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Abstract
Based on the combined finite-discrete element method (FDEM), a two-dimensional coupled hydro-thermal model is

proposed. This model can simulate fluid flow and heat transfer in rock masses with arbitrary complex fracture networks.

The model consists of three parts: a heat conduction model of the rock matrix, a heat-transfer model of the fluid in the

fracture (including the heat conduction and convection of fluid), and a heat exchange model between the fluid and rock at

the fracture surface. Three examples with analytical solutions are given to verify the correctness of the coupled model.

Finally, the coupled model is applied to hydro-thermal coupling simulations of a rock mass with a fracture network. The

temperature field evolution, the effect of thermal conductivity of the rock matrix thermal conductivity and the fracture

aperture on the outlet temperature are studied. The coupled model presented in this paper will enable the application of

FDEM to study rock rupture driven by the effect of hydro-thermo-mechanical coupling in geomaterials such as in

geothermal systems, petroleum engineering, environmental engineering and nuclear waste geological storage.

Keywords Finite-discrete element method (FDEM) � Fracture flow � Heat conduction and convection � Hydro-thermal

coupling � Numerical simulation

List of symbols
qi Heat flow rate in the i direction

kij Thermal conductivity tensor of rock matrix

T Temperature

M Mass

Qnet Net heat flowing into mass M per unit time

t Time

Cs Specific heat of rock matrix

A Area of a triangular element

n Outer normal vector

�Tm Average temperature of edge m

Dxmj Difference between the coordinate components

of the two vertices at edge m

2ij Two-dimensional permutation tensor

qx Heat flow rate along the x direction

qy Heat flow rate along the y direction

n
ðnÞ
i

Outer normal unit vector of the edge opposite to

node n

LðnÞ Length of the edge opposite to node n

QD123 Heat flow flowing into node 1 from triangular

element D123
Qs Total heat flow into node 1 per unit time

T s
t Nodal temperature at t

T s
tþDt Nodal temperature at t þ Dt and t

qs Mass density of rock matrix

Vs Rock matrix volume of node 1

Dx Size of the smallest element

h Convective heat-transfer coefficient

j Thermal diffusion coefficient (k=qCp when

kx ¼ ky)

DT Temperature difference between node 1 and

node 2

T1 Temperature at node 1

T2 Temperature at node 2
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kf Thermal conductivity of fluid

