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Abstract
This paper deals with a coherent analytical interpretation of the anisotropic strength of rocks as derived from standard

laboratory experimental compression tests on rock samples under confinement. The critical plane approach is herein

revisited by reformulating the Mohr–Coulomb failure criterion on a sliding plane when the operative strength parameters

are direction dependent. Detailed attention is paid to the solution of the emerging equations that describe an optimization

problem where the failure function is maximized with respect to orientation. This encompasses a tangency condition that

has to be explicitly solved for as the stress state approaches failure from the inside of the plastic limit surface. However,

this tangency condition cannot be graphically represented in the Mohr space as classically done in the isotropic case. A new

graphical construction is herein proposed that offers insights to the problem by illustrating how anisotropy of strength

juxtaposes with stress variations during a typical loading path to failure. More importantly, a perturbation analysis is

conducted to obtain an approximated closed-form solution of the equations arising from the description of anisotropy.

Within such a framework, salient features describing anisotropy of strength can be systematically related to inherent

material symmetries so that laboratory experimental test data can be thus interpreted on a mathematically sound basis.
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List of symbols
F Failure function

n or ni Normal vector to a given plane in

space

s or si Tangent vector to a given plane in

space

tn or tni Normal component of traction

ts or tsi Tangential component of traction

r or rij Stress tensor

d or dij Kronecker delta

nf Normal vector to failure plane

rf Stress state at failure

s Shear stress

rn Normal stress

r1, r2 and r3 Principal stresses

r1f Major principal stress at failure

K Internal friction at failure

c Cohesion

u Internal friction angle at failure

K0, c0 Constants defining the mean internal

friction and cohesion in the

anisotropic case

h Orientation of the normal to a given

plane in 2D space

hf Orientation of the normal to the

failure plane

b Direction of the bedding planes

xK and xc Parameters describing anisotropy of

internal friction and cohesion

kK and kc Coefficients controlling the higher

terms in directional distributions of

internal friction and cohesion

A1 and A2 First-order perturbation coefficients

for failure direction

B1 and B2 First-order perturbation coefficients

for failure stress
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A3, A4 Second-order perturbation

coefficients for failure direction

B3, B4 Second-order perturbation

coefficients for failure stress

D1k, D2k, D1c, and

D2c

Perturbation coefficients for failure

function for system of failure

equations

X Generic perturbation variable

C Generic material variable

1 Introduction

Geomaterials such as soils and rocks often exhibit strong

anisotropy in their strength and deformation properties,

which is mostly due to bedding planes and preferred par-

ticle contact arrangements that arise from various deposi-

tional mechanisms during geologic history.

The consideration of anisotropy in the mechanical

behaviour of materials was invoked as early as in the 1950s

in the pioneering work of Hill [8] where an orthotropic

failure criterion was formulated using modified stress

invariants written in axes of principal anisotropy. Ever

since, advances in laboratory experimental studies as well

as in the constitutive and numerical modelling of aniso-

topic materials have developed methods for providing a

better understanding of structured-oriented media, includ-

ing layered and fractured rocks. A comprehensive sum-

mary together with a systematic comparison of the various

approaches for describing anisotropic rock strength can be

found in [6]. More modern incarnations of the so-called

critical plane approach to anisotropy of geomaterials can be

found in the works of Mroz and Pietruszczak [11, 14]

which incorporate the effect of fabric into material strength

variation, resulting into an anisotropic failure criterion.

However, a closer look into the rock mechanics litera-

ture reveals some inconsistencies when applying aniso-

tropic failure criteria in boundary value problems,

especially during the interpretation of laboratory experi-

mental results; see [1, 7, 13], for instance. A common

mistake is often repeated in these cases, where a tangent

line (or curve) to the Mohr stress circle is used as a failure

envelope, and as a result, the direction dependency of the

strength parameters is incorporated in failure functions that

are written in terms of stress invariants. However, the

tangency of the Mohr stress circle with the failure envelope

that emerges from the critical plane approach with constant

friction angle can be shown to be no longer valid when the

strength parameters such as internal friction depends on

spatial direction.

