þ

The magnitude of dilation in terms of the vertical and

horizontal components of the unit discontinuity displace-

ment increment with respect to the local coordinates n–t is

[22]

# ¼ dmv

dmh

ð36Þ

where dmv and dmh are, respectively, the vertical and

horizontal components of the localization vector (dm) with

respect to the local coordinate x and t axes. The strong

discontinuity approach belongs to the regularization tech-

niques adopted to lessen the mesh dependency during

softening. For elements containing shear band, the internal

force is dependent upon the dissipated energy which is

calculated by the cohesive law. According to the cohesive

law, the cohesive traction across discontinuous interface is

a function of the relative displacement of discontinuous

surfaces. In this work, a mixed-mode cohesive model is

implemented and the stress updates for the Drucker–Prager

plastic model in Eq. (1) are performed using the modified

cohesive traction in the shear band elements, i.e., on Gauss

points of the element edges on the shear band interface.

Hðr0; cxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

2
s : s

r
þ 3 tanuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12 tan2 u
p p

� 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12 tan2 u

p cx ð37Þ

where the extended cohesion is defined

cx ¼ c0 þ H�ep þ �HSx; Sx ¼ 2juj ð38Þ

and Sx is the relative displacement of the surfaces limiting

the shear band, �H is the softening modulus, and juj is the
magnitude of the discontinuity in displacement field.

The cohesive law or in other words traction-slip law

yields the relation between the stress tensor and the relative

discontinuity displacement

sc ¼ scð u½ �½ �Þ ð39Þ

where sc is the cohesive traction vector and u½ �½ � is the

relative displacement vector in the direction of the dis-

continuity as shown in Fig. 2. The normal and tangential

components of cohesive force along the discontinuity are
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sc: u½ �½ � ¼
sct
scn

"
sct
scn

#
u½ �½ �j j

u½ �½ �1
u½ �½ �2

( )

¼ u½ �½ �j j
sctð u½ �½ �1þ u½ �½ �2Þ
scnð u½ �½ �1þ u½ �½ �2Þ

( )
ð40Þ

2.3 Weak form and fluid flow contribution

Integrating the governing Eqs. (1) and (4) after incorpo-

rating (5), over the whole domain X, their weak form for

the continuum part is written asZ
X

duðr:rþ qbÞdX ¼ 0 ð41Þ

Z
X

dp
a� n

Ks

þ n

Kf

	 

_pþ a r: _uð Þ

�

þr:
k

lf
�rpþ qbð Þ

 !#
dX

ð42Þ

where du and dp are test functions.

The essential and natural boundary conditions as

depicted in Fig. 1 are

u ¼ u0 on Cu

p ¼ p0 on Cw

ð43Þ

r0:nC ¼ t0 on Ct

q:nC ¼ q0 on Cq

ð44Þ

where t0 is the external traction across the external

boundary Ct, nC is a unit normal vector to the boundary Ct,

and q0 is the external flux across the external boundary Cq.

The behavior of the fluid in the shear band region is now

investigated in more detail with the following internal

boundary conditions, see Fig. 2. Fluid localization occurs

due to the dilation across discontinuity.

r0:mnCc
¼ sn on Cc

r0:mtCc
¼ st on Cc

q:nC ¼ q0 on Cc

ð45Þ

where mnCc
is the normal component and mtCc

is the tan-

gential component of unit discontinuity (localization)

vector across the discontinuity Cc. Accordingly, sn and st
are the normal and tangential components of the cohesive

traction sc across the discontinuity Cc. And q0 is the fluid

flow normal to the Cc.

