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Abstract
This paper is devoted to numerical analysis of strength and deformation of cohesive granular materials. The emphasis is put

on the study of effects of confining pressure and loading path. To this end, the three-dimensional discrete element method

is used. A nonlinear failure criterion for inter-granular interface bonding is proposed, and it is able to account for both

tensile and shear failure for a large range of normal stress. This criterion is implemented in the particles flow code. The

proposed failure model is calibrated from triaxial compression tests performed on representative sandstone. Numerical

results are in good agreement with experimental data. In particular, the effect of confining pressure on compressive strength

and failure pattern is well described by the proposed model. Furthermore, numerical predictions are studied, respectively,

for compression and extension tests with a constant mean stress. It is shown that the failure strength and deformation

process are clearly affected by loading path. Finally, a series of numerical simulations are performed on cubic samples with

three independent principal stresses. It is found that the strength and failure mode are strongly influenced by the inter-

mediate principal stress.

Keywords Bonded contact model � Cohesive granular materials � Contact interface � Discrete element method (DEM) �
Loading path � Sandstone

1 Introduction

A large number of engineering materials, in particular rock-

like and cement-based materials, can be investigated in the

class of cohesive granular materials. Their microstructure is

mainly composed of mineral grains and voids. Unlike

cohesionless granular materials such as powders and soils,

the inter-granular contact interfaces in cohesive materials

are bonded, generating a nonvanished macroscopic tensile

strength and uniaxial compression strength. In this class of

materials, the physical processes of deformation and failure

are inherently related to bonds breaking or contact

interfaces cracking and grain crushing. A great number of

experimental, theoretical and numerical studies on various

granular materials have been so far conducted. For instance

and without giving an exhaustive list of reported studies, a

thermomechanical constitutive model for cemented granu-

lar materials has been proposed using quantifiable internal

variables by [5, 32]. Yang and Luo [34] have explored the

relationship between critical state and particle shape for

cohesionless granular materials. Kruyt and Rothenburg [16]

have provided a micromechanical study of dilatancy in

granular materials. Duriez et al. [9] have tried to identify the

micromechanical nature of stresses in triphasic granular

media with interfaces. La Ragione [18] has investigated the

incremental response of a stressed and anisotropic granular

material under loading and unloading conditions. Sibille

et al. [31] have established a plastic theory for granular

materials based on discrete mechanics. Borja et al. [1] have

investigated shear band in sand with spatially varying

density. The localization in a granular material has also

been studied using a micromechanical prediction by [19].
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The main issue is to capture the physical processes at

microscopic scale and their impacts on macroscopic

responses. For this purpose and with the fast progress of

computing technology, various discrete elements methods

have made a great progress during the last decades. The

common feature of these methods is to replace a continuum

medium by an equivalent discrete medium. Without giving

an exhaustive list of different approaches, two main fami-

lies of discrete media have been generally adopted, an

assembly of spherical grains for granular morphology and a

set of polygon blocks for polycrystal structure. For granular

materials, the particle flow model is one of the widely used

discrete approaches and has been extended to cohesive

granular materials. Cundall and Strack [4] have first pro-

posed a discrete numerical model and developed a particle

flow code (PFC) for cohesionless granular materials.

Potyondy and Cundall [27] have then developed a bonded-

particle model for rock-like cohesive materials. Different

extensions and improvements have been successively

achieved by various authors in order to improve the quality

of numerical results in terms of volumetric dilation, cracks

propagation, post-peak strain softening and strain localiza-

tion process [24, 39]. In particular, Jiang et al. [14] have

proposed a rigid plastic element for contact interfaces and

an efficient approach to capturing bonding effect in natu-

rally microstructural sands. Jiang et al. [15] have also

studied shear behavior and strain localization in cemented

sand by two-dimensional distinct element method. Refer-

ences [7, 29] have proposed a new contact model to

improve the simulated ratio of unconfined compressive

strength to tensile strength in bonded-particle models.

Mehranpour and Kulatilake [23] have examined and com-

pared six major intact rock failure criteria in predicting

intact rock strength under the true-triaxial stress condition

using original bond models in a particle flow approach.

