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Abstract
Maximum and minimum void ratios (emax and emin) of granular soils are commonly used as indicators of many engineering

properties. However, few methods, apart from laboratory tests, are available to provide a rapid estimation of both emax and

emin. In this study, we present a theoretical model to map the densest and the loosest packing configurations of granular

soils onto the void space. A corresponding numerical procedure that can predict both emax and emin of granular soils with

arbitrary grain size distributions is proposed. The capacity of the proposed method is evaluated by predicting the maximum

and minimum void ratios of medium to fine mixed graded sands with different contents of fines. The influence of the grain

size distribution, characterized quantitatively by uniformity parameter and the fractal dimension, on emax and emin is

discussed using the proposed method. Moreover, application of this method in understanding the controlling mechanism

for the void ratio change during grain crushing is presented.
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1 Introduction

The void ratio is commonly regarded as a comprehensive

representation of the mechanical and hydromechanical

properties. In the critical state theory, for example, the void

ratio as well as its relationship with the mean effective

stress under sufficiently large shear strain has a governing

influence on the deformation and strength characteristics of

granular soils [29, 33]. Due to different arrangements of the

granular solids, the void ratio of a granular soil without any

external stress falls within a certain range, bounded by the

minimum and the maximum void ratios (emin and emax).

Determining the minimum and maximum void ratios of

granular soils is not only a preliminary step for preparing

the soil specimens with certain relative densities, but also

provides approximations of many material and state-de-

pendent properties. For instance, Cubrinovski and Ishihara

suggested using the void ratio range (emax–emin) as an

indicator of some mechanical properties, such as the

normalized SPT blow count [9] and the position of the

critical state line [10]. In this context, geotechnical engi-

neers may have a grasp of important properties of granular

soils if the minimum and maximum void ratios can be

rapidly estimated. In practical cases, however, elaborate

laboratory tests are generally required to determine emin

and emax. Needing the laboratory tests may compromise the

simplicity of using emin and/or emax as indicators of many

properties. In addition, the representative elementary vol-

ume (RVE) of some coarse-grained materials (e.g., rock-

fills, which may have the maximum particle size of 1 m),

can be beyond the size limit of conventional laboratory

apparatuses. Thus, determining emin and emax of such

coarse-grained materials can be expensive, or imprecise if

the downscaling techniques have to be adopted [15].

To address the above problems, Humphres [16] used

empirical graphical method to approximately estimate the

minimum void ratios of granular soils. Youd [32] proposed

empirical curves to determine the maximum and minimum

void ratios after analyzing the influence of particle shape,

particle size range and variances in the curve shape of the

grain size distribution (GSD). Despite the simplicity of

these empirical methods, the essential reasonability is not

elucidated. As a result, the applicability of these methods is
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often unclear for some particular granular soils and

improvements or generalizations of these methods are not

obvious.

Since the last decades, the discrete element method

(DEM) has been proven to be a powerful tool in predicting

the packing densities of granular soils. For example,

Voivret [28] used DEM to investigate the influence of the

particle size span on the packing density of polydisperse

granular materials. Minh and Cheng [20] studied the

influence of the ‘‘fractal dimension’’ of the GSD on the

one-dimensional deposition properties of granular soils and

found the existence of a critical fractal dimension that

corresponds to the densest packing. However, the DEM

simulation is far from being called a rapid method. It may

take several days to simulate the packing of a moderately

polydisperse granular specimen with the size of its RVE.

Regarding a possible methodology to overcome the

limitations of the empirical and the numerical methods, a

desirable solution would be finding an analytic expression

to map the packing information onto the void space. For

instance, Ouchiyama and Tanaka [23] proposed the idea of

mapping the neighboring particles onto the surface of the

reference particle so that the ‘‘shaded area’’ can be con-

sidered occupied. Using this hypothesis, Madadi et al. [18]

investigated the density of densely packed granular mate-

rials with ‘‘narrowly distributed’’ particle sizes. Kenzi [17]

proposed an analytic solution for the estimation of the

minimum and maximum void ratios of binary granular

mixtures. Similar analytic model for the packing density of

binary mixtures was developed by Zok and Lange [34] for

composite materials. Stovall et al. [26] used a linear model

to predict the packing density of granular soils with mul-

tiple particle sizes. Recently, Chang et al. [4–6] developed

the concept of active and inactive voids and proposed the

packing and compression models for sand–silt mixtures.