By using the divergence theorem, we can investigate the

equilibrium for X and flow in the shear band areaZ
X�

divEdX ¼
Z
Cc

E:nCdC�
Z
Cc

E½ �½ �:nCdC ð46Þ

The final weak form of equilibrium Eq. (41) with shear

band discontinuity and corresponding boundary conditions,

using divergence theory, becomesZ
X

dðLsuÞ : rdXþ
Z
Cc

du½ �½ �:scdC�
Z
X

duqbdX

�
Z
Ct

du:t0tdC ¼ 0

ð47Þ

where Ls is a differential operator. According to the flow

continuity, we have in direction n, shown in Fig. 2,Z
X�

dp
a� n

Ks

þ n

Kf

	 

_pdX�

Z
Cc

dp v½ �½ �:nCc
dC

þ
Z
X�

dpa r: _uð ÞdXþ
Z
X�

rdp
k

lf
�rpþ qbð ÞdX ¼ 0

ð48Þ

The mass transfer across the localization zone along vector

n is thenZ
Cc

dp v½ �½ �:nCc
dC ¼

Z
X�

dp
a� n

Ks

þ n

Kf

	 

_pdX

þ
Z
X�

dpa r: _uð ÞdXþ
Z
X�

rdp
k

lf
�rpþ qbð ÞdX

ð49Þ

Z
Cc

dp v½ �½ �:nCc
dC ¼

Z
Cc

dpq0dC ¼
Z
Cc

dp
a� n

Ks

þ n

Kf

	 

_p2#dC

þ
Z
Cc

dpa2#
o _ux
ox0

	 

dCþ

Z
Cc

dpa _uy0
� �� �

dC

�
Z
Cc

k

lf
2#

odp
ox0

op

ox0

	 

dCþ

Z
Cc

k

lf
2#

odp
ox0

	 

qfb

 !
dC

ð50Þ

Fig. 2 The schematic geometry of shear band zone and flux exchange
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According to the literature of strong discontinuity regu-

larization method for shear band modeling, the dilation

occurs by the separation of discontinuity surfaces and this is

the dominating factor. Therefore, updating hydraulic

parameters is negligible, particularly in infinitesimal defor-

mations range [5]. There is hence no need to update the

permeability in the shear band once it is formed because its

effect would be negligible. In fact, in [35] both combinations

of cubic law in the fracture and Darcy outside and Darcy

everywhere with same parameters gave no appreciable dif-

ference in the results. Note that in hydraulic fracturing flow

issues are more pronounced than in our case.

2.4 Second-order work theory

Different criteria are available for the failure analysis of

soil. In the context of strain localization, the most used one

is the acoustic tensor analysis, while the use of second-

order work criterion is less common. It has been observed

in practice that failure can occur well before the Mohr–

Coulomb criterion is met. This is due to the non-associated

behavior (the yield surface does not coincide with the

plastic potential, which leads to a non-symmetric consti-

tutive tensor) of cohesive and/or frictional materials, such

as soils. According to [8, 17] in case of such materials, one

can find an unstable domain strictly inside the plastic limit

envelope. Interestingly, material instabilities can lead to

diffuse modes of failure inside the plastic limit condition,

which are characterized by the lack of localization patterns,

and for this reason, it cannot be detected neither by a

plastic limit criterion nor by a localization criterion [9, 27].

The concept of the second-order work was proposed by

Hill [13] who connected the notion of stability with the

sign of the second-order work. At the material point level,

it is described as follows: a mechanical stress–strain state is

considered as stable if the second-order work is strictly

positive for any couple ðdr0; deÞ linked by the rate-inde-

pendent constitutive relation

8ðdr0; deÞ 2 R2nnf0g with de ¼ C : dr0;W2 ¼ dr0 : de

ð51Þ

where n is the dimension of the stress (or strain e) space
and C is the stiffness tensor. The vanishing of the value of

the second-order work indicates potential instability. It can

then be considered as a generalized criterion because, in

case of non-associated materials, the second-order workW2

(which first vanishes together with the determinant of the

symmetric part of the stiffness tensor C, [20]) becomes

zero before the vanishing of the determinant of the con-

stitutive tensor C and of the determinant of the acoustic

tensor [7, 17, 20]. There is still the question regarding the

type of stress that should be used in Eq. (51) when studying

the stability of a multiphase porous body. The possible

choices are discussed in [15]. Consistently with what used

for the evaluation of the acoustic tensor, we write the

second-order work in terms of effective stresses. For

evaluating Eq. (51), the differential operator dðÞ is substi-
tuted by its discrete counterpart

Dð Þ ¼ ð Þnþ1 � ð Þn ð52Þ

where nþ 1 is the present time step and n is the previous

time step. In this paper the efficiency of second-order work

criteria within the framework of XFEM is investigated for

stability analysis of strong discontinuity shear bands. To

our best knowledge, it is the first application in case of

XFEM. As will be shown, the tool seems quite robust and

can be extended to 3-D shear band problems.