Further, He et al. [11] have also conducted a detailed

comparison of nine intact rock failure criteria using

polyaxial intact coal strength data obtained through PFC

simulations. Other applications of discrete element methods

to rock-like materials have also been reported [3, 33]. The

discrete element method has also been used to modeling

fracturing process in cohesive materials [6, 20, 28]. In some

studies, the discrete element method has also been applied

to modeling anisotropic rocks [8, 17, 38] and jointed rock

mass [10, 22, 26, 36]. Using a DEM method, Zhu et al. [40]

have tried to define a common critical state for both local-

ized and diffuse failure modes in cohesionless soil-like

materials. Some similar discrete approaches have been

developed for modeling cracking and fracturing in cohesion

rock-like materials and compared with discrete element

method [37].

In most previous studies using particle flow code, two-

dimensional simulations for cohesionless materials [2, 21]

as well as three-dimensional calculations for rocks [23, 25]

are limited in using the same bond models, such as the

contact bond model (CBM) and parallel bond model

(PBM), to simulate failure behaviors of cohesive granular

materials under different stress states. There is no detailed

discussion so far on whether the original bond models are

perfectly appropriate to describe the mechanical responses

of cohesive granular materials under a large range of

confining pressure and for different kinds of loading paths.

In general, conventional triaxial compression tests on

cylindrical samples have been considered in most studies.

Further, the effect of the intermediate principal stress on

deformation and failure of granular materials has not been

sufficiently studied. The new contribution of the present

study is then to partially complete the shortcoming of

previous studies. To this end, a new failure criterion will

first be proposed to describe both tensile and shear cracking

of bonded contact interfaces for a large range of stress

state. Fully three-dimensional simulations will then be

performed on both cylindrical and cubic samples for dif-

ferent loading paths. Effects of confining pressure and

loading path on deformation behavior and failure process

of typical bonded granular materials will be clearly

demonstrated. For convenience, the following stress and

stress sign convention will be adopted throughout the

paper: compressive stresses and strains are counted as

positive quantities.

2 Failure criterion for a new bond model

In cohesive granular materials, the macroscopic strength

and deformation are essentially controlled by the local

behavior of inter-granular interfaces. For rock-like mate-

rials, the interfaces are generally bonded. Two types of

bond models, i.e., the contact bond model (CBM) and

parallel bond model (PBM), are used in standard particle

flow code (PFC3D) [12, 13, 27]. There are three basic

components involved in general bond model: (1) contact

stiffness behavior, (2) bonding behavior and (3) slip

behavior. Similarly, a brief introduction of the newly pro-

posed bond model is provided in describing these three

components as below.

2.1 Contact stiffness behavior

The deformation and failure of interfaces are closely

related to local stresses. For calculation of local stresses at

contacts, two main contact stiffness models (the linear and

Hertz model) in PFC3D are, respectively, used to describe

elastic and non-elastic behaviors of contacts, depending on

the mechanical properties of the studied entities. Thus, in

this work, the linear model is applied to represent the
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elastic behavior of cohesive materials. The relationships

between force and contact stiffness are illustrated by the

following equations:

Fn ¼ knun ð1Þ
DFs ¼ �ksDus ð2Þ

where the values of Fn, kn and un are, respectively, the

normal force, normal stiffness and displacement at the

contact; DFs, ks and Dus denote, respectively, the shear

force, shear stiffness and relative displacements. Note that

the normal stiffness, kn, is a secant modulus that relates to

the total displacement and force. The shear stiffness, ks, on

the other hand, is a tangent modulus that relates to the

incremental displacement and force.

2.2 Failure criterion of new bonding behavior

The failure status of interfaces can be determined by

comparing the calculated local stresses and bond strength

at a contact. In failure analysis of interfaces, two debonding

processes should be taken into account, i.e., the tensile

cracking and frictional sliding. For tensile cracking, the

failure condition is generally dependent on the normal

tensile stress. The frictional sliding process is otherwise

more complex, depending on both normal stress and tan-

gential shear stress. The local shear strength of interfaces is

strongly influenced by the normal stress. Thus, two types of

bond models of interfaces, i.e., the contact bond model

(CBM) and parallel bond model (PBM), are generally

adopted for analyzing cohesive materials in PFC. In the

CBM, the tensile and shear strength are directly regarded

as a constant. Different from the PBM, the shear strength is

described by a linear Mohr–Coulomb type criterion which

is defined by the frictional angle and cohesion. The

shortcoming of these criterions is that the effect of normal

stress on the shear strength cannot be correctly described

for a large range of normal stress.

