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Abstract
The phase field model represents sharp cracks by diffusive mushy-zone and can simulate crack propagation automatically.

Propagation and coalescence of quasi-static cracks in Brazilian disks are investigated by a phase field model. The phase

field modeling is implemented in Comsol Multiphysics and initially verified by a benchmark of three-point bending test.

The Brazilian disk specimens containing no initial crack, a single and two pre-existing cracks subjected to compression are

then tested by the phase field model. Crack propagation patterns along with the load–displacement curves are fully

discussed. Meanwhile, the effects of length scale parameter and critical energy release rate on crack propagation are

evaluated. In addition, the effect of crack inclination angle on the pre-cracked Brazilian disk specimens is also investigated.

The numerical results obtained by the phase field model are in good agreement with previous experimental and numerical

results.
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1 Introduction

In recent years, rock fracture mechanics has been devel-

oped with the application of fracture mechanics in geology

and rock engineering. Various rock engineering problems

such as rock cutting, hydraulic fracturing, explosive frac-

turing, underground excavation and rock stability [22] can

be solved effectively by rock fracture mechanics because it

focuses on the initiation and propagation of a single crack

or multiple cracks in geomaterials subjected to loads [63].

Two leading bases of rock fracture mechanics are the

Griffith’s theory in 1920 and Irwin’s modification in 1957,

which stressed the stress intensity factor (SIF) near a crack

tip [22, 28] to reflect the ability of material to resist fracture

propagation. The SIF, also known as the fracture tough-

ness, thereby becomes a widely used parameter of rock

fracture.

Depending on the applied load on a crack, the crack

propagation shows three modes: Mode I fracture (crack

opening), Mode II fracture (crack in-plane shear), and

Mode III fracture (crack out-plane tearing) [7]. In addition,

the crack can also propagate according to a combination of

different modes, while Mode I fracture is most frequently

observed [28]. Even for some macroscopic shear or mixed-

mode failure in rocks, researchers still found microscopic

fractures of Mode I. During crack propagation in rocks and

rock-like materials, the cracks initiating from the tips of

pre-existing cracks are commonly typed into two cate-

gories: wing cracks and secondary cracks [63]. The wing

cracks usually result from tensile damage, while the sec-

ondary cracks are caused by shear damage evolution.

Because the fracture toughness of rock for tension is lower

than that for shear, propagation of wing cracks is more

frequently observed than the secondary cracks in rocks.

Many contributions have been made to study crack

propagation and coalescence in rocks. For example,

experimental tests were conducted to show crack propa-

gation in rock-like materials [17, 41, 47, 48, 57, 59, 60, 62].
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In particular, many novel and targeting tests were designed

and implemented to test rock fracture property and dis-

cover crack patterns under compressive loads including

notched semicircular bending tests (NSCB)

[2, 3, 24, 27, 40], cracked chevron notched semicircular

bending method (CCNSCB) [39], and Brazil splitting tests

(Brazilian disk tests) [1–3, 63]. The Brazilian disk test on

an intact specimen with no pre-existing crack is commonly

used to determine tensile strength of rocks or rock-like

materials. Furthermore, the Brazilian disk test on a rock or

rock-like specimen with a central pre-existing crack is one

of the most suitable tests to determine static and dynamic

fracture toughness of materials [63]. For example, Awaji

and Sato [15] and Atkinson et al. [14] have used cracked

straight through Brazilian disk (CSTBD) specimens to

evaluate the Mode I fracture and mixed Mode I/II fracture

toughness of rocks. Therefore, considering the importance

and engineering significance, it is essential to conduct

further study on the mechanism of crack propagation and

coalescence in the Brazilian disk test.

Researchers have to use numerical tools to conduct the

research on crack propagation if the experimental tests are

difficult or even impossible to conduct. For example, Firme

et al. [31] used the multi-mechanism deformation model to

conduct numerical simulations of triaxial creep tests on

Brazilian salt rocks. Meng et al. [42] applied the mathe-

matical programming methods to obtain a discrete

description of the failure mode in a Brazilian test. In the

realm of fracture mechanics, most of the numerical meth-

ods treat crack topology in discrete setting and introduce

discontinuities in the displacement field such as the discrete

crack models [37], extended finite element method

(XFEM) [23, 46], generalized finite element method

(GFEM) [32], cohesive element methods [51, 61], element-

erosion method [16, 38] and the phantom-node method

[21, 52]. More specifically, the discrete crack model [37]

reconstructs the mesh to freshly create new crack surfaces.

XFEM [46] enhances the displacement by introducing

additional discontinuous shape functions in the cracked

elements. Cohesive element methods [51, 61] require a

displacement jump on the element boundary. The element-

erosion method [16, 38] considers elements with zero stress

as the cracks and cannot simulate crack branching correctly

[58]. Recently, some continuous methods are also used to

study crack propagation, e.g., meshless methods [50, 66],

peridynamics (PD) [64], dual-horizon peridynamics (DH-

PD) [54, 55], cracking particle method (CPM) [49, 53],

screened-poisson equation models [11, 12], remeshing

techniques [8–10]. Besides, for the Brazilian disk tests,

simulations based on the finite element method (FEM),

discrete element methods (DEM), or meshless method have

been conducted [20, 28, 63]. However, the inherent dis-

advantages of the above-mentioned numerical methods in

fracture mechanics, such as complicated implementation

and special treatments for complex crack topology, have

also led to the difficulty in crack problems, especially when

encountering multiple cracks.

In this paper, a more effective numerical method for

crack propagation, the phase field method (PFM)

[5, 13, 35] is adopted. Crack propagation and coalescence

in Brazilian disk tests are simulated by a phase field model.

As a recently emerged and developed approach, PFM has

attracted considerable attention [18, 36, 44, 45]. The phase

field model uses a scalar field (phase field) to represent the

sharp crack. The shape of the crack is controlled by a

length scale parameter, and crack propagation is governed

by the evolution equation of the phase field. The advan-

tages of PFM over other approaches are manifold: (i) the

implementation is relatively easier because all the simu-

lations are conducted in a fixed topology; (ii) PFM does not

require external criterion for fracture, and the crack prop-

agation path is automatically determined without special

algorithmic treatments [18]; (iii) PFM deals well with

complex crack propagation such as branching and merging

in 3D; (iv) PFM also can easily simulate crack propagation

in heterogeneous materials; and (v) PFM can be coupled to

some existing commercial software.