2.5 XFEM formulation

For solving the fluid–structure interaction, both displace-

ment and pressure fields have to be discretized in the whole

domain. The discontinuous components of the displace-

ment and pressure field are approximated by XFEM

[23, 24]

uðxÞ ¼
X
i2j

NsðxÞuþ
X
i2k

NsðxÞviu
s

ð53Þ

pðxÞ ¼
X
i2j

NfðxÞpþ
X
i2g

NfðxÞMi p
s

ð54Þ

where Ns and Nf are the standard displacement and pres-

sure shape functions, respectively, j is the number of ele-

ment nodes, k represents the number of nodes with

displacement enrichment terms, and g is the number of

nodes with pressure enrichment functions. u and u
s

also p

and p
s

are, respectively, the standard and enriched degrees

of freedom. Further,

vi ¼ HsðxÞ � HsðxiÞ½ �m; HsðxÞ ¼ 1 x 2 Xþ

�1 x 2 X�

�
ð55Þ

where HsðxÞ is the Heaviside step function and m is the

unit localization vector across the discontinuous interface.

The enrichment function is correlated with two degrees of

freedom across the normal and tangential directions of the

discontinuity in the n–t local coordinate system in

Eq. (19). It is emphasized that the discontinuity in the

displacement field includes the two normal and tangential

components. The node enrichment selection for elements

containing a shear band is shown in Fig. 3. Further

Mi ¼ � ðxÞ � � iðxÞ½ �; ð56Þ

� ðxÞ ¼
X
i2n�

NfiðxÞ fij j �
X
i2n�

NfiðxÞfi

�����
����� ð57Þ
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where � is the modified level set function and f is the value
of level set function in nodes across the discontinuous

interface. This function is continuous although its normal

gradient is discontinuous. And as result, it implies water

flow normal to the shear band surface discontinuity.

For the solid phase, the corresponding strain field is

accordingly derived as

eðxÞ ¼ Bstd
s ðxÞuþ Benr

s ðxÞ~u ð58Þ

where Bstd
s and Benr

s are the matrices of derivatives of the

standard and enrichment shape functions, respectively,

Bstd
s ðxÞ ¼ LsN

std
s ðxÞ ð59Þ

Benr
s ðxÞ ¼ LsN

enr
s ðxÞ ð60Þ

Bs ¼ Bstd
s Benr

s

� �
ð61Þ

and Ls is the differential operator for the plane problem

Ls ¼

o

ox

0

o

oy

2
66666664

0

o

oy

o

ox

3
77777775

ð62Þ

The virtual displacement field n and its associated gra-

dient Lsn are defined by

n ¼
X
i2j

Nstd
s duþ

X
i2k

Nstd
s Hs � Hsið Þmidu

s

;Ns ¼ Nstd
s Nenr

s

� �

ð63Þ

Lsn ¼
X
i2j

Bstd
s duþ

X
i2k

Benr
s du

s

;Bs ¼ ½Bstd
s Benr

s � ð64Þ

For the fluid phase, the virtual pressure and its gradient are

defined as,

n0 ¼
X
i2j

Nstd
f dpþ

X
i2k

Nstd
f � � � ið Þdp

s

;Nf ¼ Nstd
f Nenr

f

� �

ð65Þ

Lfn
0 ¼

X
i2j

Bstd
f dpþ

X
i2k

Benr
f dp;