Therefore, a new criterion is proposed here. The tensile

failure occurs when the normal contact force Ft,f reaches the

tensile strengthunt. For the shear cracking, the shear strength

generally increases nonlinearly with normal pressure. The

failure envelope is a convex curved surface. For the sake of

simplicity, the shear strength of interfaces is here approxi-

mated by a bilinear function of normal contact force. When

the normal contact force Fn is less than the transition

threshold uncr, the shear strength is defined by the cohesion

us and frictional angle /1. When the normal force is higher

than uncr, a second frictional angle /2 is introduced with

/2\/1 to define the shear strength. The peak shear strength

envelope is presented in Fig. 1. The failure criterion for

contact interface is then expressed in the following form:

Fn ¼ unt; tensile failure ð3Þ

Fs;f ¼
0; Fn\unt

us þ Fn tan/1; unt �Fn �uncr; shear failure

us þ uncrðtan/1 � tan/2Þ
þFn tan/2; Fn �uncr

8
>>><

>>>:

ð4Þ

where Fs,f denotes the peak shear strength, us the shear

force applied to the interface.

2.3 Slip behavior after bond failure

When the contact surface is broken, the tensile strength is

completely vanished. However, due to the frictional force

along rough interfaces, there is a residual shear strength

which increases with compressive normal stress. Further, it

is generally observed that the frictional angle is barely

affected by interface failure, while the cohesion is drasti-

cally reduced. In the present model, it is assumed that the

residual interface cohesion is reduced to zero, while the

same value of frictional angles can be used for the residual

shear strength. The residual strength envelope is shown in

Fig. 1, and the following criterion is formulated.

Fs;r ¼
0

Fn tan/1

uncrðtan/1 � tan/2Þ þ Fn tan/2

8
<

:

; Fn � 0

; 0\Fn �uncr

; Fn [uncr

ð5Þ

The proposed failure criterion is implemented in the stan-

dard particle flow code. A series of numerical simulations

are performed in order to investigate effects of confining

pressure, loading path and the intermediate principal stress

on deformation, failure process and macroscopic strength

of cohesive granular materials.
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Fig. 1 Peak and residual strength envelopes of bonded contact model
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3 Calibration and validation for the new
bond model

The calibration and validation of the proposed new bond

model as well as the effect of particle size distribution are

presented hereafter in order to introduce the new nonlinear

failure criterion to describe the mechanical response of

cohesive materials for a large range of confining pressures.

3.1 Calibration of micromechanical parameters

As indicated in the above equations, there are seven micro

mechanical parameters need to be identified in the pro-

posed new bond model. The calibration process includes

two main tasks: calibrating the elastic and strength

parameters. For identifying the elastic, there is an

approximating relationship between the Young’s modulus

Ec and the micromechanical parameters of contact as

denoted by the following equation parameters [12, 13, 23]:

kn ¼ 4EcR; ks ¼ krkn ð6Þ

where R is the average radius between two adjacent par-

ticles, kr is the ratio of normal and shear stiffness, which is

related to the Poisson’s ratio and generally taken as 1.0–3.0

as done in previous work [7, 15, 35]. The value of kr is set

to be unit for the sake of simplicity. Then, setting the bond

strength untus at a greater value, the calibration of Young’s

modulus E can be done by adjusting Ec to match the values

from laboratory experiments. Afterward, the Poisson’s

ratio can be also determined by varying kr. Finally, the

elastic parameters kn, ks, kr can be further obtained after an

optimal process of adjustments.

In calibration of strength parameters, the normal and

shear contact bond strengths unt, us have the following

relationships with the material strengths rc, sc for pure

axial and pure shear loading [30, 36]:

unt ¼ 4rcR
2; us ¼ 4scR

2 ð7Þ

The commonly used strategy to calibrate the strength

parameters unt and us is to specify the mean and standard

deviations of the material normal strength rc as well as the
shear ones sc according to Eq. (7). However, the ratio of

the mean values to standard deviations of material strength

can induce different failure models for the same sample. To

avoid this uncertainty, the micro-parameters in this work

are directly calibrated by the following method. Firstly, the

frictional angle /1 and /2 was initially set equal as unity to

reduce the number of independent parameters. Then, by

reducing the normal and shear bond strengths untus, the

peak strength between the numerical test and laboratory

experiments can be approximately matched. It should be

noticed that the aforementioned calibration process of

strength is carried out under one confining pressure.

Finally, further adjustments for frictional angle /1, /2 and

the transition threshold uncr are needed to account for peak

strengths of laboratory experiments under a large range of

confining pressure.