The current paper addresses the above-mentioned issue

by proposing an appropriate numerical technique based on

perturbation theory along with a new graphical method for

describing the anisotropic strength of rocks. The visual-

ization method and analytical calculations proposed herein

provide useful tools to interpret experimental results on

anisotropic rock strength data in a coherent manner which

is yet practical.

2 Equations of failure in isotropic case

Material failure analysis within the critical plane frame-

work requires finding the first stress state during loading

history that satisfies the failure condition on a potential

plane. This procedure can be recast mathematically into an

optimization problem, whereby the failure function is being

maximized with respect to the orientation of a potential

sliding plane. For an isotropic material, failure in a

potential plane—with normal and tangent vectors n and s,

respectively—can be written in its most general form as a

function of both normal and tangential tractions, tn and ts

[11] as:

Fðtn; ts;K; cÞ ¼ 0 such that 8n : Fðtn; ts;K; cÞ� 0

tn ¼ ðn rnÞ n or tni ¼ ðrjknjnkÞni
ts ¼ ðd� n� nÞ rn or tsi ¼ ðdij � ninjÞrjknk

ð1Þ

where K and c are friction- and cohesion-like material

parameters, r is the second-order stress tensor, d is the

Kronecker Delta, and the operator � denotes a dyadic

product such that a� b ¼ aibj.

The unknowns to the system of failure equations are

identified as the failure plane orientation, nf , and the state

of stress at failure, rf . In relation to applications in satu-

rated and partially saturated conditions, it should be men-

tioned that all the stresses and material properties discussed

in this study are ‘‘effective’’ and as such the common ‘‘ 0 ’’
notation has been omitted.

The condition F� 0 signifies that the failure function

F is bounded by F ¼ 0 referring to failure conditions.

Hence, F is maximized whenever the failure state is

reached, i.e.

oF

on
s ¼ oF

otn
otn

on
sþ oF

ots
ots

on
s ¼ 0 or

oF

oni
si ¼

oF

otnj

otnj

oni
si þ

oF

otsj

otsj

oni
si ¼ 0

ð2Þ

Furthermore, considering the so-called conventional triax-

ial stress condition where two of the principal stresses are

equal ðr2 ¼ r3Þ, the solution of Eqs. 1 and 2 reduces the

problem to finding the major principal stress, r1f , at failure
and the failure plane orientation, nf . As an aside, it is
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argued in [5, 15] that in continuously deforming materials,

the failure does not take place along the orientation where

the failure function, F, is maximized, and instead, slip-lines

form along the orientation of zero extension. The two

criteria can be shown to be the same when the plastic

deformations follow an associated flow rule where stress

and kinematic characteristics coincide [15].

For the simple case of isotropic materials with direction-

independent strength parameters, K and c, and linearity of

the failure envelope, the failure function reduces to the

conventional Mohr–Coulomb criterion which is expressed

as:

F ¼ s� rn tanu� c ¼ 0 ð3Þ

where s ¼ tsk k and rn ¼ tnk k are the shear and normal

stresses, and u is the internal friction angle. In this case, the

maximization following oF=on ¼ 0 can be conducted

independently of the failure condition F ¼ 0 since the

failure envelope is linear. As such, this maximization

procedure is graphically represented in the Mohr stress

space by the tangency condition between the Mohr stress

circle and the failure envelope. The failure plane orienta-

tion in this case can be easily shown to be at hf ¼
ðp=4þ u=2Þ with respect to the major principal stress

direction. This result, in turn, can be substituted into Eq. 3,

reducing it to a relation between stress components only,

which, assuming that stress tensor is expressed in its

principal direction, takes the following form:

ðr1 � r2Þ
2

¼ ðr1 þ r2Þ
2

sinuþ c cosu ð4Þ

This form of the failure equation is convenient since it is

expressed in terms of stress invariants and the optimization

procedure is no longer required as the critical plane angle is

embedded into Eq. 4.

Turning to the anisotropic case, it is tempting to intro-

duce a directional dependency on the material parameters

as an extension of the invariant form similar to that in

Eq. 4. However, the directional dependency of material

parameters prevents the maximization equation (Eq. 2)

from being solved independently of stresses, and hence, the

invariant form as expressed in Eq. 4 is no longer valid as

will be discussed next.