We also show our implementation details of the phase

field model in this paper. The phase field model is

accomplished in the commercial FEM software, Comsol

Multiphysics, and verified by a benchmark of three-point

bending test. In addition, the Brazilian disk specimens of

rocks with no initial crack, a single or two pre-existing

cracks are investigated using the PFM. Meanwhile, the

effect of length scale parameter and critical energy release

rate on crack propagation is evaluated. The numerical

results obtained by the phase field model are in good

agreement with previous experimental and numerical

results, indicating the accuracy and applicability of the

phase field modeling.

This paper is organized as follows. The theory of phase

field modeling for brittle fracture by the variational

approach is stated in Sect. 2. Subsequently, the numerical

implementation details of the phase field model are

described in Sect. 3. Then, we initially verify the phase

field modeling by a benchmark of three-point bending test

in Sect. 4. Initiation, propagation, and coalescence of

cracks in Brazilian disk specimens are simulated and ana-

lyzed in Sect. 5. The examples include specimens con-

taining no initial crack, a single and two pre-existing cracks

subjected to compression. Finally, Sect. 6 summarizes the

whole paper.

1196 Acta Geotechnica (2019) 14:1195–1214

123



2 Theory of phase field modeling

2.1 Theory of brittle fracture

Let us consider an elastic body X � Rd (d 2 f1; 2; 3g) as
shown in Fig. 1. The external boundary and internal dis-

continuity boundary of the body X are denoted as oX and

C, respectively. Denoting x as the position vector, the

displacement of body X at time t is uðx; tÞ � Rd. As

depicted in Fig. 1, the body X satisfies the time-dependent

Dirichlet boundary conditions, uiðx; tÞ ¼ giðx; tÞ, on

oXgi 2 X, and also the time-dependent Neumann condi-

tions on oXhi 2 X. A body force bðx; tÞ � Rd that acts

throughout the body X and a traction f ðx; tÞ on the

boundary oXhi are likewise considered in this paper.

The classical Griffith’s theory [6] for brittle fracture

states that the stored elastic energy can be transformed into

dissipative forms of energy. The crack starts to propagate

when the stored energy is sufficient to overcome the frac-

ture resistance of the material. Thus, the crack propagation

can be regarded as a process to minimize a free energy that

composes the elastic energy, fracture energy, and other

forms of energy. Based on this, a variational approach for

fracture was proposed in Bourdin et al. [19]. In this

approach, the required energy to create a fracture surface

per unit area is equal to the critical fracture energy density

Gc, which is also known as the critical energy release rate

[18]. In this paper, we define the total potential energy

Woptðu;CÞ as the sum of the elastic energy weðeÞ, fracture
energy, and energy due to external forces:

Woptðu;CÞ ¼
Z
X
weðeÞdXþ

Z
C
GcdS�

Z
X
b � udX

�
Z
oXhi

f � udS
ð1Þ

with the linear strain tensor e ¼ eðuÞ given by

e ¼ 1

2
ruþ ðruÞT
h i

ð2Þ

Based on the constitutive law for an isotropic linear elastic

material, the elastic energy density weðeÞ is given by [44]

weðeÞ ¼
1

2
k½trðeÞ�2 þ ltrðe2Þ ð3Þ

where k[ 0 and l[ 0 are Lamé constants.

2.2 Phase filed approximation for fracture
energy

The first feature of a phase field method is the definition of

a scalar field, the so called phase field [18, 44, 45]. The

phase field indicates the phase state of point x at time t. In

this paper, we define a phase field /ðx; tÞ 2 ½0; 1� to

approximate the fracture surface C in Fig. 1. The phase

field /ðx; tÞ satisfies

/ ¼
0; if material is intact

1; if material is cracked

�
ð4Þ

The second feature of the phase field method is a smooth

representation of a crack. Therefore, /ðx; tÞ 2 ½0; 1� rep-
resents naturally a diffusive crack shape (the mushy-zone

in Fig. 1). A typical one-dimensional phase field approxi-

mated by the exponential function is given by [44]

/ðxÞ ¼ e�jxj=l0 ð5Þ

with l0 the length scale parameter. l0 controls the transition

region of the phase field from 0 to 1 and reflects the shape

of a crack. The distribution of the one-dimensional phase

field is shown in Fig. 2. The crack region will have a larger

width with a larger l0 and the phase field will represent a

sharp crack again as l0 approaches zero.

Using the length scale parameter l0, the crack surface

density per unit volume of the solid is given by [44]

Fig. 1 Phase field approximation of the crack surface Fig. 2 Distribution of the one-dimensional phase field across a crack
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cð/;5/Þ ¼ /2

2l0
þ l0

2
jr/j2 ð6Þ

Applying Eq. (6), we have
R
C dS �

R
X cdX. Thus, the

fracture energy is approximated by

Z
C
GcdS ¼

Z
X
Gc

/2

2l0
þ l0

2
jr/j2

� �
dX ð7Þ

The variational approach [19] states that the crack surface

energy is transformed from the elastic energy and thereby

evolution of the phase field is driven by the elastic energy.

To ensure cracking only under tension, it is essential to

decompose the elastic energy into tensile and compressive

parts [45]. In this paper, we follow the decomposition of

Miehe et al. [45] and ensure that evolution of the phase

field is only related to the positive elastic energy. Thus,

crack propagation under compression is not allowed.

Therefore, the strain tensor e is first decomposed as

follows:

e� ¼
Xd
a¼1

heai�na � na ð8Þ

where eþ and e� are the tensile and compressive strain

tensors, respectively. In addition, ea is the principal strain

and na the principal strain direction. The operator h�i� is

defined as: h�i� ¼ ð�� j�jÞ=2.
Applying the decomposed strain tensor, the positive and

negative elastic energy densities are represented as follows:

w�
e ðeÞ ¼

k
2
htrðeÞi2� þ ltr e2�

� � ð9Þ

It is assumed that the phase field affects only the positive

elastic energy density and gives rise to a stiffness reduction

as [18]

weðeÞ ¼ ð1� kÞð1� /Þ2 þ k
h i

wþ
e ðeÞ þ w�

e ðeÞ ð10Þ

where 0\k 	 1 is a model parameter that prevents the

positive elastic energy density from disappearing and

avoids numerical singularity when phase field / approa-

ches 1.