s

Bf ¼ Bstd
f Benr

f

h i
ð66Þ

where Lf is differential operator for fluid pressure,

Lf ¼
o

ox

0

2
4 0

o

oy

3
75 ð67Þ

Eventually, the discretized form of Eqs. (1) and (4) can

be rewritten as

Fint;nþ1
s þ Fcoh;nþ1

s � Cnþ1
sf Pnþ1 ¼ Fext;nþ1

s ð68Þ

Cnþ1
fs

_U
nþ1 þ Pnþ1

ff
_P
nþ1 þHnþ1

ff Pnþ1 þQnþ1
int ¼ Fext;nþ1

f

ð69Þ

and the internal forces for standard and enriched compo-

nents are

Fint;nþ1
s ¼

Z
X
Bs � rdX ¼

Z
X
Bs:C

ep:BsdXU
nþ1 ¼ KUnþ1

ð70Þ

Fcoh
s ¼

Z
Cc

NsHs½ �½ �scdCc

¼
Z
Cc

Ns 1� Hsð ÞscmdCc �
Z
Cc

Ns �1� Hsð ÞmscdCc

¼ 2

Z
Cc

NsmscdCc

ð71Þ

Csf ¼
Z
X
BT
s amNfdX ð72Þ

Pff ¼
Z
X
NT
f

1

Qf

	 

NfdX ð73Þ

Hff ¼
Z
X

Lf Nf

� �T k

lf

 !
Lf Nf

� �
dX ð74Þ

Qint ¼
Z
Cc

NT
f q

0dCc ¼
Z
Cc

NT
f

a� n

Ks

þ n

Kf

	 

_p2#dCc

þ
Z
Cc

NT
f a2# r _uð ÞdCc þ

Z
Cc

NT
f a _u½ �½ �dCc

�
Z
Cc

k

lf
2# Lf N

T
f

� �
rpdCc

þ
Z
Cc

k

lf
2# Lf N

T
f

� �
qfb

 !
dCc

ð75Þ

Csf is the coupling matrix, Pff is the compressibility matrix,

Hff is the permeability matrix, and Qint is the fluid mass

exchange from the continuum to the strain localized zone.

Fig. 3 Selection of enriched nodes for elements containing a shear

band

Acta Geotechnica (2018) 13:1249–1264 1255

123



The external forces for standard and enriched components

are

Fext
s ¼

Z
X
NsbdXþ

Z
Ct

NsTdC ð76Þ

Fext
f ¼

Z
X
NfbdXþ

Z
Cf

NfqdCf ð77Þ

Finally, the nonlinear, coupled discretized Eqs. (68) and

(69) must be discretized in time domain [44] and then

solved incrementally by the Newton–Raphson method until

required convergence is obtained at each increment.

Fint;nþ1
s þ Fcoh;nþ1

s � Cnþ1
sf Pnþ1 ¼ Fext;nþ1

s ð78Þ

Cnþ1
fs

_U
nþ1 þ Pnþ1

ff
_P
nþ1 þHnþ1

ff Pnþ1 þQnþ1
int ¼ Fext;nþ1

f

ð79Þ

With the following terms, an implicit integration results

_U
nþ1 ¼ Unþ1 � Un

Dt
; _P

nþ1 ¼ Pnþ1 � Pn

Dt
ð80Þ

and the residual of the equilibrium and mass conservation

discretized equations are

Ri;nþ1
s ¼ Fint;nþ1

s þ Fcoh;nþ1
s � Cnþ1

sf Pi;nþ1
f � Fext;nþ1

s ð81Þ

Ri;nþ1
f ¼ Cnþ1

fs

Unþ1 � Un

Dt

	 

þ Pnþ1

ff

Pnþ1 � Pn

Dt

	 


þHnþ1
ff Pnþ1 þQnþ1

int � Fext;nþ1
f ð82Þ

Ui;nþ1 and Pi;nþ1 are the unknown vectors and Ri;nþ1
s and

Ri;nþ1
f are residual vectors.