3.2 Size effects

According to the above-mentioned calibration process, it

can be found from Eq. (6) that the variation of particle

average radius R will directly result in change of contact

stiffness and further affect the local stress calculation. It

has been reported that the size effects can have influence on

the macro-mechanical strength of geomaterials in model-

ing. For example, Mehranpour and Kulatilake [23] have

conducted a large number of uniaxial compression tests to

study this effect. But for a large range of confining pres-

sure, this effect is still needed to be verified and clarified. A

series of triaxial compression tests are carried out in this

paper to investigate the size effects by considering

(a) constant average particle radius R to investigate the

effect of particle numbers or sample size; (b) constant ratio

of average particle size sample dimension to investigate the

effect of particle size.

The effect of sample size is investigated by setting

constant average particle radius R. Two confining pressures

such as 5 and 50 MPa are considered. In the simulation, the

samples are generated with ten size grades as shown in

Fig. 2. The average particle radius R is 8 mm, and the

diameters of sample vary from 150 to 550 mm. The

micromechanical parameters for the new bond model are

taken as Ec= 45 GPa, kr = 1.0, kn = 1.5 9 109 N/m, ks-
= 1.5 9 109 N/m, unt= 3.5 9 104 N, us= 7 9 104 N,

uncr= 1.5 9 105 N, tan/1 = 0.3, tan/2 = 1.6, which are

calibrated according to the aforementioned procedure. It is

shown in Fig. 3 that both the strength and Young’s
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Fig. 2 Particles size distribution used in DEM simulations
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modulus of the sample seem to increase as the sample

dimension increases. However, the increasing trend is

negligible when the sample diameter is over 40 times of

particle average radius as shown in Fig. 4a, b.

Thus, we further do numerical experiments at the con-

stant ratio 1/50 between the particle radiii to the sample

diameters to show the effects of particle size. These

micromechanical parameters are calibrated by optimizing

values according to the relationships in Eqs. (6) and (7). As

shown in Fig. 5, average particle radius versus sample

dimension is, respectively, as 1/50, 2/100, 4/200, 8/400 and

16/800. One can note that the Young’s moduli are similar

for different samples under both confining pressures,

whereas peak strength increases a little as increasing

sample size. It further indicates in Fig. 6 that the size

variations have a very slight effect on Young’s modulus as

well as strength for samples with the same ratio of diameter

to average particle radius, which indicates that size effects

can be reduced when sample diameter is 50 times larger

than particle radius.

Therefore, size effects exist in the PFC modeling and the

particle size is not an independent parameter that affects

modeling results. The sample size effects can be reduced or

even negligible when the ratio between sample diameter

and particle radius is at a given value.

3.3 Comparison between different bond models

In order to investigate and validate the proposed new bond

model, a series of triaxial compression tests using different

bond models are conducted under confining pressure of 5,

20, 50 and 60 MPa. The friction coefficient is set to 0.3 and
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no critical normal stress is included in the PFC incorpo-

rated contact bond models. The other micromechanical

parameters are taken the same as those in the proposed new

bond model.

The results shown in Fig. 7 indicate that the peak stress

under low confining pressure with the proposed new bond

model is lower than that with the contact bond model

(CBM). However, when confining pressure increases up to

60 MPa, this trend becomes different. As shown in Fig. 8,

the envelope of peak strength obtained by the proposed

new bond model has an obvious nonlinear characteristic,

which is different from that obtained using the contact

bond model (CBM).

4 Three-dimensional simulation
of conventional triaxial compression test

In order to further validate the new bonded model in

application of labriation, three-dimensional studies of

conventional triaxial compression tests are also performed.

Numerical results are compared with experimental data

obtained on sandstone.

4.1 Experimental tests

The experimental tests of sandstone were performed in

Laboratory of Mechanics of Lille, France. A series of

conventional triaxial tests were conducted on cylindrical
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samples of 37 mm in diameter and 75 mm in height under

the confining pressures of 5, 20, 40 and 60 MPa. It can be

obtained from the results that the Young’s modulus of

sample increases from 15 to 18 GPa with the confining

pressure changing from 5 to 60 MPa, and the envelope of

strength presents an obvious nonlinear characteristic as

shown in Fig. 9.