Extension of this idea from binary to polydisperse particle

sizes was also presented to predict the minimum void ratio

of granular materials with the effect of GSD [7]. Although

these models have shed lights on the nature of the granular

packing problem, they are still limited in predicting both

the minimum and maximum void ratios of an arbitrary

GSD.

In this study, we introduce a random close packing

theory and extend it to predict the void ratios of both the

densest and loosest packings. A rapid numerical procedure

that can systematically determine emin and emax for an

arbitrary GSD is developed. Moreover, the quantitative

influence of the GSD on the maximum and minimum void

ratios is discussed, and application of this method in

understanding the controlling mechanism for the void ratio

change during grain crushing is presented.

2 Model for the packing of granular soils

Before proposing a model that is capable of predicting the

maximum and minimum void ratios of arbitrary granular

soils, two fundamental questions should be answered:

(a) How to map the topology and geometry of a granular

packing onto the void space? and (b) how to define the

packing configurations of the densest and loosest packings?

In what follows, we will first present the outline of the

dimension reduction concept proposed by Farr and Groot

[14], which essentially addresses the first question. After-

ward, we will answer the second question by applying this

concept to both the densest and the loosest packings.

2.1 Outline of the dimension reduction concept

The dimension reduction concept proposed by Farr and

Groot [14] is an approximate solution for the dense packing

of spheres. We assume that soil particles are spherical as a

starting point. The essential idea of the close packing

theory is to map the 3D packing of spheres with a certain

distribution P3D(D) onto 1D rods. Here, the particle num-

ber distribution of spheres P3D(D) is defined so that

P3D Dð ÞdD equals the number fraction of spheres with

diameters ranging from D to D ? dD. We imagine a large

random but non-overlapping arrangement of spheres in 3D

(see Fig. 1). If we draw a straight line through this packing

and counting each portion of the line which lies within a

sphere as a rod with length L, Farr and Groot argued that

the rod length fraction is equal to the 3D volume fraction.

The resulting distribution of rod length P1D Lð Þ is related to

P3D(D) by

P1D Lð Þ ¼ 2L

RDM

L
P3D Dð ÞdD

RDM

0
P3D Dð ÞD2dD

ð1Þ

where DM is the maximum particle diameter. It should be

noted that the dimension reduction concept is mainly valid

for isotropic packings. For granular soils with special

particle shapes (e.g., slate rockfill materials), the influence

of anisotropy is not negligible [1] and the dimension

3D spheres

1D rods

A C

B

A’ B’ C’

Fig. 1 Schematic representation of the sphere-rod mapping concept
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reduction concept may not be suitable. However, the

shapes of most of the granular particles in geotechnical

engineering are randomly irregular, without a preferred

dimension. DEM simulations [1] demonstrated that the

packings of granular particles, whose geometric shapes do

not have a preferred dimension, do not exhibit significant

anisotropy irrespective of the packing density. Therefore,

the dimension reduction concept is suitable for most

granular soils.

With this dimension reduction concept, it suffices to

define an effective potential between the rods. By consid-

ering the size independence of the packing and the inter-

action of unequal particles, Farr and Groot suggested one

expression for the potential that is believed to be the sim-

plest to capture the physics of the packing of rods, which is

given by

V hð Þ ¼ 1 if h\minðfLi; fLjÞ;
0 if h�minðfLi; fLjÞ

�

ð2Þ

where V is the value of the potential, which is either zero or

infinite, because the rods are considered to be rigid; h is the

gap between the nearest approaching ends of rods Li and Lj;

f is the ‘‘free volume’’ parameter, which corresponds to the

tolerable free volume between particles. In this study, we

should distinguish the value of f for the densest and the

loosest packings, denoted as fD and fL, respectively. The

values of fD and fL are considered to be related to the

particle shape. Thus, we consider them as two fitting

parameters in the model. It is worth mentioning that as

small particles (illustrated by particle B in Fig. 1) may

rattle around two contacting particles (B and C in Fig. 1) in

a 3D packing, the potential defined in Eq. (2) should also

be effective for non-neighboring rods (B0 and C0 in Fig. 1)

to enable large rods to reach through small ones.