3 Equations of failure in anisotropic case

Extending the isotropic case formulation, the failure cri-

terion for an anisotropic material can be expressed by

introducing the directional dependency into the material

parameter, i.e.

Fðtn; ts;KðnÞ; cðnÞÞ ¼ 0 ð5Þ

whose maximization takes the following form:

oF

on
s ¼ oF

otn
otn

on
sþ oF

ots
ots

on
sþ oF

oK

oK

on
sþ oF

oc

oc

on
s ¼ 0

or

oF

oni
si ¼

oF

otnj

otnj

oni
si þ

oF

otsj

otsj

oni
si þ

oF

oK

oK

oni
si þ

oF

oc

oc

oni
si ¼ 0

ð6Þ

The analysis herein has been carried out for the simpler

case where the dependency on direction, n, can be reduced

to one variable, h, as shown for a 2D case in Fig. 1.

Assuming a conventional Mohr–Coulomb criterion, the

system of equations describing failure in this case can be

written as:

F ¼ s� rnKðhÞ � cðhÞ ¼ 0

oF

oh
¼ os

oh
� orn

oh
KðhÞ � rn

oKðhÞ
oh

�
ocðhÞ
oh

¼ 0
ð7Þ

where h is the orientation of the normal to a given plane in

space.

Also, depending on the form of the functions KðhÞ and

cðhÞ, it is usually not possible to solve the system of

equations analytically. However, we immediately see that

the appearance of strength dependency terms with h in

Eq. 7 prevents us from solving the maximization equation

independently of stresses, and hence destroys the conven-

tional tangency condition in the Mohr stress space which,

in the isotropic Mohr–Coulomb case, follows from the

requirement that:

os
oh

¼ orn
oh

tanðuÞ ð8Þ

since Kh ¼ tanðuÞ ¼ const. Thus, the dependence of

strength parameters on spatial direction h in the anisotropic

case leads to a departure in the failure plane orientation

from the usual ðp=4þ u=2Þ in the isotropic case. Also, we

note that the critical plane orientation may change with the

relative angle, b shown in Fig. 1, between principal

directions of KðhÞ and stress.

The above issue compromises the convenient expression

of the failure criterion in its invariant form, like Eq. 4, as

mentioned earlier. Nonetheless, a representation of mixed

invariants taking into account the dependence b and

material anisotropy axes can be used in addition to stress

invariants to formulate anisotropic failure criteria as

developed in [17] and [3] with the only difference that the

complexity of directional dependency is removed for

material parameters (internal friction and cohesion) and

transferred to new invariants.
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4 Graphical method

The failure conditions computed for an anisotropic material

from Eq. 7, if illustrated in the conventional Mohr stress

space (s vs. rn), would result in failure lines with slope ofKhf

cutting through the stress Mohr’s circle at failure angle, hf ,
clearly showing that tangency condition cannot be illustrated

in such a graph. The sole reason for this shortcoming is that

the direction h is not being illustrated explicitly as one of the
bases of the space, but it merely is used as the parametric

descriptor of the two bases, rn and s. Herein, we use a polar
representation by assigning a separate dimension to orien-

tation which is inspired by rearranging the Mohr–Coulomb

criterion into the following form:

s� ch

rn
¼ Kh ð9Þ

The two sides of the equation are functions of directions, h,
prescribing closed curves in a polar plot. As such, the opti-

mization procedure leads to the tangency between these two

curves in polar coordinates [16]. Figure 2 shows how both

isotropic and anisotropic failures would look like in this space.

The reference of the polar plot is translated by a certain value to

represent a circle so as to avoid plotting negative values.

An interesting feature that emerges from such a graphical

representation is the occurrence of two admissible solutions

for some forms of strength distribution, see Fig. 2c where the

failure plane can occur either near the plane of weakness or

along the maximum stress ratio direction. Such dual solu-

tions are also suggested in [4] as the intersection of two

failure criteria: one describing the failure along the plane of

weakness and the other along the maximum stress ratio,

resulting in a kink in the failure stress evolution as the bed-

ding orientation is varied with respect to the major stress

direction. This phenomenon and its consequences are further

investigated in the next sections.