4.2 Sample generation and boundary conditions

The real microstructure of cohesive granular materials such

as sandstone is complex. It is generally not possible to

completely reproduce all details of the microstructure. The

real material sample is replaced by a numerical sample

which is an assembly of spherical grains of different

diameter. In the present study, the numerical sample is

constituted about 20,000 particles with ten different size

grades, as shows in Figs. 2 and 10. The largest radius of

particle is 13.6 mm, and the smallest one is 3.5 mm. The
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0 20 40 60

80

120

160

200
Bi-linear bond model 
Contact bond model

D
iff

er
en

tia
l s

tre
ss

 (M
Pa

)

Confining pressure (MPa)

Fig. 8 Comparison between new bond model and contact bond model

(CBM) in describing mechanical response of sample with the same

micro-parameters

Acta Geotechnica (2019) 14:443–460 449

123



numerical sample is a cylinder of 370 mm wide and

740 mm high. The total porosity is about 0.2. The ratio of

sample diameter to particle average radius is about 50.

Differently with a continuum medium, the numerical

specimen of granular material is composed of spherical

grains. Therefore, it is not possible to directly apply a

uniform stress or displacement on its boundary. In general,

in order to prescribe a uniform displacement on boundary

of specimen, a rigid wall is added on the top and bottom

surfaces, while a soft membrane is used on the lateral

surface to confine the specimen. In this way, the macro-

scopic axial and lateral stresses are calculated as the

average reaction forces generated on the top and lateral

surfaces. The axial and lateral displacements are applied in

an iterative way so that the equilibrium conditions are

verified with the applied confining pressure or lateral stress.

Further, the axial displacement is applied symmetrically on

the top and bottom walls.

4.3 Stress–strain responses and comparison
with experiment

By adopting a numerical optimal procedure aforemen-

tioned, a set of model’s parameters is defined and given in

Table 1. Using these parameters for the proposed bonded

contact model, four conventional triaxial compression tests

are calculated with different confining pressures such as 5,

20, 40 and 60 MPa. Comparisons between numerical

results and experimental data are presented in Fig. 11. An

overall good agreement is obtained. It is seen that with the

increase in confining pressure, the peak differential stress

significantly increases. This effect of confining pressure is

correctly reproduced by the numerical model. Unfortu-

nately, due to the technical limit of experimental device,

the mechanical responses in the post-peak regime are not

available in the laboratory tests. However, according to the

numerical results obtained, one can see a clear transition

from a brittle behavior under a low confining pressure to a

ductile one when the confining pressure becomes higher.

This kind of transition is a representative property of most

rock-like materials. On the other hand, the volumetric

strain exhibits a transition from compressibility and dila-

tancy with the increase in differential stress. The occur-

rence threshold of the transition also depends on confining

pressure. Under a low confining pressure such as 5 MPa,

the compressibility–dilatancy transition occurs clearly

before the peak stress. When the confining pressure is high

enough, the volumetric dilatancy occurs only when the

peak stress is approached. Physically, the volumetric
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Fig. 9 Macroscopic peak and residual strength obtained in conven-

tional triaxial compression tests and comparison with experimental

data on sandstone
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Fig. 10 Sample used in DEM modeling of triaxial compression tests Table 1 Geometrical, physical and mechanical parameters used in

three-dimensional DEM simulations of experimental tests

3D Sample

Width of sample (mm) 370

Height of sample (mm) 740

Total grain number in sample 20,000

Radius (mm) See Fig. 2

Initial void ratio 0.2

Mechanical parameters for new bond model

Normal contact stiffness for test kn (N/m) 1.516 9 109

Shear contact stiffness for test ks (N/m) 1.516 9 109

Inter-particle coefficient of friction tan/1 0.27

Inter-particle coefficient of friction tan/2 1.7

Normal bond strength unt (N) 0.32 9 105

Shear bond strength us (N) 0.9 9 105

The critical normal stress uncr (N) 2.1 9 105
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dilatancy in rock-like materials is generally the macro-

scopic consequence of deboned interfaces opening. The

opening can be generated by both tensile failure and fric-

tional sliding of contact interfaces in granular materials.

When the confining pressure is low, a large number of

broken contact interfaces in granular materials produce a

normal opening contributing to the macroscopic dilatancy.

Under a high confining pressure, most broken contact

interfaces are closed and their normal opening is prevented

by a high normal compressive stress. In this case, the

dilatancy occurs only when there is the occurrence of

localized shear strain bands around the peak stress. In the

post-peak regime, the macroscopic response is mainly

controlled by the deformation of localized strain bands. As

most contact interfaces are broken inside the localization

bands, an important volumetric dilatancy can be produced

due to large relative displacements between grains.