At each iteration, the unknown vectors are obtained

from

Riþ1;nþ1
s

Riþ1;nþ1
f

( )
¼

Ri;nþ1
s

Ri;nþ1
f

( )
þ J

dUiþ1;nþ1

dPiþ1;nþ1

( )
¼ 0 ð83Þ

with the J Jacobian matrix

J ¼
Kþ oFcoh

ou

Cfs þ
oQint

op

8>><
>>:

Csf þ
oFcoh

ou
Pff

Dt
þHff þ

oQint

op

9>>=
>>;

ð84Þ

Consequently, the unknown vector is calculated as,

dUiþ1;nþ1

dPiþ1;nþ1

( )
¼ �J�1

Ri;nþ1
s

Ri;nþ1
f

( )
ð85Þ

According to the theory of second-order work, the

incremental Eq. (51) must be checked at each time step

n ? 1 in which the components of stress and strain at

Gauss points of each element are calculated. This proce-

dure is challenging when shear band discontinuity crosses a

continuous element (and divides it into two parts), due to

the new configuration of the added Gauss points used for

integration in the discontinuous element. For discontinuous

elements, we use an integration method other than the

conventional one, dividing the element into sub-triangles,

as shown in Fig. 4a. In this procedure, each side of dis-

continuity is divided into sub-triangles in which the inte-

gration of each sub-triangle is done by conventional Gauss

integration method [6]. To circumvent the difficulty of

computing Eq. (51) when the shear band has just crossed

the continuous element (Fig. 4b), an averaging procedure

is adopted to extrapolate the magnitudes of new Gauss

points to the conventional Gauss points.

3 Numerical simulations

We present now numerical examples based on the above

outlined approach, investigating also the propagation of

shear band in saturated porous media where applicable.

Two problems are presented: a plane strain compression

test of a strip and a foundation with two rates of imposed

displacements. The second example evidences that an

apriori unknown localization path can be captured with the

method.

(a) (b)

Fig. 4 a Subdivision of shear banded element including sub-triangles with new Gauss points. b Continuous element with conventional Gauss

points
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3.1 Plane strain compression simulation

For this case, we consider two mesh configurations with

higher and lower mesh density which allows to shed light

on the sensitivity of the proposed numerical method. The

related material properties are listed in Table 1.

The strip and associated boundary conditions for the

solid are depicted in Fig. 5; a geometry imperfection is

applied to the top right corner point of the sample to initiate

the shear band by means of an ensuing stress concentration.

Along all the boundaries of the sample drainage of the fluid

is allowed, as in [18] where the problem was solved with an

element embedded band approach and a cohesive isotropic

hardening/softening law. At the upper face a velocity of

0:1 mm
s is prescribed.

The two meshes used are shown in Fig. 6. Figure 7

displays the shear band and its inclination angle for the two

meshes and for two rates of loading, _d1 ¼ 0:1 mm
s and

_d2 ¼ 0:5 mm
s . Path A is for mesh type 1, D is for mesh type

2, C is the solution of [18], and B relates to mesh type 1

with loading rate type 2. The modes of localization evo-

lution for two meshes are similar, and there are little

changes as the rate of loading increases 5 times (rate type-

2); this is due to the easy drainage of the excess pore water

pressure. This example evidences the mesh independency

of numerical method. In this example there is no real

advancement of the shear band as it develops almost

instantaneously once the required conditions are met.

Figure 8 shows the global response of the sample under

prescribed rates of displacement. The peak load and the

corresponding displacement of the top surface are the same

as in [18]. As expected, the responses differ for different

loading rates which evidence the time dependency of the

numerical solution due to the presence of a pore fluid. This

can be seen in Fig. 9 where the variation of the fluid

Fig. 5 Geometry of sample and related boundary conditions

 
(a)

 
(b)

Fig. 6 Different mesh types for plane strain strip. a Mesh type-1.

b Mesh type-2

Table 1 Material properties for plane strain compression test

Young modulus, E 30 MPa

Bulk modulus of solid, Ks 3:3� 1019 Pa

Bulk modulus of fluid, Kf 3:3� 109 Pa

Biot’s coefficient, a 1

Poisson ratio, t 0:2

Friction angle, U 11:5�

Initial cohesive stress, c 10 kPa

Softening modulus, Hb 144 kPa

Porosity, n 0:3

Displacement, d 10 mm

Loading rate, type 1, _d1 0:1 mm
s

Loading rate, type 2, _d2 0:5 mm
s

Permeability of water, k 1 m2

ðPasÞ

Fig. 7 The angle and path of formed shear bands for different mesh

types and rates of loading
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pressure at the midpoint of the sample is drawn against the

vertical displacement; this point falls within the shear band.