2.3 Governing equations

For quasi-static crack problems, the kinetic energy of body

is neglected. Thus, we construct a Lagrange energy func-

tional composing the phase field approximation for the

fracture energy (7), the elastic energy (10), and the external

potential energy by the external loads:

L ¼Woptðu;CÞ

¼
Z
X

ð1� kÞð1� /Þ2 þ k
h i

wþ
e ðeÞ þ w�

e ðeÞ
n o

dX

þ
Z
X
Gc

/2

2l0
þ l0

2
jr/j2

� �
dX�

Z
X
b � udX

�
Z
oXhi

f � udS ð11Þ

As mentioned previously, the variational approach

emphasizes that crack propagation is a process to minimize

the energy functional. Here, we calculate the variation of

the functional L and set the first variation of the functional

as zero, giving rise to the governing equations given by

DivðrÞ þ b ¼ 0

2l0ð1� kÞwþ
e

Gc

þ 1

� �
/� l20r2/ ¼ 2l0ð1� kÞwþ

e

Gc

:

8<
:

ð12Þ

where r is Cauchy stress tensor given by

r ¼ oewe ¼ khtrðeÞi�I þ 2le� þ ð1� kÞð1� /Þ2 þ k
h i

khtrðeÞiþI þ 2leþ
	 


ð13Þ

with I a unit tensor 2 Rd
d.

In addition, the irreversibility condition Cðx; sÞ 2 Cðx; tÞ
(s\t) must be satisfied during compression or unloading.

That is, a crack cannot be recovered to the uncracked state

once the crack initiates. To ensure a monotonically

increasing phase field, we introduce a strain-history field

Hðx; tÞ [44, 45] defined by

Hðx; tÞ ¼ max
x2½0;t�

wþ
e eðx; sÞð Þ ð14Þ

Replacing wþ
e by Hðx; tÞ in Eq. (12), the strong form is

rewritten as

DivðrÞ þ b ¼ 0

2l0ð1� kÞH
Gc

þ 1

� �
/� l20r2/ ¼ 2l0ð1� kÞH

Gc

:

8><
>: ð15Þ

The necessary boundary conditions of the phase field

modeling are given by

u ¼ g on oXgi

r � n ¼ f on oXhi

r/ � n ¼ 0 on oX

8><
>: ð16Þ

with n the outward-pointing normal vector of the boundary.

Finally, initial conditions for the crack propagation

problems are also needed:
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uðx; 0Þ ¼ u0ðxÞ x 2 X

/ðx; 0Þ ¼ /0ðxÞ x 2 X

�
ð17Þ

3 Implementation details

3.1 Finite element method

We use the finite element method to solve the governing

Eq. (15), and the weak forms of the phase field modeling

are given byZ
X
�r : deð ÞdXþ

Z
X
b � dudXþ

Z
Xhi

f � dudS ¼ 0 ð18Þ

andZ
X
�2ð1� kÞHð1� /Þd/dX

þ
Z
X
Gc l0r/ � rd/þ 1

l0
/d/

� �
dX ¼ 0

ð19Þ

We denote the nodal values as ui and /i. Applying the

standard notation in a 2D setting, the nodal variables are

discretized as

u ¼
Xn
i

Niui; / ¼
Xn
i

Ni/i ð20Þ

where n is the total number of nodes in one element and Ni

is the shape function of node i. Thus, the gradients are

calculated by

e ¼
Xn
i

Bu
i ui; r/ ¼

Xn
i

B/
i /i ð21Þ

where Bu
i and B/

i are the derivatives of the shape functions

defined by

Bu
i ¼

Ni;x 0

0 Ni;y

Ni;y Ni;x

2
64

3
75; Bu

i ¼
Ni;x

Ni;y

� �
ð22Þ

Because of arbitrariness of the test functions, the external

force Fu;ext
i and inner force Fu;int

i are described by

Fu;ext
i ¼

R
X NibdXþ

R
Xhi

NifdS

Fu;int
i ¼

R
X½B

u
i �
T
rdX

(
ð23Þ

The inner force term of the phase field is also obtained by

F
/;int
i ¼

Z
X
�2ð1� kÞð1� /ÞHNi

þ Gc l0½B/
i �

Tr/þ 1

l0
/Ni

�
dX

� ð24Þ

Thus, according to Eqs. (18) and (19), contribution of node

i to the residual of the discrete equations of stress equi-

librium and evolution of phase field is given as

Ru
i ¼ Fu;ext

i � Fu;int
i ; R

/
i ¼ �F

/;int
i

ð25Þ

We use the segregated scheme to solve the displacement

and phase field. Thus, the Newton–Raphson approach is

adopted to obtain Ru
i ¼ 0 and R

/
i ¼ 0, respectively. The

tangents on the element level are thereby calculated by

Kuu
ij ¼ oFu;int

i

ouj
¼

Z
X
½Bu

i �
TD½Bu

j �dX

K//
ij ¼ oF

/;int
i

o/j

¼
Z
X

½B/
i �

T
Gcl0½B/

j �
n

þNi 2ð1� kÞH þ Gc

l0

� �
Nj

�
dX

8>>>>>>><
>>>>>>>:

ð26Þ

and D is the elasticity tensor of fourth order given by

D ¼ or

oe

¼ k ð1� kÞð1� /Þ2 þ k
h i

HeðtrðeÞÞ þ Heð�trðeÞÞ
n o

J

þ 2l ð1� kÞð1� /Þ2 þ k
h i

Pþ þ P�
n o

ð27Þ

where Hehxi is a Heaviside function with Hehxi = 1 for x[ 0

and Hehxi ¼ 0 for x� 0 and Jijkl ¼ dijdkl with dij and dkl the

Kronecker symbols. In addition, P� ¼ oe�=oe. According to

the algorithm for fourth-order isotropic tensor [43], the

component P�
ijkl is calculated based on the following equation:

P�
ijkl ¼

X3
a¼1

X3
b¼1

HeðeaÞdabnainajnbknbl

þ
X3
a¼1

X3
b6¼a

1

2

heai� � hebi�
ea � eb

nainbjðnaknbl þ nbknalÞ
ð28Þ

where nai denotes the ith component of vector na.