4.4 Macroscopic strength analysis

In order to have a deep insight into the macroscopic

strength of material, the macroscopic peak and residual

differential stresses obtained from numerical simulations

are shown in Fig. 9. The peak strength is further compared

with experimental data, and a good agreement is obtained.

From this figure, one can see that the peak strength

envelope cannot be approached by a linear line, but it

should be described a curved convex line. This nonlinear

strength property is correctly reproduced by the proposed

model. Further, it is interesting to observe that the distance

between the peak and residual strengths decreases when the

confining pressure increases. This is a direct consequence

of the transition from brittle to ductile behavior with the

increase in confining pressure.
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Fig. 11 Axial (red), volume (green) and lateral (blue) strains (10-6) versus differential stress in conventional compression tests with different

confining pressures: comparison between numerical results (continuous lines) experiment data
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5 Failure process in cohesive granular
materials

The deformation and failure process of cohesive granular

materials is inherently related to the breakage of bonded

contact interfaces between grains. Using the proposed

failure criterion, the macroscopic failure process of mate-

rial is here investigated in terms of microscopic debonding.

5.1 Bond breakage analysis

At the initial state before applying differential stress, there

are about 66,000 bonded inter-granular interfaces in the

numerical specimen. With the increase in differential

stress, bonds are progressively broken according to the

proposed local failure criterion. For convenience, each

broken bond is here seen as a crack. One can distinguish

two families of cracks, tensile and shear cracks. The evo-

lution of crack number can be calculated by the numerical

model during the differential loading. In Fig. 12, one can

see the evolution of tensile and shear cracks as a function

of axial strain in four conventional triaxial compression

tests with different confining pressures. The differential

stress is also plotted on the same figure. In order to quantify

the contact debonding process, the following bond break-

age rate is defined:

Vn ¼
ðCNeþDe � CNeÞ

CN�e
ð8Þ

CNe and CNe?De are, respectively, the broken contact

numbers at the strain states e and e ? De; CN*e represents

the total number of broken contacts in the specified strain

interval *e. The evolutions of debonding rate in four tri-

axial compression tests are presented in figure. One can see

that for all confining pressures considered here, the

debonding process starts before the peak strength is

reached (see the points A1, B1, C1 and D1). However, only

a very small number of cracks are developed in the pre-

peak stage. The number of cracks increases very quickly

when the peak strength is approached, and the highest
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Fig. 12 Evolution of bonds breakage number versus axial strain and differential stress in conventional triaxial compression tests with different

confining pressures
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debonding rate is obtained at the peak stress point (A2, B2,

C2 and D2). The evolution of breakage rate in the post-

peak regime is strongly influenced by confining pressure.

The curve of breakage rate is clearly correlated to that of

differential stress. Under low confining pressures (5 and

20 MPa), the breakage rate drops quickly after the peak

stress (see the points A3 and B3) and evolves toward a

stationary value when the residual strength is reached (see

the points A4 and B4). Differently, under high confining

pressures (40 and 60 MPa), the breakage rate decreases

slowly but continuously in the post-peak regime. It is not

easy to identify a clear residual phase (see the points C4

and D4). On the other hand, it is also very interesting to see

that the cracking mode is also influenced by confining

pressure. Under low confining pressures (5 and 20 MPa),

the number of tensile cracks is clearly higher than that of

shear cracks. This is the main reason of the macroscopic

brittle failure obtained under a low confining pressure and

of the important dilatancy obtained. When the confining

pressure becomes high (40 and 60 MPa), the number of

shear cracks becomes higher than that of tensile cracks. As

a consequence, one obtains a ductile macroscopic failure

behavior which is dominated by the frictional sliding along

broken bonds (Fig. 13).

Furthermore, in Fig. 14, one shows the distributions of

displacement inside the three-dimensional specimen and in

the normal section during a selected strain interval in the

post-peak regime (A3–A4, B3–B4, C3–C4 and D3–D4) for

four triaxial compression tests. It can be observed that the

displacement distribution is also affected by confining

pressure. Under low confining pressures, an inclined nar-

row band is obtained with an important displacement gra-

dient on the boundary between this band and outside zones.