According to this figure, the formation of the shear band

affects the pressure field. Some suction develops as the

shear band forms and a discontinuity of the pressure gra-

dient appears as will be shown below.

The shear band is localized in highly plastic deformed

zones as shown in Fig. 10.

Drained or undrained conditions would not only affect

the flow pattern but also the solid deformation within and

outside the shear band. This is evidenced in Fig. 11 where

for only drainage from the top surface the plastic strains are

shown for two loading stages. It appears that the local-

ization of plastic strains in shear bands decreases as the

draining condition changes to relatively undrained state. In

fact, in globally undrained conditions and dilatant materi-

als, localization can start only when the cavitation pressure

is reached, as shown by Mokni [25].

Because of the boundary conditions for the flow field

and the high permeability, there is no real pressure local-

ization in the shear band as evidenced for instance in [43].

However, suction develops in the process and the pressure

field is slightly tilted in the direction of the shear band once

it is fully developed as shown in the last picture of Fig. 12.

The corresponding pressure gradients are drawn in Fig. 13.

No pressures are shown in [18]; hence, a comparison is not

possible.

Finally, Fig. 14 shows the distribution of the three stress

components in the sample for the last stage of formation of

the shear band. The discontinuity of the stresses between

the two sides of the shear band is remarkable.

Initiation of softening behavior and its successive

development are a precursor to the instability of the

Fig. 8 Force–displacement curve for different loadings

Fig. 9 Pressure–displacement curve for different loadings for point A

0.72δ 0.9δ δ

Fig. 10 Evolution of plastic straining during the stages of loading; d indicates the maximum displacement imposed

0.72δ δ

Fig. 11 Evolution of plastic straining for relative undrained condition

during the stages of loading

1258 Acta Geotechnica (2018) 13:1249–1264

123



structure. The proposed second-order work criterion for

saturated porous media determines the material point sta-

bility state and gives us a new insight in the structure

overall condition. As shown in Fig. 15, the computed

second-order work for the strip is positive when delta is

0:72d, while with the nucleation of the shear band, insta-

bility localizes in a banded zone. At this instance the region

outside remains still stable. In the loading step 0:85d, the

0.72δ 0.9δ δ

Fig. 12 Pressure fields for different steps of loading

0.72δ 0.9δ δ

Fig. 13 Pressure gradient field (Pa/m) for different stages of loading

(a) (b) (c)

Fig. 14 Distribution of stresses for last time step. a rxx, b rxy, c ryy
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second-order work of the whole area is negative, indicating

that the entire domain is unstable. This confirms what

could be seen from Fig. 8.

3.2 Foundation

A more common situation for shear band formation can be

found under foundations due to excessive loading which

may eventually lead to failure of the structure. We model

hence such a problem, depicted in Fig. 16 together with the

boundary conditions for the solid phase. The material

properties are taken from [4]: Young’s modulus 30MPa,

Poisson ratio 0:2, Drucker–Prager friction constant 24� and
dilatancy parameter 5�, Poisson ration 0:25, initial cohesive

stress 63:41KPa, bulk modulus of solid 3:3� 109 Pa, bulk

modulus of fluid 3:3� 1019 Pa, Biot’s constant 1 with

softening modulus of 100KPa. For the fluid it is assumed

that the left and above edges are open to flow. Vertical

velocities _d1 ¼ 5� 10�7 mm
s and _d2 ¼ 1� 10�7 mm

s are

imposed to the rigid permeable foundation. Two mesh

configurations with 800 and 400 irregular triangular

element are selected as shown in Fig. 17 to check mesh

dependence of the solution.