Note that Eq. (28) cannot be evaluated if ea ¼ eb and

thereby a ‘‘perturbation’’ technology for the principal

strains [33] is adopted with an unchanged e2:

e1 ¼ e1ð1þ dÞ if e1 ¼ e2
e3 ¼ e3ð1� dÞ if e2 ¼ e3

�
ð29Þ

with the perturbation d ¼ 1
 10�9 for this paper.

3.2 Comsol implementation

The above procedures for phase field modeling are

implemented in Comsol Multiphysics, a commercial FEM

software for multi-field modeling. By adding application-

specific modules, Comsol can handle mathematical or

physical modeling easily. Therefore, three main modules
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are established first including the Solid Mechanics Module,

History-strain Module and Phase Field Module. These

modules are utilized to solve the three fields: u, H and /,
respectively. These modules are solved based on the

standard finite element discretization in space domain as

described in Sect. 3.1. In addition, we establish a pre-set

Storage Module to evaluate and store the intermediate field

variables in a time step such as the positive elastic energy

and principal strains.

Specifically, the Solid Mechanics Module is set up based

on a linear elastic material library. The boundary and initial

conditions shown in Sect. 2 are added in the Solid

Mechanics Module. However, the nonlinear stress–strain

relationship is considered. That is, the elasticity matrix in a

time step is modified automatically. Thus, the stiffness

matrix in Comsol is rewritten as

De ¼

D1111 D1122 D1133 D1112 D1123 D1113

D2211 D2222 D2233 D2212 D2223 D2213

D3311 D3322 D3333 D3312 D3323 D3313

D1211 D1222 D1233 D1212 D1223 D1213

D2311 D2322 D2333 D2312 D2323 D2313

D1311 D1322 D1333 D1312 D1323 D1313

2
666666664

3
777777775

ð30Þ

A pre-defined module governed by the Helmholtz equation

is utilized to construct the Phase Field Module by revising

some corresponding coefficients to match the governing

Eq. (15). Moreover, the boundary condition Eq. (16) and

initial condition (17) are implemented in this module. The

distributed ODEs and DAEs interface is used to construct

the History-strain Module in Comsol. However, the his-

tory-strain field is not solved directly. We use a ‘‘previous

solution’’ solver to record the results in the previous time

step and obtain the field H by the following format in

Comsol:

H � wþ
e ¼ 0; if wþ

e [H

H � H ¼ 0; if wþ
e �H

(
ð31Þ

Initial conditions are also needed for the History-strain

Module. We commonly set H0ðxÞ = 0 unless pre-existing

cracks are modeled under the initial history-strain field by

Borden et al. [18]. Figure 3 shows the relationship between

all the established modules. The mechanical responses such

as the principal strains, directions of principal strain, and

the elastic energy are naturally exported from the Solid

Mechanics Module and stored in the Storage Module. The

positive elastic energy is then adopted in the History-strain

Module to update the local history-strain field H. The Phase

Field Module uses the updated H to solve the phase field. In

a time step, the updated phase field and the stored principal

strains as well as the directions are used to modify the

stiffness matrix of the Solid Mechanics Module. The

mechanical responses are subsequently obtained.

As discussed in Sect. 3.1, a segregated scheme is used to

solve the coupled system. The segregated scheme will be

helpful to obtain converged solution. The procedure of the

segregated scheme is depicted in Fig. 4. The equations of

displacement, history strain and phase field are solved

independently. To ensure unconditional stability, an

implicit Generalized-a method for time integration [25] is

used. For a new time step, linear extrapolation of the pre-

vious solution is used to construct the initial guess for the

present time step. Then, the Newton–Raphson approach is

used to solve each module sequentially. Finally, the total

relative error between the previous and present iteration

steps is evaluated. If the error is less than the tolerance et,
the calculation is finished for current time step and then a

new time step starts. Otherwise, another iteration step is

required until the tolerance requirement is met. In addition,

the iteration is different to converge for phase field mod-

eling and requires more iteration steps when cracks initiate.

Therefore, Anderson acceleration is adopted to accelerate

convergence [25]. The dimension of iteration space field is

chosen as more than 50. To end this section, a flowchart of

our implementation of phase field modeling in Comsol is

shown in Fig. 5.

4 Verification of the phase field simulation

We simulate the three-point bending test to verify the phase

field modeling. This test was also simulated by Miehe et al.

[44, 45]. The geometry and boundary conditions are shown

in Fig. 6. A simply supported beam with a vertical notch is

used. The elastic parameters are chosen as k ¼ 12 kN/mm2

and l ¼ 8 kN/mm2. The critical energy release rate

Fig. 3 Relationship between all the modules established
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Fig. 4 Segregated scheme for the coupled calculation in phase field modeling

Fig. 5 Comsol implementation of the phase field modeling
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Gc ¼ 0:5 N/mm. Most of the beam is discretized into

elements with size of h ¼ 0:015 mm, whereas the dis-

cretization is refined in the expected crack propagation

region. The element size in the refined region is 1:9
 10�3

mm. The calculation is conducted in a displacement-driven

context. We choose constant displacement increment Du ¼
1
 10�4 mm in the first 360 time steps, afterward, Du ¼
1
 10�5 mm in the remaining time steps.

Figure 7 shows the crack patterns of the simply sup-

ported notched beam under loading for a length scale l0 ¼
0:06 and 0.03 mm. Red and blue regions represent the fully

cracked and undamaged material, respectively. As expec-

ted, the crack has a larger width for the length scale of

l0 ¼ 0:06 mm. Figure 8 gives the resulting reaction force

on the top of the beam with the increase in the displace-

ment. Results in Fig. 8a for a length scale l0 ¼ 0:06 mm

and in Fig. 8b for l0 ¼ 0:03 mm are compared with the

results of Miehe et al. [44]. As observed, the results by the

present work are in good agreement with those by Miehe

et al. [44]. Only a little difference exists because different

algorithm and implementation methods are used. The

consistency of the crack pattern and load–displacement

curve indicates the feasibility and practicability of the

presented phase field modeling approach. Therefore, the

phase field modeling in Comsol can be used subsequently

in Brazil splitting tests.