This is in agreement with the brittle failure process of

specimen. With the increase in confining pressure, the

inclination angle with the axial load axis as well as the

width of band increases. And finally one obtains a large and

quasi-horizontal zone in the central part of specimen. This

kind of displacement distribution corresponds to a ductile

macroscopic failure behavior.
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5.2 Effect of loading path

The deformation and failure process is generally related to

loading path. In the context of mechanics of geomaterials,

two typical loading paths are particularly interesting to

investigate because they could represent stress evolutions

around an underground cavity. It is the lateral extension

and the axial extension with a constant mean stress. In the

A3-A4 (5MPa) B3-B4 (20MPa) C3-C4 (40MPa) D3-D4 (60MPa) 

A3-A4 (section) B3-B4 (section) C3-C4 (section) D3-D4 (section) 

Fig. 14 Illustration of displacement fields inside 3D whole specimen and in central section in conventional triaxial compression tests with

different confining pressures
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Fig. 15 Stress–strain curves in lateral extension test (left) and axial extension test (right) with an initial hydrostatic stress of 60 MPa
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first path, starting from a hydrostatic compression stress

state, the lateral stress or confining pressure (here noted as

r2 = r3) is reduced (Dr2 = Dr3\ 0), while the axial stress

(noted as r1) is increased (Dr1[ 0) so that the mean stress
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Fig. 16 Evolutions of bond breakage number and rate in lateral extension test (left) and axial extension test (right) with an initial hydrostatic

stress of 60 MPa

E3-E4 (60MPa) E3-E4 (section) F3-F4 (60MPa) F3-F4 (section) 

Fig. 17 Displacement fields in lateral extension test (two left figures) and axial extension test (two right figures) with an initial hydrostatic stress

of 60 MPa
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is unchanged (2Dr2 ? Dr1 = 0). In the case of axial

extension, also starting from a hydrostatic compression

stress state, the lateral stress or confining pressure (here

noted as r2 = r3) is increased (Dr2 = Dr3[ 0), while the

axial stress (noted as r1) is decreased (Dr1\ 0) so that the

mean stress is unchanged (2Dr2 ? Dr1 = 0). The values of

Lode angle for these two loading paths are, respectively,

equal to h = p/6 and h = - p/6. Therefore, the comparison

between these two paths allows investigating the influence

of Lode angle or the third stress invariant on deformation

and failure process of materials. In the present study, as an

example, the initial hydrostatic stress is taken as 60 MPa.

The obtained stress–strain curves are presented in Fig. 15.

It is shown that the peak differential stress (|r1 - r3|) for
the lateral extension is significantly higher than that for the

axial extension. The evolution of bonds breakage for the

two loading paths is presented in Fig. 16. One can see that

the breakage rate is quite different between the two paths.

For the lateral extension, the highest rate is obtained

around the peak differential stress, and the bond breakage

rate decreases in the post-peak regime. However, for the

axial extension, it seems that there is a quasi-stationary rate

of debonding after the peak differential stress. Finally, in

Fig. 17, the fields of displacement inside the specimen and

in the normal section are presented. For the lateral exten-

sion, one observes an inclined localization band similarly

to that in conventional triaxial compression. But for the

axial extension, there is a quasi-horizontal localization

band which covers all the width of specimen.

Fig. 18 Cubic sample subjected to three independent principal

stresses
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Fig. 19 Evolutions of bonding breakage rate and accumulated number together with stress–strain curves in a triaxial compression test,

respectively, on cubic sample (continuous lines) and cylinder sample (dotted lines)
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5.3 Effect of intermediate principal stress

In cylinder samples considered above, two principal

stresses are identical (r2 = r3). Based on this kind of

experimental data, most failure criteria developed for

geomaterials involve the major and minor principal stresses

only. The role of the intermediate principal stress is gen-

erally neglected. However, in general loading conditions,

three principal stresses are different and independent.