Qf1 Total heat flow rate due to heat conduction

qf Fluid flow rate between node 1 and node 2

p1 Pressure at node 1

p2 Pressure at node 2

Dp Pressure difference between node 1 and node 2

l Dynamic viscosity of fluid

a Aperture of fractures

Qf2 Total heat flow rate of node 1 due to heat

convection

T f
t

Temperature of node 1 at t

T f
tþDt Temperature of node 1 at t þ Dt

Cf Specific heat of fluid

qf Mass density of fluid

Qf Total heat flow rate of node 1

Dt Time step

V Half of the volume of all the broken joint

elements that connect to node 1

Tþ
s , T

�
s Temperature of rock matrix at both sides of a

fracture

Tf Temperature of fluid in a fracture

L Fracture length

Qe Heat exchange between fluid and rock matrix per

unit time

TL Temperature of the left boundary

TR Temperature of the right boundary

T̂ ðT � TLÞ=TL
Pe Peclet number

vf Flow velocity of fluid

ks Thermal conductivity of rock matrix

Ts0 Initial temperature of rock matrix

Tf0 Fluid temperature at the left boundary

erfc Complementary error function

l Dynamic viscosity of fluid

1 Introduction

The hydro-thermal coupling process in fractured rock mass

is a frequently encountered problem in petroleum and

geothermal development, disposal of nuclear waste, geo-

logical storage of carbon dioxide (CO2), the prevention and

control of high-temperature thermal damage in deep min-

ing, the stability analysis of soft rock tunnel in cold

regions. Since the problem has significant theoretical value

as well as broad prospects for engineering applications,

many researchers have studied the hydro-thermal coupling

problem of fractured rock masses in the past 30 years. For

example, Barton et al. [2] conducted a preliminary study on

the coupling effect between seepage field, stress field, and

temperature field of rock mass. Rutqvist [34] linked the

tough family multiphase fluid and heat transport codes with

the commercial FLAC3D geomechanical simulator for

modeling coupled multiphase flow, heat transport, and

geomechanics. Sun et al. [38] presented a mathematical

model incorporating the thermal–hydraulic-mechanical

(THM) coupling effect to simulate a fractured enhanced

geothermal systems (EGS) reservoir in which the

geothermal reservoir is regarded as fractured porous media

consisting of rock matrix and discrete fractures. Moreover,

an international co-operative research project has been

established under the name DECOVALEX for theoretical

and experimental studies of coupled thermal, hydrological,

and mechanical processes in hard rocks [7, 13, 40]. How-

ever, the study of coupling between the seepage field and

temperature field (i.e., hydro-thermal coupling) of fractured

rock mass is relatively few.

In the experimental research of hydro-thermal coupling,

Zhao [48] studied the convective heat transfer and water

flow in rough granite fractures through experimental

investigation. Xu et al. [41] developed a large-scale

hydraulic fracturing simulation system for hot dry rock

under high-temperature and high-stress conditions. This

system can perform experiments of fluid flow in fractures

and heat transfer between the fluid and rock under different

temperature conditions.

In the numerical study of hydro-thermal coupling,

Pruess [32] studied the heat and mass transfer problems

between bedrock and fracture, and the effect of bedrock

permeability and fracture aperture on heat transfer by

numerical simulation. Abdallah et al. [1] proposed a ther-

mal convection model into the universal distinct element

code (UDEC) [10] to study the heat transfer caused by fluid

circulation through the fractures in rock masses. Tomac,

Gutierrez [39] presented the formulation, and implemen-

tation of a novel convective heat convection model in the

particle flow code (PFC) [8]. Shaik et al. [36] developed a

numerical procedure coupling fluid flow with heat transfer

and investigated the effect of heat transfer between rock

matrix and circulating fluid on economic hot water pro-

duction from fractured geothermal systems. Jiang et al.

[12] presented a three-dimensional transient model for the

study of subsurface thermo-hydraulic processes during

EGS heat extraction, in which the local thermal non-

equilibrium between rock matrix and the fluid flowing in

the porous heat reservoir is considered. Xu et al. [42]

proposed a simplified approach to simulate the coupled

hydro-thermal system based on an equivalent pipe network

model. Cui et al. [5] presented the coupled thermo-hy-

draulic governing formulation as well as the coupled
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thermo-hydraulic boundary condition for studying con-

vection-dominated heat transfer in ground source energy

systems, such as open-loop systems.

The above hydro-thermal coupling models are either

based on continuum or discontinuum. The coupled hydro-

thermal model based on continuum is difficult to charac-

terize the special conductivity effect of fractures. Although

the discontinuous-based hydro-thermal coupling model can

consider a large number of fractures in rock mass, it is

difficult to consider crack initiation and propagation when

extended to THM couplings.

Therefore, based on the study of Tomac [39] and Shaik

[36], this paper presents a coupled hydro-thermal model for

the combined finite-discrete element method (FDEM)—an

excellent continuous–discontinuous method for simulating

rock rupture [26, 28]. This novel coupled hydro-thermal

model not only can explicitly consider the fluid flow and

heat transport in fractured rock mass, but also can easily

extend to the cases of coupled THM (including rock rup-

ture). This paper focuses on the formulation and imple-

mentation of the coupled hydro-thermal model in FDEM.

The use of the model in coupling THM FDEM modeling

will be described in another publication.