5 Perturbation analysis

Evidently, no-closed-form solution exists for the system of

Eqs. 5 and 6 in its general form, even though a numerical

solution can always be envisaged. However, approximated

closed-form solutions can be obtained from perturbation

analysis which renders the calibration procedure objective.

Otherwise, in the absence of a closed-form solution, cali-

brating such anisotropic models through experimental

results requires back-calculating the parameters from

numerical solutions of the boundary value problem, and

can be potentially sensitive to the procedure chosen.

However, if deviations from the isotropic case are small

enough, approximate closed-form solution can be obtained

using a perturbation method in which the whole system of

equations is expanded intopolynomials about the isotropic case.

Depending on how significant the directional dependency

of strength parameters is, a first, or second, or theoretically

higher-order polynomial can be considered. Herein, we carry

out the general calculation for the first-order, and a specific

case of second-order perturbations. The need for higher-order

analysis can be best assessed by examining the extent to

which the experimental data of strength depends on direction.

In particular, a preliminary comparison of the trends in

experimental results and the characteristics of first and sec-

ond-order perturbations (presented later in Fig. 3) can be an

accurate indicator of the proper level of perturbation.

The outcome of such an approach is that it facilitates the

interpretation of experimental results for anisotropic

materials by providing a systematic calibration procedure.

σ1

σ3

σ1

σ3

β

Major principal 
strength direction

β

Bedding planes

(a)
(b)

θ

nn

θ

Fig. 1 a Schematic representation of bedding plane orientation with respect to principal stress directions and n as the normal vector defining

orientation in the space. b General form of strength directional distribution as described by Eq. 18
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(a) (b) (c)

Fig. 2 Polar plot visualization of shear failure condition: a isotropic case, b anisotropic case, and c bifurcation condition with two equally

admissible solutions
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Fig. 3 Comparisons between exact solutions obtained numerically and the perturbation method: a and b failure stress and failure angle from

Eq. 14 with first-order perturbation; c and d failure stress and failure angle from Eq. 18 with second-order perturbation. Input parameters are

r3 ¼ 100, K0 ¼ tanp=6, c0 ¼ 50, xK ¼ 0:2, xc ¼ 0:4, kK ¼ kc ¼ 0:8

Acta Geotechnica (2019) 14:1215–1225 1219

123



5.1 First-order perturbation

It is assumed that anisotropic failure parameters deviate

from isotropic ones as a first-order perturbation of the

anisotropy parameters, i.e.

nf ¼ nf0 þ A1xK þ A2xc þ OhðxK
2;xc

2Þ
rf ¼ rf0 þ B1xK þ B2xc þ OrðxK

2;xc
2Þ

ð10Þ

with xK and xc being parameters smaller than 1 that

describe the anisotropy of internal friction, Kh and cohe-

sion ch respectively. The terms nf0 and rf0 are the solutions

for the isotropic case assuming xK ¼ xc ¼ 0. Notice that

for more complex functions describing directional varia-

tions in material characteristics, there would be more than

two parameters.

The system of failure equations can now be linearized

by substituting Eq. 10 into Eqs. 5 and 6, and truncating the

Taylor’s series expansion up to the first order of anisotropy

parameters, i.e.

ðFÞaniso ¼ F0 þ
oF

oXa

oXa

or
drþ oF

oXa

oXa

on
dn

or

ðFÞaniso ¼ F0 þ
oF

oXa
i

oXa
i

orjk
drjk þ

oF

oXa
i

oXa
i

onj
dnj

ð11Þ

oF

on
s ¼ oF

on
s

� �
0

þ o2F

oXaoXb

oXb

on

oXa

or
þ oF

oXa

o2Xa

onor

� �
dr s

þ o2F

oXaoXb

oXb

on

oXa

or
þ oF

oXa

o2Xa

onon

� �
dn s

or

oF

oni
si ¼

oF

oni
si

� �
0

þ o2F

oXa
j oX

b
k

oX
b
k

oni

oXa
j

orlm
þ oF

oXa
j

o2Xa
j

oniorlm

 !
drlm si

þ o2F

oXa
j oX

b
k

oX
b
k

oni

oXa
j

onl
þ oF

oXa
j

o2Xa
j

onionl

 !
dnl si

ð12Þ

where F0 and ðoF=onÞ0 are the zero-th-order terms which

are the same as for isotropic failure Eqs. 1 and 2

assuming that xk ¼ xc ¼ 0. Xa represents the variables

in the failure criterion (in our case, tn, ts, K and c),

whereas dr and dn are first-order functions of the ani-

sotropy variables:

dn ¼ A1xK þ A2xc

dr ¼ B1xK þ B2xc

ð13Þ

We herein present calculations for a cohesive-frictional

case where it is considered that approximations of both

friction and cohesion through first-order harmonic series

are accurate enough, i.e.

Kh ¼ K0 1þ xK cos 2ðh� bÞð Þ
ch ¼ c0 1þ xc cos 2ðh� bÞð Þ

ð14Þ

where K0 and c0 are constants defining the mean internal

friction and cohesion. Substituting Eqs. 14 and 10 into 7

would change the original problem into one where coeffi-

cients A’s and B’s are to be sought since the values of hf0
and r1f0 are known from the isotropic solution. Following

the perturbation analysis procedure, and ignoring second

and higher-order terms of x’s for consistency, a Taylor’s

expansion can be now applied so as to linearize the initially

nonlinear system of equations into the following form:

FðxK ;xcÞ ¼ F0 þ D1kxK þ D1cxc ¼ 0

oFðxK ;xcÞ
oh

¼ oF0

oh
þ D2kxK þ D2cxc ¼ 0

ð15Þ

with the coefficients defined below:

F0 ¼
1

2
2c0 þ K0ðr1f0 þ r3Þ þ ðr1f0 � r3Þ½

K0cos2hf0 � sin2hf0Þð �
D1k ¼ B1K0 þ ðB1K0 � 2A1r1f0 þ 2A1r3Þ cos2hf0

þ K0 cosð2b� 2hf0Þ r1f0 þ r3½
þðr1f0 � r3Þ cos2hf0�
� B1 þ 2A1K0ðr1f0 � r3Þ½ � sin2hf0

D1c ¼ B2K0 þ ðB2K0 � 2A2r1f0 þ 2A2r3 þ 2c0cos2bÞ
cos2hf0 � B2 þ 2A2K0ðr1f0 � r3Þ � 2c0 sin2b½ �
sin2hf0

oF0

oh
¼� ðr1f0 � r3Þðcos2hf0 þ K0 sin2hf0Þ

D2k ¼� B1 þ 2A1K0ðr1f0 � r3Þ½ � cos2hf0 þ K0 ðr1f0 � r3Þ
sinð2b� 4hf0Þ

þ K0 ðr1f0 þ r3Þ sinð2b� 2hf0Þ
� ðB1K0 � 2A1r1f0 þ 2A1r3Þ sin2hf0

D2c ¼� B2 þ 2A2K0ðr1f0 � r3Þ½ �
cos2hf0 þ 2c0 sinð2b� 2hf0Þ

� ðB2K0 � 2A2 r1f0 þ 2A2 r3Þ sin2hf0
ð16Þ

Recalling the perturbation procedure, each term on the

right-hand-side of the system of Eqs. 15 should satisfy the

problem conditions individually which, in this case, means

that they should each be equal to zero leading to six dif-

ferent equations with six unknowns: hf0, r1f0, A1, A2, B1,

and B2. Such equations should be solved successively with

respect to their order in perturbation. The zero-th-order

equations, F0 ¼ 0 and oF0

oh ¼ 0, are the same as the isotropic

failure equations, i.e., Eqs. 1 and 2, which can be solved
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separately to calculate hf0, r1f0. The other four relations