2.2 Configurations of the loosest and densest
packings

Although the dimension reduction concept was initially

proposed for the close random packing problem, we remark

that the close packing configuration is not a necessary

condition for this concept. That is to say, it is possible to

map both the densest and the loosest packings of spheres

onto a problem of the packing of rods on a line, where we

should search the ordering of rods as well as their

separations.

In practices, the preparation of loose granular soil

samples requires a static deposition step, namely, pouring

the soils into a container. Due to the gravity, soil particles

will fall and possibly roll until a local stable state is

reached. The falling of a single soil particle, as illustrated

in Fig. 2a, can be assumed to satisfy the following condi-

tions: (a) The falling particle can barely influence the

overall arrangement of the deposited soil particles in the

container, and (b) the final position of the falling particle

will correspond to a local minimum potential. By analogy,

we anticipate the following configurations for 1D loose

packing of rods: (a) Adding a new rod will not change the

overall ordering of the pre-placed rods. Without losing

generality, the new rod can be placed at the extremity of

the pre-placed rods. (b) And the new rod will, however, try

to reach the local minimum potential. In other words, the

adding rod Li will approach the pre-placed rods until its gap

between one of the pre-placed rods, designated as Lj,

becomes h ¼ minðfLi; fLjÞ.
The densest granular soil samples are often prepared by

the dynamic method (e.g., using a vibratory table suggested

by ASTM [3]) in laboratory tests. Falling of a new soil

particle into a vibrating granular soil sample results in the

rearrangement of the soil particles until reaching a global

minimum potential state (see Fig. 2b). In 1D packing of

rods, the vibration process can be interpreted as the

reordering of all the rods and minimization of the gaps

between the rods to reach the global minimum potential.

3 Numerical procedure

3.1 Overall flowchart

Figure 3 presents the flowchart for the numerical estima-

tion of emin and emax. The simulation procedure is divided

into three successive steps, which can be represented by

three functionals. The first functional F 1 relates the

cumulated mass distribution (CMD) M(D), which is com-

monly used in geotechnical engineering, to the particle

number distribution of spheres P3D(D). The second func-

tional F 2 maps P3D(D) into 1D packing of rods using

Eq. (1). The third functional (F 3�1 or F 3�2) maps even-

tually the 1D rods onto the void space by virtue of the

densest and loosest packing configurations established

previously in Sect. 2.

3.2 From CMD to the particle number
distribution

In order to establish the first functional, we should distin-

guish the definitions of the two following descriptions for

the GSD of a granular soil. The CMD M(D) is defined as

the percentage of mass equal or finer against the particle

size

MðDÞ ¼
MðL�DÞ
MT

ð3Þ

where M L�Dð Þ is the mass of particles with diameter

smaller than D; MT is the total mass of the soil sample. An
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alternative description to reflect the GSD is particle number

distribution P3D(D), as defined previously. The definition

of P3D(D) can be expressed as

P3D Dð Þ ¼
dNðL�DÞ
NTdD

ð4Þ

where NðL�DÞ is the number of particles with diameter

equal or smaller than D; NT is the total number of particles.

According to Eq. (3), the mass fraction of particles with

diameter ranging from D to D ? dD is dMðDÞ. The

number of particles corresponding to this mass fraction is

thus calculated to be

dNðL�DÞ ¼ MTdM Dð Þ
qVðDÞ ð5Þ

where q is the average density of the grain material and

V(D) is the volume of a single particle with diameter D. For

spherical particles, we have

V Dð Þ ¼ 1

6
pD3 ð6Þ

By virtue of Eq. (5), the total particle number NT is easily

integrated to be

NT ¼
Z DM

Dm

dNðL�DÞ ¼
Z DM

Dm

MT

qVðDÞ
dM Dð Þ
dD

dD ð7Þ

Substituting Eqs. (5) and (7) into Eq. (4) eventually yields

P3D Dð Þ ¼ dMðDÞ
dD

�

V Dð Þ
Z DM

Dm

1

VðDÞ
dMðDÞ
dD

dD ð8Þ

Thus, for a given granular soil, we can derive the par-

ticle number distribution P3D(D) from its CMD MðDÞ
using Eq. (8).