FDEM combines the advantages of the finite element

method in simulating deformation of solid and the discrete

element method in handling contact interaction between

blocks. Moreover, the method can simulate crack initiation

and propagation by breaking joint elements. In recent

years, FDEM and the FDEM code Y [26, 27] have been

widely used in the field of rock mechanics, especially in

studies of rock rupture [14, 16, 18, 21, 23, 25, 29,

33, 35, 44]. For example, Lei, Rougier and Knight have

conducted a lot of interesting research in this area

[15, 19, 20]. However, this method can be used for only

pure mechanical calculations and cannot be used to address

hydro-mechanical coupling problems and hydro-thermal

coupling problems. Therefore, some researchers combine

FDEM with other software or directly construct the cou-

pled hydro-mechanical model or coupled thermo-mechan-

ical model in FDEM [17, 22, 24, 43–47]. However, FDEM

still cannot deal with the coupled hydro-thermal problems.

Therefore, a 2D coupled hydro-thermal model (FDEM-TH)

based on FDEM is proposed in this paper for simulating

heat transfer between fluid and rock. Combining the

advantage of FDEM in simulating the deformation and

rupture of rock, this coupled hydro-thermal model can be

easily extended to the case of coupling THM (including

rock rupture).

This paper is organized as follows: First, the heat con-

duction model of rock matrix is introduced. Secondly, the

heat conduction and convection model of fluid in fracture

are presented. Then, the heat exchange model between

fluid and rock matrix at fracture is presented. Combining

the above three parts, a coupled hydro-thermal model is

constructed directly in FDEM. Finally, three examples with

analytic solution are given to verify the correctness of the

coupled hydro-thermal model. Moreover, an example of

hydro-thermal coupling in fractured rock mass is given.

The temperature distribution in the rock mass and the effect

of rock thermal conductivity and fracture aperture on the

outlet fluid temperature are investigated.

2 Heat-transfer model

2.1 Heat conduction model of rock matrix

According to Fourier’s law of heat transfer, the heat flow

rate in the i direction per unit area can be expressed as:

qi ¼ �kij
oT

oxj
ð1Þ

where qi is the heat flow rate along i direction, kij is the

tensor of the thermal conductivity of the rock matrix, and

T is the temperature.

For any given mass M, the temperature change can be

written as [11]

oT

ot
¼ Qnet

CpM
ð2Þ

where Qnet is the net heat flowing into mass M per unit

time, Cp is the specific heat of rock matrix, and M is the

mass.

In FDEM, a heat conduction calculation model as shown

in Fig. 1 is constructed. The common nodes of the trian-

gular elements and joint elements, as nodes 1–9 show in

Fig. 1, are located at the intersection the joint elements. We

use the temperature of these discrete nodes to characterize

the temperature field of the continuum. One-third mass of

all the triangular elements that connect to one node is

Fig. 1 Heat-transfer model of rock matrix
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equivalent to the node. Here, we introduce how to calculate

the temperature field of the continuum based on the topo-

logical connections shown in Fig. 1.

Taking node 1 in Fig. 1 as an example, seven triangular

elements (D123, D134, D145, D156, D167, D178, and

D182) connect to node 1. We take the polygon that sur-

rounds node 1 as a domain, and the heat conduction cal-

culation of the domain is equivalent to node 1. The

temperature of the entire polygon region is represented by

node 1. Since the temperature at nodes 2, 3, 4, 5, 6, 7 may

be different from the temperature at node 1, heat conduc-

tion may occur in these regions. Here, we take one of the

triangular elements D123 that connect to node 1 as an

example. Assuming that the temperature distribution in the

triangular element obeys linear distribution, the tempera-

ture gradient at any point in the triangular element is

constant and can be expressed as

oT

oxi
¼ 1

A

Z

A

oT

oxi
dA ð3Þ

According to the divergence theorem, Eq. [38] can be

written as

oT

oxi
¼ 1

A

Z

s

Tni ds ¼
1

A

X3
m¼1

�Tm 2ij Dx
m
j ð4Þ

where A is the area of the triangular element, n is the outer

normal vector, �Tm is the average temperature of the edge

m, Dxj
m is the difference between the coordinate compo-

nents of the two vertices at the edge m, and 2ij is the two-

dimensional permutation tensor, 2¼ 0 1

�1 0

� �
.

Then, substituting Eq. [4] into Eq. [1], the heat flow rate

in the x and y directions (qx and qy) can be obtained.