5 Crack propagation and coalescence
in Brazilian disks

5.1 Brazilian disk with no initial crack

The Brazil splitting tests are often used to obtain the tensile

strength of rock and many researchers simulated crack

propagation in a Brazilian disk under compression

[20, 63, 65]. Crack propagation in a disk with no initial

crack is simulated first. The diameter of the disk is 100

mm, and we apply displacement on the upper and lower

ends of the disk. Because in laboratory tests steel bars are

set on the ends of the Brazilian disk, we set flat end

boundaries for the disk to match the size of steel bars. The

elastic parameters are q ¼ 2630 kg/m3, E ¼ 120 GPa, and

m ¼ 0:3. A total of 24696 6-node quadratic triangular ele-

ments are used to discretize the disk. We set the maximum

element size h ¼ 1 mm. To avoid numerical singularity,

k ¼ 1
 10�9 is chosen. In each time step, we chose the

displacement increment Du ¼ 1
 10�5 mm. Thus, we

simulate the crack propagation in the Brazilian disk under

different Gc: 10, 20, 30, 40, and 50 J/m2 and under dif-

ferent length scale parameter l0: 1, 2, 3, and 4 mm.

Our simulation shows that Gc has no influence on the

crack propagation pattern. Figure 9 shows the crack initi-

ation and propagation in the Brazil splitting tests with no

initial crack for Gc ¼ 30 J/m2 and l0 ¼ 2 mm. When the

displacement u reaches to 2:2
 10�2 mm, the crack occurs

in the center of the disk. This is in good agreement with

some previous work [14, 29]. The experimental tests and

analytical solution indicate that the maximum tensile stress

Fig. 6 Geometry and boundary conditions of the three-point bending

test

Fig. 7 Three-point bending test. Crack pattern at a displacement of a u ¼ 4:15
 10�2 mm, b u ¼ 4:35
 10�2 mm, c u ¼ 9:4
 10�2 mm for a

length scale l0 of 6
 10�2 mm and d u ¼ 4:25
 10�2 mm, e u ¼ 4:4
 10�2 mm and f u ¼ 7:1
 10�2 mm for a length scale l0 of 3:5
 10�2

mm
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occurs in the disk center. The crack continues to propagate

and becomes wider when u reaches to 2:202
 10�2 mm.

Then, when u reaches to 2:208
 10�2 mm, the crack tips

move quite close to the upper and bottom ends of disk and

crack branching is observed. There is no penetration of the

crack deep into the ends of the disk because the two ends

are locally compressed. We compare the final crack

patterns obtained by the phase field model and the exper-

imental tests in Fig. 10. The crack pattern by the phase field

model is well consistent with the experimental test, also

indicating the correctness of the phase field modeling.

Figure 11 gives the curves of the reaction force on the

upper end of the Brazilian disk versus the displacement u

(a) (b)

Fig. 8 Load–displacement curves of the three-point bending test for a length scale a l0 ¼ 6
 10�2 mm and b l0 ¼ 3
 10�2 mm

Fig. 9 Crack propagation in the Brazilian disk with no initial crack at a displacement of a u ¼ 2:2
 10�2 mm, b u ¼ 2:202
 10�2 mm, c

u ¼ 2:208
 10�2 mm for Gc ¼ 30 J/m2 and l0 ¼ 2 mm

Fig. 10 Comparison of the final crack patterns by the experimental

test and phase field method. a Experimental test. b Phase field model

Fig. 11 Load–displacement curves of the Brazil disk with no crack

for different Gc and l0 ¼ 2 mm
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for different Gc and l0 ¼ 2 mm. The simulated load–dis-

placement curves, which reflect the brittle failure in a

Brazilian test, are often observed in experimental tests

[30, 65]. We show a sudden drop of the load after the load

peak when the phase field approaches 1. Furthermore, the

peak load increases with the increase in Gc. In the Brazil

splitting test, the tensile strength rt of rock is obtained by

rt ¼
2Ppeak

pDL
ð32Þ

where Ppeak is the peak load, and D and L are the diameter

and length of the Brazilian disk. Figure 12 compares the

tensile strength by our simulation and the 1D critical stress

by Borden et al. [18]. The simulated strength increases with

the increase in Gc and the rate decreases. The 1D critical

stress has the same trend, but the critical stress is far larger

than the simulated one. Therefore, there is a limit in

extending the critical stress in 1D to 2D or 3D. But the

critical stress can be still regarded as a initial reference of

the tensile strength.

When the scale parameter l0 varies from 1 mm to 4 mm,

the final crack patterns keep unchanged and only a little

difference in the crack width. An obvious example is the

crack distribution at crack initiation for l0 ¼ 1 mm and

l0 ¼ 2 mm with Gc ¼ 30 J/m2 (Fig. 13). Figure 14 gives

the load–displacement curves of the disk for different l0

and Gc ¼ 30 J/m2. At a fixed Gc, the curves move toward

left and the peak load decreases with the increase in l0. In

addition, Fig. 15 shows both the simulated tensile strength

and the 1D critical stress for different l0. The simulated

tensile strength decreases with the increase in l0. The 1D

critical stress has the same trend but is far larger than the

tensile strength.

5.2 Brazilian disk with a vertical crack

We now consider a Brazilian disk with a vertical pre-ex-

isting crack. The diameter of the rock specimen is D ¼ 100

mm, and the crack length is 2a ¼ 30 mm. a is half length of
Fig. 12 Comparison of simulated tensile strength and critical stress

for 1D under different Gc

Fig. 13 Crack pattern at crack initiation for a l0 ¼ 1 mm and b l0 ¼ 2

mm

Fig. 14 Load–displacement curves of the Brazil disk with no crack

for different l0 and Gc ¼ 30 J/m2

Fig. 15 Comparison of simulated tensile strength and critical stress

for 1D under different l0
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the crack. The elastic parameters are E ¼ 120 GPa and

m ¼ 0:3. The width of the pre-existing crack is set as l0. 6-

node quadratic triangular elements are also used to dis-

cretize the disk, and the maximum element size is fixed as

h ¼ 1 mm. Vertical displacements are then applied on the

top and bottom boundaries to promote the crack propaga-

tion. In each time step, we chose the displacement incre-

ment Du ¼ 1
 10�5 mm.