The load–deflection curves are compared in Fig. 18 for

the two mesh types and Ref. [4]. As is shown, the load

bearing capacity increases with the rate of loading. In fact

due to the coupling effects, high rates of loading increase

the pore pressure and consequently the related bearing

capacity of the foundation. In case of single-phase media of

[31] and [30], where only tangential sliding of the shear

band is considered together with a von Mises yield

0.72δ (point A) 0.8δ (point B) 0.85δ (point C)

Fig. 15 Second-order work for strip at various loading steps

Fig. 16 Geometry of foundation with associated boundary conditions

(a) (b)

Fig. 17 Types of mesh. a Mesh type 1 and b mesh type 2

Fig. 18 Load–displacement curve
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criterion, the shear band formation is accompanied by

brittle behavior, severe softening and failure. In our fully

saturated case the behavior is rather ductile, see Fig. 18.

Also the plastic deformation is distributed throughout a

large part of the section as can be seen in Fig. 25 from the

distribution of the second-order work: differently from the

relevant cases of [31] and [30], only part of the energy is

dissipated in the shear band. As in [4] where a continuous

pressure and discontinuous gradient of pressure field across

shear band is assumed, the slight softening behavior of the

model is reproduced and a good agreement of the results is

observed.

Figure 19 compares the path of shear band propagation

for two mesh types with Ref. [4]. We obtain a curved form

of the shear band which is common in such situations, see,

e.g., [18]. The solution of [4] in Fig. 19 is an idealized

representation because those authors obtain a mesh

dependent wavy form of the shear band in the lower part

which does not seem realistic.

Figure 20 depicts the plastic deformation during the

evolution of the shear band for four stages. As the shear

band initiates, the plastic deformations localize into shear

band surfaces and continue until the full formation of the

shear band and consequent failure of the structure. The

propagation of the shear band is here well captured.

The variation of fluid pressure during loading is for

point A of Fig. 16 (x = 2.5 m, y = 10.8 m) which is shown

in Fig. 21. Again the comparison with [4] is quite good,

given the difference of the respective models. Prior to the

Fig. 19 Shear band path

0.35δ 0.45δ

0.55δ 0.65δ

Fig. 20 Effective plastic deformation distribution
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appearance of the shear band the pressure increases, while

from the onset of the band on it decreases. This drop is a

consequence of the dilation of the solid phase in the shear

band resulting in a pressure gradient toward the shear band.

The fluid pressure contours and gradient are presented in

Figs. 22 and 23, respectively, for successive stages of

loading. Some localization of the pressures can be

observed. The flow toward shear band is captured by the

gradients of the pressure field in Fig. 23 which was enri-

ched with weak discontinuous functions Eq. (57).

Figure 24 presents the distribution of stresses at the last

stage of the analysis. Again the discontinuity of the stresses

across shear band is well represented.

For problems with moderate softening behavior, inves-

tigation of the global instability is very important for

evaluating the global response of the structure under

external loading. As depicted in Fig. 25, the instability is

not so severe in contrast to the plastic strain localization in

shear band region (Fig. 20). The value of the second-order

work obtained by integration on the whole physical domain

could give measure for the stability of the entire soil mass

[15].

4 Conclusions

We have combined a strong discontinuity approach with

XFEM analysis to investigate with a Drucker–Prager

model within non-associated plasticity shear banding in

fully saturated porous media. This combination works

Fig. 21 Pressure–displacement curve

0.45δ 0.55δ 0.65δ

Fig. 23 Pressure gradient field (Pa/m) contours

2.7

1

-0.6

x 103Pa

0.45δ 0.55δ 0.65δ

Fig. 22 Fluid pressure contours
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well and is able to represent properly the evolution of the

shear band and the pore pressures and yields mesh inde-

pendent result. This has been shown on two examples

where the results compare well with those found in the

literature. Further, the results have been confirmed by the

application of the second-order work criterion. As pointed

out in [15], this criterion not only indicates the develop-

ment of the local instability but if integrated over the

whole soil mass could give useful information about the

instability of the global value. If this global domain is

negative, the entire domain is unstable. The global value

plays the role of a safety factor. When local negative

values are obtained with a positive global value, the cri-

terion indicates that the whole domain is still globally

stable, possibly approaching to a properly unstable state.

The procedure outlined in this paper will now be exten-

ded to partially saturated cases.
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