Thus, the heat flow into node 1 per unit time can be

calculated by the following equation

Q ¼ � qin
ðnÞ
i LðnÞ

2
ð5Þ

where ni
(n) is the outer normal unit vector of the edge

opposite to node n and L(n) is the length of the edge

opposite to node n.

Thus, the heat flow QD123 into node 1 from the trian-

gular element D123 is obtained. Similarly, the heat flow

into node 1 from the other triangular elements that directly

connect to the node can also be obtained. Then, the total

heat flow into node 1 per unit time can be expressed as

Qs ¼ QD123 þ QD134 þ QD145 þ QD156 þ Q167 þ Q178

þ Q182 ð6Þ

Thus, according to Eq. [2], the temperature of node 1 at

the next time step is given by

T s
tþDt ¼ Ts

t þ
Qs

CsqsVs

Dt ð7Þ

where Cs is specific heat of rock matrix, qs is the mass

density of rock matrix, Vs is the rock matrix volume of the

node 1.

Similarly, the temperature of other discrete nodes can be

updated by the above method. Then, the evolution of the

temperature field in the entire solution domain can be

obtained.

Since an explicit algorithm is used in the thermal con-

duction calculation of this paper, the time step should be

less than the critical time to ensure the numerical stability.

The critical time step is given by

Dtc ¼
ðDxÞ2

4j 1þ hDx=2k½ � ð8Þ

where Dx is the size of the smallest element, h is the

convective heat-transfer coefficient, and j is the thermal

diffusion coefficient (k/qCp when kx = ky).

2.2 Fluid heat-transfer model in a fracture

As fluid flows in a fracture, the heat in fluid is transported

by convection and conduction. Figure 2 shows a portion of

the hydraulic fracture network formed by the broken joint

elements in FDEM, where the cyan line represents the path

of the fluid flow, while the triangular elements and the

other joint elements do not allow fluid flow.

Taking node 1 as an example, the temperature difference

between node 1 and node 2 is given by:

DT ¼ T1 � T2 ð9Þ

where T1 is the temperature of node 1 and T2 is the tem-

perature of node 2. Then, according to Fourier’s law, the

Fig. 2 Fluid heat-transfer model in fractures
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heat flow rate between node 1 and node 2 caused by the

heat conduction is given by

q12 ¼ �kf
DT
L

ð10Þ

where kf is the thermal conductivity of the fluid and L is the

distance between the two nodes. If the temperature of node

1 is higher than that of node 2, then the heat flows out from

node 1 into node 2.

Similarly, the heat flow rate between node 1 and nodes 5

or 7 can also be obtained. Finally, the total heat flow rate

into node 1 due to the heat conduction is given by

Qf1 ¼ q12 þ q15 þ q17.

2.3 Heat convection model of fluid in a fracture

In addition to heat conduction, the heat flow between two

nodes can also be caused by heat convection, as shown in

Fig. 2. The temperature difference between node 1 and

node 2 is given by DT ¼ T1 � T2 according to Eq. [9].

The heat flow due to convection between node 1 and

node 2 is given by

q12¼ �0:5qfCfqf
DT
L

ð13Þ

where qf is the fluid flow rate between node 1 and node 2

and can be obtained by the following approach. Assuming

that the pressures at nodes 1 and 2 are p1 and p2, respec-

tively, the pressure difference between node 1 and node 2

without considering gravity is Dp ¼ p1 � p2. According to

the cubic law [37], the fluid flow rate between node 1 and

node 2 is given by

qf ¼ � 1

12l
a3

Dp
L

ð14Þ

where l is the dynamic viscous coefficient of the fluid and

a is the aperture of the fracture.

Similarly, the heat flow rates between node 1 and nodes

5 or 7 induced by convection can also be obtained. Thus,

the total heat flow rate of node 1 due to the convection of

the fluid is Qf2 ¼ q21 þ q41 þ q51.