Figure 16 shows the progressive propagation of the pre-

existing crack for Gc ¼ 30 J/m2 and l0 ¼ 2 mm. As shown

in Fig. 16a, the crack initiates from the two ends of the pre-

existing crack under the loading. Then, the crack propa-

gates along the direction of loading in Fig. 16b. Finally, the

crack propagates to the top and bottom ends of the disk and

the specimen fails, as shown in Fig. 16c. The final crack

pattern is in good agreement with the results of peridy-

namics simulation [63] and experimental tests [26]. Com-

parison of the final crack patterns by the experimental tests

and the phase field modeling is shown in Fig. 17.

To test the influence of critical energy release rate Gc on

the crack propagation in the Brazilian disk specimen, we

conduct the simulation again at a fixed l0 ¼ 2 mm and

under different Gc: 10, 20, 30, 40, and 50 J/m2. As

expected, Gc has no effect on the final crack pattern, which

is the same as that in Fig. 16. In addition, Fig. 18 gives the

load–displacement curves for the specimens with a vertical

pre-existing crack under different Gc. As observed, the

peak load and corresponding displacement increase with

the increase in Gc. Furthermore, the peak load and dis-

placement of the specimens with a vertical pre-existing

crack are smaller than those of the specimens with no

initial crack in Fig. 14 due to damage effect of the pre-

existing crack.

Another four numerical Brazilian specimens with the

diameter D ¼ 100 mm containing a vertical pre-existing

crack are simulated to test the influence of length scale

parameter. The maximum element size is also 1 mm, and

Gc is fixed as 30 J/m2 while the length scale l0 is chosen as

1, 2, 3, and 4 mm, respectively. Fig. 19 illustrates the final

crack patterns of the Brazilian disk specimens with a ver-

tical pre-existing crack under different length scale

parameter l0. The crack patterns are similar only with

difference in crack width. A larger l0 causes a wider crack

band in the specimen. This indicates the length scale

parameter must be small enough to achieve a suitable crack

width. Additionally, Fig. 20 shows the load–displacement

curves of the numerical specimens with a vertical pre-ex-

isting crack under different l0. The obtained load–

Fig. 16 Crack propagation in the Brazilian disk with a vertical pre-existing crack for Gc ¼ 30 J/m2 and l0 ¼ 2 mm

Fig. 17 Comparison of the final crack patterns of the Brazilian disk

with a vertical pre-existing crack. a Experimental test. b Phase field

model

Fig. 18 Load–displacement curves of the specimens with a vertical

pre-existing crack under different Gc
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displacement curves are similar, while the peak load and

corresponding strain decrease as the length scale parameter

l0 increases. Furthermore, Fig. 20 also reflects the influence

of the pre-existing crack and the peak load at a fixed l0 is

smaller than that of an intact specimen.

5.3 Brazilian disk with an inclined pre-existing
crack

Now, we test a Brazilian disk specimen with an inclined

pre-existing crack. The similar experimental test was

conducted by Ghazvinian et al [33], and numerical tests

were conducted by Haeri et al. [34] and Zhou and Wang

[63]. The pre-cracked Brazilian disk specimen is 100 mm

in diameter, and the pre-existing crack intersects the ver-

tical direction at an angle a. Meanwhile, the center of the

crack coincides with the center of the disk specimen. Seven

groups of tests are conducted for different inclination

angles of the pre-existing crack. The angles are set as

a ¼ 0, a ¼ 15�, a ¼ 30�, a ¼ 45�, a ¼ 60�, a ¼ 75�, and
a ¼ 90�. The pre-existing crack has a length of 30 mm and

a width of l0 in the simulation. The elastic parameters are

E ¼ 120 GPa and m ¼ 0:3. Gc ¼ 30 J/m2 and l0 are fixed as

2 mm. In each time step, we chose the displacement

increment Du ¼ 1
 10�5 mm.

The final crack patterns of the pre-cracked Brazilian disk

specimens with different inclination angles are depicted in

Fig. 21. The crack patterns obtained by the phase field

model are in good agreement with the experimental tests

[63], the peridynamics simulation [63], the PFC simulation

[33], and the BEM simulation [34]. Comparison of the final

crack patterns by the experimental tests [63], the PFC

simulation [33], the BEM simulation [34], and the phase

field simulation for the inclination angle of a ¼ 45� and

a ¼ 90� is shown in Figs. 22 and 23, respectively. The

consistency of the phase field model with the experimental

tests and other numerical methods also shows the appli-

cability of the phase field modeling in the Brazilian disk

tests.

Figure 21 shows that wing cracks initiate from the tips

of the pre-existing crack when a� 60�. The cracks propa-

gate at a small angle with the direction of the applied load,

and the propagation path is related to the inclination angle

a. Therefore, failure of the Brazilian disk specimens with

a� 60� results from propagation of the pre-existing crack.

However, for the specimens containing a pre-existing crack

with a
 75�, cracks initiate at the position close to the tips

of the pre-existing crack or even at the center of the pre-

existing crack (a ¼ 90�). The failure of the Brazilian disk

specimens with a
 75� is driven in a tensile splitting

mode, which is in good agreement with the numerical and

experimental results by Zhou and Wang [63]. In addition,

for a ¼ 90�, the BEM simulation [34] obtained a different

crack pattern from the phase field simulation and cracks

initiated from the tips of the pre-existing crack. The tensile

splitting mode thereby cannot be simulated by BEM.