Therefore, it is needed to investigate the effect of the

intermediate principal stress on failure and deformation of

cohesive granular materials. For this purpose, a cubic

sample is considered and shown in Fig. 18. Two lateral

walls are used to independently prescribe two different

principal stresses. The same parameters as those given in

Table 1 are used. We have performed a series of numerical

tests on the cubic sample. The minor principal stress is kept

to be constant and equal to 20 MPa. Different values of the

intermediate principal stress ranging from 20 to 60 MPa

are considered. For a selected set of two principal stresses,

the axial strain is prescribed in order to generate the vari-

ation of axial stress which is the major principal stress. In

Fig. 19, one compares first the numerical results obtained

from both the cylinder and cubic samples when two lateral

stresses are identical and equal to 20 MPa. In this particular

case, the overall stresses are identical for two samples. One

can see that the difference between two calculations is very

small. Therefore, the effect of sample geometrical form

seems to be negligible. In Fig. 20, the differential stress

(r1 - r3) versus axial strain (e1) curves are presented for

five different values of the intermediate principal stress

(r2). One can see that the peak strength of granular mate-

rial is significantly affected by the intermediate principal

stress. The peak stress increases with the intermediate

stress increase. In order to further explore the failure pro-

cess in each case, the evolutions of tensile and shear cracks

with axial strain are presented in Fig. 21 for each value of

the intermediate stress. While the total number of cracks

30MPa 40MPa 

50MPa 60MPa 

0 5000 10000 15000 20000

0

30

60

90

120

150

H4

H3H2H1

B
ond breakage count

1-
3 (M

Pa
)

Axial strain (10-6)

0

1500

3000

4500

6000

 Total
Tensile
Shear

0 5000 10000 15000 20000

0

30

60

90

120

150

I4
I3I2I1 B

ond breakage count

1-
3 (M

Pa
)

Axial strain (10-6)

0

1500

3000

4500

6000

 Total
Tensile
Shear

0 5000 10000 15000 20000

0

30

60

90

120

150

J4
J3J2J1 B

ond breakage count

1-
3 (M

Pa
)

Axial strain (10-6)

0

1500

3000

4500

6000

 Total
Tensile
Shear

0 5000 10000 15000 20000

0

30

60

90

120

150

K4K3

K2K1 B
ond breakage count

1-
3 (M

Pa
)

Axial strain (10-6)

0

1500

3000

4500

6000

 Total
Tensile
Shear

Fig. 21 Evolutions of accumulated bonds breakage number for different values of intermediate principal stress (r3 = 20 MPa)
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remains similar between five cases, the repartition between

tensile and shear cracks is clearly different. With the

increase in the intermediate principal stress, the shear

cracking becomes the dominant process with respect to the

tensile cracking. Regarding the rate of total bonds breakage

shown in Fig. 22, it seems that the sharp change of

breakage rate is attenuated with the increase in the inter-

mediate principal stress. Finally, one shows the three-di-

mensional and two-dimensional displacement fields,

respectively, inside the whole specimen and in the normal

section in Fig. 23 for a strain interval in the post-peak

regime. The kinetics of deformation is clearly affected by

the intermediate principal stress. When the difference

between two lateral stresses (r2 - r3) is high, the kinetics

of deformation of cubic sample is progressively controlled

by the sliding along an inclined direction with respect to

the vertical axis (r1). The sliding occurs on the boundary of
a parallelepiped zone in the plane z - x. In contrary, for a

law difference of r2 - r3, the deformation kinetics is

rather dominated by lateral expansion of sample.

6 Conclusions

Mechanical strength and deformation of cohesive granular

materials have been investigated in this paper. A new cri-

terion for failure modeling of bonded contact interfaces

between grains is proposed. Using this criterion, it is pos-

sible to describe strength and deformation of granular

materials for a wide range of stresses. It is found that the

overall strength of cohesive granular materials cannot be

described by a linear surface but by a convex curved sur-

face. Further, under the conventional compression condi-

tion, the tensile cracking is controlling the failure process

under low confining pressure, while the shearing cracking

becomes the dominating process when the confining
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Fig. 22 Evolutions of differential stress and bond breakage rate for different values of intermediate principal stress (r3 = 20 MPa)
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pressure is high. There is a clear transition from a brittle to

ductile behavior with the increase in confining pressure.

This transition has been correctly predicted by the

numerical model. The volumetric dilatancy of cohesive

granular materials is directly related to opening of debon-

ded contact interfaces. The strength and deformation of

cohesive granular materials are influenced by loading path.

For a given mean stress, the strength is lower in an

extension loading than in a compressive one. Therefore, the

influence of the third stress invariant or Lode angle should

be taken into account. Finally, the influence of the inter-

mediate principal stress on the strength and deformation

has been studied. It is found that the compressive strength

of cohesive granular materials significantly increases with

the increase in the intermediate principal stress. Further,

the shear cracking is the main failure process under high

values of the intermediate stress. The kinetics of defor-

mation and failure is also affected by the intermediate

principal stress. The material failure is controlled by the

lateral expansion for low values of the intermediate stress

but by the sliding process for high ones. Interstitial fluid

should play an important role in strength and deformation

of cohesive granular materials, and this feature will be

investigated in future studies.
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