form a first-order system of equations that determines the

unknown coefficients as follows. For better readability, it is

assumed here that K0 ¼ tanu. Thus,

A1

¼ r3 cosð2b� 2uÞ þ c0 cosð2b� uÞ þ sinð2b� 2uÞð Þð Þ
2ðc0 þ r3 tanuÞ

� sinu

A2 ¼ � c0cosð2b� uÞð�1þ sinuÞ
2ðc0 þ r3tanuÞ

B1 ¼ 2 sinð2b� uÞðr3 þ c0 cosuþ r3 sinuÞ tanu
secu� tanu

B2 ¼ 2c0 sinð2b� uÞ
secu� tanu

ð17Þ

Figures 3a and b show a comparison between the ‘‘exact’’

solution obtained from numerical methods and the first-

order perturbation analysis presented here for a given set of

parameters. Herein, the exact solution has been found by

numerically solving the system of equations given by

Eqs. 5, 6, and 14 to find the failure direction and stresses

that maximize the failure function. The accuracy of the

perturbation results in Fig. 3 is acceptable for both failure

stress and failure plane orientation, especially at the far left

and right sides of the curve.

5.2 Second-order perturbation

A higher-order perturbation can be invoked in order to deal

with more sophisticated Kh and ch functions in a hierar-

chical manner by considering the previous step outcome as

the basis for the next approximation. For instance, we have

previously proposed proper expressions that describe the

directional dependency of material parameters [16], a

general functional form of which is given as follows:

Ch ¼ C0 1þ xC cos 2ðh� bÞ þ xCkCsin
22ðh� bÞ

1þ kC cos 2ðh� bÞ

� �

ð18Þ

where C represents an arbitrary material parameter with xC

describing the degree of anisotropy, kC refers to an addi-

tional parameter to control the smoothness of variation, and

b defines the non-coaxiality between stress and strength.

A schematic plot of such expression is shown in Fig. 1.

The functional form has been chosen such that when kC ¼ 0,

we revert to the first-order harmonic distribution used in

many studies like [9] and [10] among others, while the sin-

gularity point at kC ! 1 resembles the discontinuous-plane-

of-weakness model put forward by [9]. A special numerical

method has been worked out to solve the system of failure

equations, Eq. 7, assuming that both internal friction and

cohesion follow the functional form introduced in Eq. 18.

Knowing that the value of kC varies between 0 and 1, the

additional term can be assumed to be of orders higher than

the first due to the term xC kC in the numerator, and as such

the perturbation method can be applied to parameter kC by

assuming the results of Eqs. 10 and 17 being the zero-th-

order term (with respect to kC). The failure unknown

parameters in this case can be written as follows:

hf ¼ hf0 þ A1xK þ A2xc þ A3ðxK ;xcÞkK þ A4ðxK ;xcÞkc
þ Ohðk2K ; k2cÞ ¼ 0

r1f ¼ r1f0 þ B1xK þ B2xc þ B3ðxK ;xcÞkK
þ B4ðxK ;xcÞkc þ Orðk2K ; k

2
cÞ ¼ 0

ð19Þ

The coefficients describing the effect of parameters k’s are
a function of x’s to be consistent with the functional form

in Eq. 18. The coefficients A1, A2, B1 and B2 determine the

zero-th-order results with respect to k’s and are the same as

those in Eq. 17. Details of the perturbation procedure are

lengthy and have not been included here. However, the

rationale stays the same; the system of failure equations

(Eq. 7) is expanded with respect to k’s up to the first order,

and the consecutive terms are assumed to be equal to zero

individually. The zero-th term will be the same as Eq. 10,

while the first-order term can be used to calculate coeffi-

cients A3, A4, B3 and B4, the values of which are also

truncated to the first order of x’s. The final result emerges

as:

A3 ¼ �xk cosð2b� uÞ cosu
4ðc0 þ r3 tanuÞ

r3 sin 2bþ 3 sinð2b� 2uÞð Þ½
þc0 cos 2b� 3 cosð2b� 2uÞ þ 4 sinð2b� uÞð Þ�

A4 ¼ � xc cos
3 u: sinð4b� 2uÞ

2ð1þ sinuÞ ðc0 cosuþ r3 sinuÞ

B3 ¼ � 2xk cos
2ð2b� uÞ ð1þ sinuÞ
�1þ sinu

� ðc0 þ r3 cosu� c0 sinuÞ
B4 ¼ 2xc cos

2ð2b� uÞ ðsecuþ tanuÞ ð20Þ

Figure 3c and d also include a comparison between such

second-order approximation and the ‘exact’ numerical

solution for the system of equations in Eq. 7. Evidently, the

accuracy of the stress predictions is much better than the

failure angle. Moreover, such curves can be used in order
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to estimate the ranges over which the approximation is

more accurate for calibration purposes.