Figure 24 shows the load–displacement curves of the

Brazilian disk specimen containing a pre-existing crack

under different crack inclination angles. The load–dis-

placement curves are similar with those in the previous

examples. The simulated curves have three obvious crack

propagation stages: (i) elastic stage, (ii) crack initiation and

stable crack propagation, and (iii) unstable crack

Fig. 19 Final crack patterns in the Brazilian disk with a vertical pre-

existing crack under different l0. a l0 ¼ 0:001 m. b l0 ¼ 0:002 m. c
l0 ¼ 0:003 m. d l0 ¼ 0:004 m

Fig. 20 Load–displacement curves of the specimens with a vertical

pre-existing crack under different l0
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propagation and failure. In addition, the peak loads of the

specimens are highly related to the crack inclination angle

because the inclined pre-existing crack changes the stress

distribution in the Brazilian disks. Therefore, Fig. 25

depicts the relationship between the normalized peak load

and the crack inclination angle. The normalized peak load

is obtained by the peak load divided by that of the speci-

men with no initial crack. Additionally, the normalized

peak loads obtained from the peridynamics simulation [63]

are also added to Fig. 25. Figure 25 shows a groove-shaped

curve, and the normalized peak load decreases with the

increase in the crack inclination angle for a� 45�. While

a
 45�, the normalized peak load increases with the

increase in a. The maximum peak load occurs when

a ¼ 45�. The peridynamics simulation has the similar trend

with the phase field simulation and only a little difference

exists for a ¼ 30�. In addition, all the normalized peak

loads are less than 1 because presence of a pre-existing

crack reduces the strength of the specimen. The quite far

gap occurs between the results of the PFM and peridy-

namics because they are two different fracture modeling

methods that use different inner model parameters. For

example, the particle spacing and horizon size are used in

peridynamics [54–56] and have a great effect on the failure

of a specimen. No relationship was also found between the

parameters used by PFM and peridynamics. In addition, the

Fig. 21 Final crack patterns in the pre-cracked Brazilian disk with different inclination angles of crack. a a ¼ 0. b a ¼ 15�. c a ¼ 30�. d a ¼ 45�.
e a ¼ 60�. f a ¼ 75�. g a ¼ 90�
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peridynamics simulation of Brazilian disk tests [63] used a

shear failure evolution, which is not included in the PFM

used in this paper.

The Brazilian disk specimen containing a pre-existing

crack can also be used to evaluate the mixed Mode I/II

fracture toughness. The Mode I/II fracture toughness is

related to length and inclination of the crack and is cal-

culated by [14]

KI ¼
P

ffiffiffi
a

p
ffiffiffi
p

p
RL

NI ð33Þ

and

KII ¼
P

ffiffiffi
a

p
ffiffiffi
p

p
RL

NII ð34Þ

KI and KII are the Mode I and Mode II stress intensity

factors, respectively; R is the radius of the specimen; P is

the peak load; NI and NII are two non-dimensional coeffi-

cients. NI and NII are functions of ratio of the half length to

radius (a / R) and the inclination angle a [14]:

NI ¼ 1� 4 sin2 aþ 4 sin2 að1� 4 cos2 aÞ a

R


 �2
ð35Þ

and

NII ¼ 2þ ð8 cos2 a� 5Þ a

R


 �2
� �

sin 2a ð36Þ

Figure 26 shows the mixed Mode I/II fracture toughness

estimated by the phase field simulation. The Mode I frac-

ture toughness decreases with the increase in the crack

(a) (b)

(c) (d)

Fig. 22 Comparison of the final crack patterns in the pre-cracked

Brazilian disk with inclination angle of a ¼ 45�. a Experimental test.

b PFC. c BEM. d PFM

(a) (b) (c)

Fig. 23 Comparison of the final crack patterns in the pre-cracked Brazilian disk with inclination angle of a ¼ 90�. a Experimental test. b BEM.

c PFM

Fig. 24 Load–displacement curves of the Brazilian disk specimen

containing a pre-existing crack under different inclination angles
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angle. The Mode II fracture toughness increases as the

inclination angle increases for a� 30� while the Mode II

fracture toughness decreases with the increase in a for

a
 30�. As a reference, the fracture toughness calculated

from the peridynamics simulation [63] is also added to

Fig. 26. As observed, the trend of the mixed Mode I/II

fracture toughness from the PFM is the same as that esti-

mated by the peridynamics simulation [63]. The values of

the fracture toughness from the phase field and peridy-

namics simulations are different because the peridynamics

simulation [63] used different model parameters and its

fracture parameters cannot be directly transformed into

those in the PFM.

5.4 Brazilian disk with two pre-existing cracks

In this example, a Brazilian disk with two pre-existing

cracks is tested. Crack propagation and coalescence are

simulated by the phase field model. The geometry and

boundary conditions of the specimen are shown in Fig. 27.

The crack propagation in a Brazilian disk with two cracks

was simulated by the BEM [34] and peridynamics[63]. To

compare their work better, we also simulate a Brazilian

disk with a diameter D of 100 mm. The elastic parameters

are E ¼ 15 GPa and m ¼ 0:21. The critical energy release

rate Gc ¼ 30 J/m2. As shown in Fig. 27, the two pre-ex-

isting cracks in the specimen are labeled as � and `,

respectively. The crack � is placed along the horizontal

direction, while the crack ` intersects the horizontal

direction at an inclination angle a. The two cracks have a

length of 2a ¼ 30 mm, while the centers of the cracks are

placed in the centerline of the specimen and also have a

spacing of 30 mm. In this simulation, we only test four

groups of inclination angle a: a ¼ 0, a ¼ 30�, a ¼ 60�, and
a ¼ 90�.

In the phase field simulation, the specimen is discretized

into elements with maximum size h of 1 mm and the length

scale parameter is chosen as l0 ¼ 2 mm. We set the dis-

placement increment Du ¼ 2
 10�4 mm in each time step

and the progressive crack propagation and coalescence in

the Brazilian disk specimen containing two pre-existing

cracks are shown in Fig. 28 for different inclination angles.

Comparison of the final crack patterns obtained by the

experimental test [34], the BEM simulation [34], and the

phase field simulation for a ¼ 60� and a ¼ 90� is shown in

Figs. 29 and 30. Compared with the previous experimental

results [34] and numerical simulations [34, 63], the present

phase field simulation is in good agreement with the

experimental observations , especially for a ¼ 90�. With an

angle of 60� between the two pre-existing cracks, the same

crack patterns are observed from the two tips of the crack

` for the experimental results and phase field simulation,

respectively, although the experimental results show that a

crack initiates to propagate at the right end of the upper

horizontal notch, while presented phase field results show

that the upper crack starts at the middle location.