3.3 Algorithms for the packing of rods

Now the rod number distribution P1D(L) can be derived

based on F 1 (Eq. 8) and F 2 (Eq. 1), respectively. In order

to further map P1D(L) onto the void space, one should

(a) generate random variables that obey the distribution

given by P1D(L) and (b) optimize the ordering and/or the

minimum gaps for the packing of rods.

In this study, the acceptance–rejection method [12] is

adopted to generate the lengths of rods Lif g that obey

P1D(L). The generation procedure is summarized as

follows:

1) Choose a parameter k that kP1DðLÞ� 1,

8L 2 0;DM½ �.
2) Generate uniformly distributed pseudo-random num-

bers r1 and r2 that r1; r2 2 0; 1ð Þ. Let y ¼ DMr1.

3) Compare r2 and kP1DðyÞ. If r2 � kP1DðyÞ, let L ¼ y

and output L. Otherwise, abandon r1 and r2, then

return to step (2).

(a)

Vibration

(b)

Fig. 2 Illustration of different packing procedures: a loosest packing; b densest packing

Fig. 3 Flowchart for the estimation of the maximum and minimum

void ratios
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Repeat the above procedure to generate the random

number sequence L1, L2,…,Ln. The generated random

number sequence corresponds to different lengths of rods.

Once the lengths of rods are generated, we use an effi-

cient ‘‘greedy algorithm’’ suggested by Farr and Groot [14]

to estimate the minimum void ratio. The main idea is to

insert rods in decreasing order so that we can avoid cal-

culating the two-body potential between the inserted rod

and all the rods pre-placed in the packing. The algorithm is

summarized as:

1) Label the lengths of the rods in decreasing order such

that L1 � L2 � L3 � � � � Ln. Then, these rods will be

inserted in decreasing order.

2) Maintain a set of gaps gif g, equal in number to the

number of rods in the packing. The length of the first

gap is g1 ¼ fL1. To insert rod j, we should identify

and delete the largest gap gmax in the packing. Then,

we add two new gaps in the set of gaps, namely fLi
and max½gmax � ð1þ f ÞLj; fLj�.

For the loosest packing of rods, the inserted rod is

assumed to be unable to change the overall ordering of the

pre-placed rods, as discussed in the previous section. Thus,

we can choose to let the rods inserted in a random order of

size and simply put the inserted rod at the extremity of the

pre-placed rods packing. Imagine we have i - 1 pre-placed

rods and now are inserting the rod i. It suffices to put the

rod i at the end of rod i - 1 with a certain gap gi. As the

potential defined in Eq. (2) exists between rod i and all the

pre-placed rods, at first sight, it seems we have to find the

minimum gi that satisfies the following i - 1 conditions:

gi �min fLi; fLi�1ð Þ
gi þ Dk �min fLi; fLi�k�1ð Þ; k ¼ 1; 2; . . .; i� 2

�

with Dk ¼
Xk

j¼1

Li�j þ gi�j

� �
ð9Þ

However, if we verify each condition in (9) in an

increasing order of the index k, the process can be termi-

nated when the left term is greater than fLi. The remaining

conditions (for k ? 1, k ? 2,…i -2) will be satisfied

automatically because (a) the left terms in (9) increase

monotonically with the increase in k and (b) the right terms

in (9) are bounded by fLi.

Therefore, we propose the following algorithm for the

estimation of the loosest packing of rods:

1) Let the lengths of rods generated in a random order.

Insert L1, L2, g1 ¼ fL1 and g2 ¼ minðfL1; fL2Þ.
2) In order to insert Li, first let gi ¼ minðfLi; fLi�1Þ,

k = 1 and D = 0. Then, do the following: �

D ¼ Dþ gi�k þ Li�k; `

gi ¼ maxðgi;minðLi; Li�k�1Þ � DÞ; ´ k = k ? 1

until k[ i� 2 or D[ fLi.