6 Interpreting experimental results

The intrinsic parameters of anisotropic rocks are classically

evaluated through conventional triaxial testing although

direct shear testing is also used. However, when it comes to

interpreting experimental results, a common mistake is

repeatedly found in the literature where a failure envelope

is drawn tangent to the failure Mohr’s circle determined for

every bedding plane orientation in order to evaluate

cohesion and friction angle, see [1, 7, 13] for instance. The

mathematical argument in the previous sections, on the

other hand, shows clearly that there is a potentially non-

negligible error associated with this procedure and a cor-

rection is needed to maintain consistency between inter-

preting experimental results and the mathematical

modelling.

Figure 4 shows the error associated with calculating the

failure friction parameter, K, and cohesion, c, by drawing a

tangent to Mohr’s circle when analysing anisotropic rocks

with similar characteristics as in Fig. 3c and d. For a given

value of b, the tangent solution has been found by first

obtaining the exact numerical solution for at least two

confining stresses, and next, finding the line tangent to the

two Mohr’s circle at failure. The slope and the intercept of

this tangent line give the internal friction and cohesion in

the tangent method. The corresponding percentage error in

estimating internal friction and cohesion by drawing a

tangent to the Mohr’s circle is also presented in Fig. 5 for

more clarifications. The relative error for internal friction at

failure is calculated here as follows:

RelativeerrorforK ¼ Kexact � Ktangent

Kexact

ð21Þ

where Kexact is the exact internal friction parameter at the

failure plane calculated numerically, and Ktangent is the

same value calculated by drawing a tangent to Mohr’s

circle. A similar method is used to calculate the error for

cohesion.

It is important to notice that, in this case, the error due to

the tangent method can reach values as large as 18%, and

more importantly, the error overestimates the strength of

the material for both internal friction and cohesion, which

can lead to non-conservative choices for strength

parameters.

It goes without saying that the aforementioned pertur-

bation analysis can be ideally used in order to calibrate

anisotropic strength models. For a set of experimental

results that follow the first-order harmonic trend shown in

Fig. 3a, the directional dependencies can be assumed to be

well described by functions presented in Eq. 14, and as

such, the main objective of the calibration procedure would

be to evaluate strength parameters K0, c0, xK , and xc

through experimental results.

The higher accuracy of the perturbed solution at b ¼ 0

and b ¼ p=2, as shown in Fig. 3, together with the fact that

sample coring is easier along these orientations, make these

two points suitable for calibrating experimental results.

Moreover, a closer look at perturbation results reveals that

there is a simple relation between failure stresses at these

two points and the isotropic parameters as:

r1f0 ¼
1

2
ðr1fÞb¼0 þ ðr1fÞb¼p=2
h i

ð22Þ

Ideally, if the material parameters were known to closely

follow a first-order harmonic function, a total number of

four non-redundant triaxial tests would be enough to

evaluate four calibration parameters. According to Fig. 3,

an appropriate set of experiments would include perform-

ing tests on samples with bedding plane inclinations at

b ¼ 0 and b ¼ p=2, with each test repeated for two dif-

ferent confining pressures. The isotropic parameters, K0

and c0, can be computed using Eq. 22 and zero-th-order

equations in the perturbation analysis. Furthermore, the

same values of failure stress at b ¼ 0 and b ¼ p=2 can be

substituted in Eq. 10, with A’s and B’s values already

known from Eq. 17, in order to find the anisotropy

parameters, xK and xc, through a two-equation, two-un-

known system of equations. More tests, however, are

suggested to be conducted together with a regression

analysis in order to further confirm the appropriateness of

the perturbation order considered. For instance, given that

the second-order distributions involve two more variables

(k’s originating in Eq. 18), it is suggested that two more

tests with different bedding orientations, b, be performed to

confirm/rule out the second-order effects.