Fig. 25 Normalized peak load versus the crack inclination angle

Fig. 26 Mixed Mode I/II fracture toughness estimated by the phase

field modeling

Fig. 27 Geometry and boundary conditions of the Brazilian disk

containing two pre-existing cracks
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Furthermore, for a ¼ 90�, the phase field simulation

obtains more accurate results than the simulated results by

BEM [34] and peridynamics [63]. The wing crack initiates

from the center of crack � and propagates along the

direction of applied load in the phase field simulation.

However, a crack initiates from the tip of crack � when

BEM is used, which is not in agreement with the experi-

mental observations [63]. In addition, the peridynamics

obtains several secondary cracks around the top and bottom

ends of the specimen, which are not observed in the

experimental tests [63] and the present phase field

simulation.

Figure 31 shows the load–displacement curves of the

Brazilian disk containing two pre-existing cracks. The

load–displacement curves are similar with those of the

specimens containing only one single crack but have a

relatively smoother peak period and a gentler decent period

after peak. In particular, the specimen of a ¼ 0 has a long

peak period. Thus, the presence of the two pre-existing

cracks reduces brittleness of the specimen. We choose

some characteristic points labeled as A, B, C, and D in the

load–displacement curves and show the corresponding

crack patterns in Fig. 28. For different inclination angle of

Fig. 28 Progressive crack propagation and coalescence in the Brazilian disk specimen containing two pre-existing cracks for different inclination

angle. a a ¼ 0. b a ¼ 30�. c a ¼ 60�. d a ¼ 90�
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the crack `, the crack patterns of the Brazilian disk

specimens are different.

For a ¼ 0, cracks initiate from the centers of cracks �

and ` when the displacement u increases to A1. When the

displacement comes to B1, new wing cracks initiate near

the tips of cracks � and `, while the cracks from the

centers of the two pre-existing cracks continue to propa-

gate. At point C1, cracks � and ` are connected by two

curved new cracks. Then, cracks from the centers of cracks

� and ` propagate and approach the top and bottom ends

of the Brazilian disk specimen at point D1. For a ¼ 30�, a
crack first initiates near the left tip of crack ` at point A2.

Then, new cracks initiate from the right tip of crack ` and

the center of crack � when the displacement increases to

B2. At point C2, all the formed and pre-existing cracks

coalesce and the cracks from the left tip of ` and the center

of � propagate and approach the top and bottom ends at

D2.

The crack patterns for a ¼ 60� are similar with those for

a ¼ 30� with a little difference. The first crack initiates

from the center of crack � rather than the left tip of crack

` at A3. In addition, a new crack initiates not exactly from

the right tip of � at B3. For a ¼ 90�, a new crack initiates

from the center of crack � at A4 and a new crack connects

cracks � and ` at C4. All the freshly formed cracks

propagate to the top and bottom ends of the specimen at

D4. In summary, when the inclination angle of crack ` is 0

or 90�, the Brazilian disk specimen containing two pre-

existing cracks shows a tensile splitting failure with the

increase in the applied load. However, when the inclination

angle of crack ` is equal to 30� or 60�, the final failure of

the Brazilian disk specimen results from coalescence of the

cracks initiating from the right tips of cracks � and `.

Moreover, the failure mode obtained by the phase field

modeling is in good agreement with the experimental

observations and numerical simulations [63].

Fig. 32 compares the normalized peak load of the

Brazilian disk specimen containing two pre-existing cracks

from the phase field simulation and those from the peri-

dynamics simulation [63] and experimental tests [34]. The

peak load obtained from the phase field simulation has an

approximately linear decreasing trend with the increase in

the inclination angle a. However, the peak loads from the

peridynamics simulation and experimental tests show a

(b) (c)(a)

Fig. 29 Comparison of the final crack patterns in the pre-cracked Brazilian disk containing two pre-existing cracks for a ¼ 60�. a Experimental

test. b BEM. c PFM

(b) (c)(a)

Fig. 30 Comparison of the final crack patterns in the pre-cracked Brazilian disk containing two pre-existing cracks for a ¼ 90�. a Experimental

test. b BEM. c PFM
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groove-shaped trend. The difference in the normalized

peak loads from the three methods lies in the heteroge-

neous nature of the experimental rock specimens and that

the numerical specimens are homogeneous in this paper.

Another reason is that the practical rock is also shear-

resisting and a shear evolution was involved in the peri-

dynamics simulation [63]. Only the elastic energy induced

cracks are considered and the shear strengths of cracks are

not used in the PFM. In addition, some details of the

experimental tests [34] are lacking such as the load–dis-

placement curves, thereby reducing the possibility for

better fitting of the PFM to the experimental results.

6 Conclusions

A phase field model for quasi-static fracture is used to

investigate crack propagation and coalescence in Brazilian

disk specimens subjected to compression. The phase field

model is implemented in Comsol Multiphysics, and a

benchmark of three-point bending test is used initially to

verify the feasibility and applicability of the phase field

modeling in Comsol. Then, numerical simulations of crack

propagation and coalescence in Brazilian disk specimen

with no initial crack, a single and two pre-existing cracks

are conducted, respectively. Crack propagation patterns

along with the load–displacement curves are fully

(b)

(c)

(a)

(d)

Fig. 31 Load–displacement curves of the Brazilian disk specimen containing two pre-existing cracks for different inclination angle. a a ¼ 0. b
a ¼ 30�. c a ¼ 60�. d a ¼ 90�

Fig. 32 Normalized peak load of the Brazilian disk specimen

containing two pre-existing cracks for different inclination angle
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discussed. Meanwhile, the effects of length scale parameter

and critical energy release rate on crack propagation are

evaluated. In addition, the effect of crack inclination angle

on the pre-cracked Brazilian disk specimens is also

investigated. Our simulation shows that the numerical

results obtained by the phase field model are in good

agreement with previous experimental and numerical

results.

All the presented numerical examples show that the

initiation, propagation, and coalescence of cracks are

autonomous without external criterion for fracture. Thus,

there is no need for the phase field modeling to set prop-

agation path in advance. In addition, some adaptive tech-

nologies and remeshing are also unwanted. These

advantages make the phase field model more attractive, and

the numerical approach in this paper can be extended to

other rock problems. In future research, more numerical

methods will be used to compare and verify our simula-

tions in this paper, such as the XFEM and enriched

meshless methods [4].
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