With the above algorithms, we can eventually calculate

the maximum or the minimum void ratio of the packing by

emin=max ¼
P

giP
Li

ð10Þ

4 Results and discussions

4.1 Verification of the method

There are two parameters in the proposed model, namely,

fD and fL. For uniform spherical particles, we find that

fD ¼ 0:7654 and fL ¼ 0:9881 will lead to the minimum and

maximum void ratios of emin ¼ 0:5504 and emax ¼ 0:8018,

respectively. These void ratios agree with the random close

and loose packings of uniform spheres in the literature [22].

The values of fD and fL for non-spherical particles are

generally greater than those for spherical particles. In

practice, fD and fL can be experimentally obtained by

measuring the maximum and minimum void ratios of one

soil sample with any GSD. Then, the proposed method will

enable geotechnical engineers to predict emax and emin of

the same soils with other GSDs. A major advantage of this

method compared to other explicit dynamic simulations

(e.g., DEM simulation) is the computational efficiency:

The proposed method can estimate emax and emin in several

seconds on an ordinary PC, while the DEM simulations

may take hours or days.

Experimental data for the maximum and minimum void

ratios of medium to fine mixed graded sands after Yilmaz

[31] are used to verify the proposed method. Figure 4

presents the GSDs of 10 artificially graded sands in the
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Fig. 4 GSDs of medium to fine mixed graded sands with different

contents of fines after [31]
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tests by changing the fines content (FC) from 0 to 100%.

The particle size of coarse-grained sand ranges from 1 to

1.18 mm and the particle size of fines from 0.3 to 0.6 mm.

Figure 5 shows their corresponding particle number dis-

tributions P3D(D) and rod number distributions P1D(L),

which are calculated through the methods presented in the

previous section. As can be seen, both P3D(D) and P1D(-

L) increase with the increase in FC for small particle/rod

sizes and decrease for big particle/rod sizes. We also

remark that the rod number distribution P1D(L) does not

equal to zero for rod sizes from 0.6 to 1 mm, which con-

trasts with the particle number distribution P3D(D). This is

because the length of a rod ‘‘cut’’ by a sphere may range

from zero to the diameter of the sphere. Figure 6 compares

the numerically estimated maximum and minimum void

ratios of these granular mixtures with the experimental

results. In the simulation, the values of fD and fL are fitted

to be 0.9583 and 1.2577, respectively. The numerical

prediction is in good agreement with the experimental data.

Both the minimum and maximum void ratios of the mix-

tures decrease as the fine content increases from 0% to

approximately 30%. Further increase in the fine content

results in the increase in the maximum and minimum void

ratios.

4.2 Influence of GSDs

The proposed method has been verified previously for

artificially graded granular soils. However, unlike artifi-

cially graded granular mixtures, the particle size of natural

granular soils is often continuously distributed within a

certain range. In the following, the proposed method is

adopted to investigate the influence of the GSDs of natural

granular soils on their maximum and minimum void ratios.

To this end, one should first quantify the GSDs of naturally

graded granular soils. It has been repeatedly observed that

granular soils undergoing sufficiently large energy (e.g.,

landslides) will lead to the emergence of a fractal distri-

bution of particle sizes (e.g., Turcotte [27], McDowell et al.

[19], Altuhafi and Coop [2]). In this context, Einav [13]

proposed an expression for the CMD of arbitrary naturally

graded granular soils, given by

M Dð Þ ¼ K3�d � D=DMð Þ3�d

K3�d � 1
ð11Þ
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Fig. 5 Probability density distributions calculated for mixed graded sands with different contents of fines: a particle number distribution P3D(D);

b rod number distribution P1D(L)
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where K is the ratio of the minimum particle size Dm to the

maximum particle size DM, given as K ¼ Dm=DM; d is a

constant parameter for a given GSD. If Dm tends toward

zero, the GSD becomes a fractal distribution and the

parameter d is the fractal dimension of the GSD. Figure 7

gives three examples of the GSDs using Eq. (11) in semi-

log axes. It is seen that an arbitrary GSD can be uniquely

determined by three parameters: the parameter K, which is

related to the uniformity of particle size, the fractal

dimension d and the maximum particle size DM.