For more comprehensive experimental results, as the

one presented in Fig. 6, the second-order perturbation

method can be used together with more sophisticated

functions for Kh and ch. For instance, Fig. 6 illustrates

results obtained using such a procedure and assuming that

material parameters follow the functional form in Eq. 18.

Knowing the failure stress for different b’s and r2’s, a least
square regression analysis has been performed in order to

estimate material parameters K0, c0, x’s and k’s.
It is worth mentioning that the accuracy of the assumed

material parameter function in matching the experimental

results is not the purpose of the current study. Instead, we

are more concerned with the systematic calibration process

and its consistency. It goes without saying that different

forms of directional variation of material parameter can

lead to different trends in failure stress.
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Moreover, caution needs to be exercised on the non-

coaxiality of strength and stress, b, when applying the

current calculation procedure to experimental data.

According to Eq. 18, the angle b measures the deviation

between the direction of r1 and the major principal

direction of strength (which is orthogonal to bedding plane

orientation).

It is interesting to note that a rather characteristic feature

emerges from the continuous function expressed in Eq. 18

within the consistent critical plane approach framework. It

can be shown that the kink point at the two shoulders of the

curve is related to having two non-conjugate solutions one

near the plane of weakness and the other one close to

maximum normal-to-shear stress ratio, as shown in Fig. 7.

The two solutions are both admissible at the kink after and

before which the solution jumps from the former to latter

just like in the classic case of bifurcation in solutions. It

goes without saying that the solution with the smaller

deviatoric stress, when failure first occurs, is to be chosen.

The trend of these two admissible solutions is also shown

in Fig. 7 with the bifurcation point corresponding to the

intersection of the two. Such a phenomenon has been

previously investigated in [4] by explicitly incorporating

two piecewise-defined failure criteria corresponding to the

two above-mentioned failure modes, parallel and across,

with respect to bedding laminates. Judging from the failure

conditions illustrated back in Fig. 2, it is plausible that the

presence of such kink and shoulder is related to the cur-

vature of the failure function with respect to direction, i.e.,

o2F=oh2.
It should also be acknowledged that the failure charac-

teristics of geomaterials is also affected by their deforma-

tional characteristics. As demonstrated in [15], the failure

can be aptly interpreted in terms of dilatancy of
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geomaterials with the failure function used to redistribute

the stress. In such cases, the failure should be explained in

conjunction with irreversible deformations and their char-

acteristics. While such correlations can further complicate

the interpretation of failure in anisotropic materials, they

can also be useful in that they can potentially provide

additional information about the directional dependency of

material parameters. In particular, if the anisotropy of the

strength parameters is shown to correlate with the aniso-

tropy of stiffness variables such as elastic modulus, then

small strain experiments such as wave propagation tech-

niques can be used to estimate the directional dependency

of strength parameters with only a few experiments.

Finally, the perturbation analysis provided in this study

could be applied to the modelling of deformations in ani-

sotropic elasto-plastic materials. Starting from yield func-

tions and plastic potentials along different orientations

[2, 12], similar perturbation analysis could be carried out to

estimate the deviation of deformations in anisotropic

materials compared to the ones in the isotropic case.

7 Conclusions

The current study outlines a mathematical procedure for

the proper interpretation of the strength of anisotropic

materials within the framework of the critical plane

approach. The underlying mathematical equations of fail-

ure are appropriately formulated by introducing direction

dependent parameters for a potential plane of failure. We

show that the conventional Mohr’s circle approach is

inadequate and even misleading when used to describe the

stress conditions at failure for anisotropic materials, and

will lead to overestimation of the strength parameters.

Hence, a new graphical method is developed based on

polar representation of stress projection rule juxtaposed on

the strength rosette plot. Furthermore, a perturbation

analysis has been conducted to obtain an approximated

closed-form solution for the system of equations describing

anisotropic failure in a triaxial test. In this context, this

perturbation method allows for a practical, but yet theo-

retically sound procedure to interpret experimental results

on anisotropic strength of rocks.
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