The temperature of node 1 at the next time step can then

be updated as follows:

T f
tþDt ¼ T f

t þ
QfDt
CfqfV

ð15Þ

where Ttf is the temperature of node 1 at the previous time

step, Cf is the specific heat of the fluid, qf is the mass

density of fluid, Qf¼Qf1þQf2 is the total heat flow rate of

node 1, Dt is the time step, and Vis the half volume of all

the broken joint elements that connect to node 1, as shown

in Fig. 2.

The stability of the numerical scheme for solving the

heat convection problems is governed by two numbers: the

Peclet number Pe ¼ qfqfCfL=kf and the Courant number

Crg ¼ vfj jDt=L, where vf is the fluid velocity.

In the one-dimensional case, the classical constraints are

Pe B 2 and Crg B 1 [30]. Since the explicit fluid and

thermal time steps are identical to those adopted in the

conduction calculation in Sect. 2.1, the model thus sets no

intrinsic limit on the Peclet number. However, the accuracy

is to be different for different number values, and to be

influenced by grid size and time step [9].

2.4 Heat exchange between a fluid and rock

The heat exchange between fluid and rock matrix occurs

since the temperature of rock matrix and the fluid in a

fracture are usually different. Here, we use the following

approach to obtain the heat exchange between fluid and

rock matrix, assuming that the temperature of the rock

matrix at both sides of the fracture is Ts
? and Ts

-,

respectively, as shown in Fig. 3. In addition, the tempera-

ture of the fluid in the fracture is Tf, the fracture length is L,

and the convective heat-transfer coefficient between the

fluid and rock matrix is h. Then, the heat exchange between

the fluid and rock matrix per unit time is given by

Qe ¼ hðTþ
s � TfÞLþ hðT�

s � TeÞL ð16Þ

The heat-transfer calculation of the fluid in the fracture

is finally updated as follows

T f
tþDt ¼ T f

t þ
ðQfþQeÞDt

CpqfV
ð17Þ

The heat-transfer calculation of the rock matrix is finally

calculated using the following formula

T s
tþDt ¼ Ts

t þ
ðQs � QeÞ

CpM
Dt ð18Þ

Fig. 3 Heat exchange model between fluid and rock matrix
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3 Model validation

3.1 Fluid heat conduction

As shown in Fig. 4, the rock mass contains a single fracture

with length of 4 m. The fracture is filled with fluid, and the

fluid pressure in the fracture is uniform. The temperature at

the left boundary is fixed at 100 �C, but at the right

boundary the temperature is fixed at 0 �C. The other

boundaries are adiabatic regardless of the thermal con-

ductivity of rock matrix. Only heat conduction is consid-

ered for fluid in fracture. The temperature distribution of

fluid in the fracture is determined by the coupled hydro-

thermal model presented in this paper. The physical

parameters are as follows: the mass density of fluid

qf = 1000 kg/m3, the thermal conductivity of fluid

kf = 1.6 W/m �C, and the specific heat of fluid Cf = 0.2 J/

kg �C.
The analytical solution of the problem is given by [4]

T x; tð Þ ¼ TL þ
x

L
ðTR � TLÞ

þ 2

p

X1
n¼1

e�kn2pt=L2 TR cosðnpÞ � TL

n

� �
sin

npx
L

ð19Þ

where TL is the temperature at the left boundary, TR is the

temperature at the right boundary, t is the time, and x is the

distance to the left boundary. Furthermore, j = kf/(qfCf),

where kf is the thermal conductivity of fluid, qf is the mass

density of fluid, and Cf is the specific heat of fluid.

Figure 5 shows the temperature distribution of fluid in

the fracture at different times. It can be seen that the

numerical solution agrees very well with analytical solu-

tion, verifying the correctness of the coupled hydro-thermal

model in dealing with the problem of heat conduction in

fluid. The temperature of fluid in the fracture gradually

increases and eventually displays a linear distribution.