Although some test results showed that greater particle

sizes tend to decrease the maximum and minimum void

ratios (see Cubrinovski and Ishihara [11] for instance),

Youd [32] demonstrated experimentally that the effect of

particle size on the packing densities is negligible if we

control elaborately the shape of the particle, the particle

size range and the gradational-curve shape. Furthermore,

from the point of view of packing configurations, the

maximum and minimum void ratios should be unchanged

if all the particles are magnified by an equal amount. As a

result of the size independence of emax and emin, there are

only two influencing parameters in Eq. (11), namely K and

d. Figure 8 shows the simulated maximum and minimum

void ratios of both narrowly distributed (K ! 1) and

polydisperse (K ! 0) granular soils. To eliminate the

influence of particle shape, we use spherical particles in the

simulation, namely, fD ¼ 0:7654 and fL ¼ 0:9881. For

narrowly distributed granular soils (see Figs. 8a, b), the

maximum void ratio follows the same overall trend as the

minimum void ratio when changing the GSD of granular

soils: Both the maximum and minimum void ratios

increase with the increase in the uniformity parameter K.
The fact that increasing the particle size range (decreasing

K) results in smaller void ratio was also found experi-

mentally [32] and numerically by DEM simulation [28].

We can also remark that the influence of the fractal

dimension d on emax and emin is not significant for narrowly

distributed cases. However, for polydisperse soils, both the

fractal dimension d and the uniformity parameter K influ-

ence significantly the maximum and minimum void ratios

(see Figs. 8c, d). In addition, it is also interesting to remark

that for a given value of K, both emax and emin may attain

the minimum values. emax attains its minimum value at the

fractal dimension d of about 2.6, which coincides with the

ultimate fractal dimension of granular soils under sub-

stantial grain crushing [8, 13]. Contrasting with the maxi-

mum void ratio, emin attains its minimum value at about

d = 2.3. Similar results were also found by Minh and

Cheng [20], who simulated the one-dimensional compres-

sion of granular materials by DEM and found that the

specific volume of the granular materials approaches its

minimum value when d = 2.3.

The above results show the interesting similarity

between the packings of polydisperse granular soils and the

ultimate crushing states of granular soils. Inspired by the

above results, we anticipate that the evolution of the GSD

plays an important role in the change in the packing density

of granular materials, which may be the governing factor

for the change in the void ratio during grain crushing. In

the following, the proposed method will be used to eval-

uate the role that the evolution of the GSD plays in the void

ratio change during grain crushing.

Nakata et al. [21] have provided sufficient details in one-

dimensional high-pressure compression tests on crushable

silica sand. The maximum and minimum void ratios for the

prior compression sand sample are 0.632 and 0.881,

respectively. Figure 9 shows the experimentally obtained

GSD curves at different vertical stresses, plotted in semi-

logarithmic scale. The stress levels at which the GSDs were

measured are labeled in the figure. Thanks to the experi-

mentally measured GSDs, we are able to obtain the max-

imum and minimum void ratios at different GSDs (and at

different stress levels) using the proposed method. In the

simulation, the values of fD and fL are fitted to be 0.8726

and 1.0888, respectively. For the sake of simplicity, the

change in the particle shape during grain crushing is

ignored in this study. Thus, the values of fD and fL are

assumed to be constants for the silica sand samples irre-

spective of the grain crushing with increasing the stress.

The estimated emax and emin at different stress levels (es-

timated emin � rv and emax � rv relationships) are com-

pared with the experimentally obtained compression curve

(e� rv relationship) of densely prepared sample

(e0 ¼ 0:6� 0:03) in Fig. 10a. If we consider the fact that

the volume change in granular soils under compression is

not only contributed to the evolution of the packing con-

figuration (i.e., the grain crushing and the subsequent

rearrangement), but also to the elastic deformation of the

soil skeleton [24], the agreement between the
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experimentally obtained e� rv curve and the estimated

emin � rv relationship is surprisingly good. The compres-

sion curve only deviated slightly from the estimated min-

imum void ratio under high compressive pressure. This

good agreement suggests that the volume change due to the

elastic deformation of the soil skeleton is relatively small

compared to the contribution of the crushing and the sub-

sequent rearrangement. Furthermore, as the compression

curve for granular samples at different initial void ratios

will converge toward a unique ‘‘limit compression curve’’

under sufficiently high pressure [24, 25, 30], the agreement

between e� rv curve and the estimated emin � rv rela-

tionship under high pressure should also be valid for

granular soils prepared at other initial densities (see the

conceptual illustration in Fig. 10b). It is thus plausible to

conclude that a crushable granular soil under compression,

irrespective of its initial relative density, will evolve

toward its densest packing configuration. The densest state

is probably achieved through the grain crushing and the

subsequent rearrangement of the fragments.

The relationship between the estimated emin and emax for

the crushable silica sand at different GSDs is given in

Fig. 11. The emin–emax relationship for the silica sand is

compared with experimental data from Cubrinovski and

Ishihara [11] for a variety of soils. We note that as the GSD

of the silica sand evolves from a relatively uniform dis-

tribution to a highly polydisperse distribution due to grain

crushing, the estimated emin–emax relationship for the tested
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silica sand covers a very broad range of granular materials.

Evidently, the estimated correlation between emin and emax

agrees basically with the data for different granular soils.

Both the experimental data and the estimated result for the

silica sand indicate that there is a pronounced correlation

between the minimum and maximum void ratios. In addi-

tion, if the emin–emax is fitted by a linear function, both the

estimation for the crushable silica sand and the test results

for different kinds of granular soils indicate that when emin

tends toward zero, there is a ‘‘residual’’ maximum void

ratio. As emax–emin characterizes the deformation potential

of granular soils [11], the existence of the ‘‘residual’’

maximum void ratio implies the capacity of dilatancy for

granular materials with low packing densities (e.g., highly

polydisperse granular soils).

5 Conclusion

The maximum and minimum void ratios of granular soils

are related to many mechanical and hydromechanical

properties. However, apart from experimental tests, few

methods are available to estimate the maximum and min-

imum void ratios. In this study, we propose a numerical

method to provide rapid predictions of both the maximum

and minimum void ratios. The proposed method uses the

dimension reduction concept to simplify the 3D packing

problem into 1D ordering of rods, which was originally

proposed in the random close packing of spheres and is
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extended to both dense and loose cases in this study.

Numerical procedures that allow efficient and systematic

predictions of the maximum and minimum void ratios of

granular soils with arbitrary GSDs (including gapped,

uniform and polydisperse distributions), are also presented.

The developed method is verified using experimental data

on 10 mixed graded sands with different contents of fines.

The estimated results show good agreement with test data

if we consider the fact that the particle sizes of sand and

fines mixtures are very complex, which are both polydis-

perse and poorly graded.

The effect of the GSD on the maximum and minimum

void ratios is discussed using the proposed method. Results

show that both the maximum and minimum void ratios

tend to decrease with increasing polydispersity of the

particle sizes. The effect of the fractal dimension d is non-

significant for narrowly distributed granular soils, and

becomes more and more pronounced with increasing

polydispersity of particle sizes. For polydisperse granular

soils, both emax and emin may attain their minimum value at

certain values of d. emax attains its minimum value at

approximately d = 2.6, while emin attains its minimum

value at about d = 2.3.

The one-dimensional compression of the crushable sil-

ica sand is also discussed in this study as an example of

using the proposed method. Results show that the estimated

minimum void ratios at different stress levels agree well

with the compression curve for densely prepared silica

sample. Further analysis suggests that a crushable granular

soil under compression, irrespective of its initial density,

will evolve toward its densest packing configuration. The

densest state is probably achieved through the grain

crushing and the subsequent rearrangement of the frag-

ments. In addition, the estimated relationship between the

minimum and maximum void ratios for the silica sand

under crushing follows the same overall trend as the

experimental data for a variety of granular soils. Both

estimated and experimental results imply that there is a

residual maximum void ratio when emin tends toward zero.

Such residual emax allows the potential dilatancy of gran-

ular soils that has low minimum void ratios (e.g., poly-

disperse granular soils).

The influence of the particle shape is characterized by

the parameters fD and fL. In our future work, quantitative

correlation between these parameters and the roundness of

particles will be investigated to refine the proposed model.

In addition, the estimation of packing densities of granular

materials with particular particle shapes needs further

investigation.
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