3.2 Heat conduction and convection of fluid
in fracture

For the example in Sect. 3.1, the following two conditions

are considered: [2] the fluid pressure at the left boundary is

fixed at 2 9 104 Pa, but the pressure at the right boundary

is fixed at 0 Pa, and [34] the pressure at the left boundary is

fixed at 0 Pa, while the fluid pressure at the right boundary

is fixed at 2 9 104 Pa. Fluid flow occurs in the fracture and

heat is transported by convection and conduction because

of the pressure difference between the left and right

boundaries. The coupled hydro-thermal model in this paper

is used to determine the final temperature distribution of

fluid in the fracture.

The analytical solution of the problem is given by [9]

T̂ ¼ T̂R
ePe x̂ � 1

ePe � 1
ð20Þ

where T̂ ¼ ðT � TLÞ=TL, x̂ ¼ x=L, and Pe is the Peclet

number. The Peclet number is defined as

Pe ¼ qfCfvfL=kf ð21Þ

where qf is the mass density of fluid, Cf is the specific heat

of fluid, vf is the flow velocity of fluid, and kf is the thermal

conductivity of fluid.

The final temperature distribution obtained by the cou-

pled hydro-thermal model is shown in Fig. 6, where the

numerical solution and the analytical solution are in good

agreement. In case [2], the direction of the fluid flow is the

same as that of the heat conduction, accelerating heat

transfer. In case [34], the flow direction of the fluid is

opposite to that of the heat conduction, inhibiting heat

transfer (Fig. 7).

3.3 Heat exchange between fluid and rock
matrix

As shown in Fig. 8, a high-temperature rock mass is 100 m

length and 100 m wide. The permeability of rock matrix is

very low and has been ignored. A horizontal fracture is

positioned at x = 0 and divides the rock mass into twoFig. 4 Heat conduction of fluid in a single fracture
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pieces. The aperture of the fracture a is 1 9 10-3 m. At

the left boundary of the fracture, cold fluid is injected at a

flow rate of vf = 0.01 m/s. The low-temperature fluid in the

fracture exchanges heat with the high-temperature rock

matrix at the fracture boundary. Then, the temperature of

fluid increases gradually, but the temperature of the rock

matrix around the fracture decreases. We use this example

to verify the correctness of the coupled hydro-thermal

model in the treatment of heat transfer between fluid and

rock matrix. Since the analytical solution of the problem

[6] is obtained by assuming that the problem domain is

semi-infinite, the size of the numerical model should be

large enough.

The temperature field evolution in rock matrix is given

by

Tsðx; y; tÞ ¼ Ts0 þ ðTf0

� Ts0Þerfc
2ksxþ yj jqf Cf vf a

2qf Cf vf a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qsCsvf

ksðvf t þ xÞ

s" #

ð22Þ

The temperature field evolution of fluid in a fracture is

given by

Tsðx; tÞ ¼ Ts0 þ ðTf0 � Ts0Þerfc
ksx

qfCfvfa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qsCsvf

ksðvf t þ xÞ

s" #

ð23Þ

where Ts0 is the initial temperature of rock matrix, Tf0 is the

temperature of the injected fluid at the left boundary, erfc is

the complementary error function, ks is the thermal con-

ductivity of rock matrix, qf is the mass density of fluid, Cf

is the specific heat of fluid, vf is the flow velocity of fluid,

qs is the mass density of rock matrix, Cs is the specific heat

of the rock matrix, a is the aperture of the fracture, and t is

the time.

The calculation parameters used in the coupled hydro-

thermal model include: the fluid mass density qf =
1000 kg/m3, the dynamic viscosity of fluid l = 1 mPa�s,
the specific heat of fluid Cf = 4200 J/(kg �C), the thermal

conductivity of fluid kf = 0 W/(m �C), the mass density of

rock matrix qs = 2700 kg/m3, the specific heat of rock

matrix Cs = 1000 J/(kg �C), the thermal conductivity of

rock matrix ks = 3 W/(m �C), and the aperture of the

fracture a = 1 9 10 - 3 m. The convective heat-transfer

coefficient between fluid and rock matrix h will be dis-

cussed in detail. To facilitate the analysis of the tempera-

ture distribution within rock matrix, we set two monitoring

lines at x = 2 m and y = 2 m, as shown in Fig. 8.

In the analytical solution, the temperature of fluid in the

fracture is assumed to be equal to the temperature of the

rock matrix at the boundary of the fracture. This boundary

condition can be regarded as a special case of convective

boundary condition in the coupled hydro-thermal model.

The correct numerical results should converge to the ana-

lytical solution as the convective heat-transfer coefficient

increases. Thus, we first discuss the value of the convective

heat-transfer coefficient h. For three different convective

heat-transfer coefficients h = 10, 100, and 1000 W/

(m2 �C), the temperature distribution of fluid in the fracture

at t = 10 d is obtained by the coupled hydro-thermal

model. As shown in Fig. 9, the numerical solution is still

quite different from the analytical solution when

h = 10 W/(m2 �C). However, the difference between the

numerical solution and analytical solution is very small

when h = 100 W/(m2 �C). For h = 1000 W/(m2 �C), the

numerical solution is completely consistent with the ana-

lytical solution. Therefore, we take h = 1000 W/(m2 �C) in
the subsequent validation calculations in order to compare

the numerical solution with the analytical solution.

For h = 1000 W/(m2 �C), the temperature evolution at

different locations obtained by the coupled hydro-thermal

model is shown in Fig. 10. It can be seen that the
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Fig. 6 Comparison of the numerical solution and analytical solution

when considering heat convection of fluid

Fig. 7 Temperature distribution of fluid in the fracture
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temperature distribution of fluid in the fracture and the

temperature distribution along the monitoring line in the

rock matrix are both consistent with the analytical solution,

verifying the correctness of the coupled hydro-thermal

model in simulating the heat exchange between fluid and

rock matrix.

4 Hydro-thermal coupling in the rock mass
with a fracture network

4.1 Model and parameters

The coupled hydro-thermal model presented in this paper is

used to predict the heat transport and fluid flow in the rock

mass with a fracture network from the literature [31]. As

shown in Fig. 11, seven through-going fractures (J2, J5, J6,

J7, J8, J9, and J10) and five non-through-going fractures

(J1, J3, J4, J11, and J12) exist in the square region with the

edge length of 10 m. In this calculation, only the hydro-

thermal coupling is considered. The boundary conditions

are as follows (1). Seepage field: fluid pressure at the left

boundary (inlet) is fixed at 200 kPa, while the fluid pres-

sure at the right boundary (outlet) is fixed at 100 kPa; the

top and bottom boundaries are impermeable. (2) Temper-

ature field: the temperature of the injected fluid at the left

boundary is fixed at 20 �C, and the top and bottom

boundaries are both adiabatic. The initial temperature of

rock matrix and fluid is both 80 �C. The time step of the

hydro-thermal coupling calculation is 0.5 s. The square

region is discretized into 2380 triangular elements. The

calculated parameters include: qf ¼ 1000 kg/m3, the

dynamic viscosity of fluid l = 1 mPa�s, the specific heat of
fluid Cf = 4200 J/(kg �C), the thermal conductivity of fluid

kf = 0 W/(m �C), the mass density of rock matrix

qs ¼ 2700 kg/m3, the specific heat of rock matrix

Fig. 8 A single fracture model for simulating the heat transfer between fluid and rock matrix
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Fig. 9 Comparison of the numerical solution and analytical solution

at t = 10 d when the convective heat-transfer coefficient between fluid
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CS =1000 J/(kg �C), the thermal conductivity of rock

matrix kS = 3 W/(m �C), the fracture aperture

a ¼ 5 � 10�4m, and the convective heat-transfer coeffi-

cient between fluid and rock matrix h = 900 W/(m2 �C).
The heat-transfer process in rock matrix and fluid in the

fracture network is simulated by the coupled hydro-thermal

model presented in this paper.

4.2 Numerical simulation results

4.2.1 Seepage field

As shown in Fig. 12a, the completely isolated non-through-

going fractures (J11 and J12) do not connect to the left or

right boundary, and thus, the fluid pressures in them are

both zero. Although the non-through-going fractures (J1,

J3, and J4) that connect with the left or right boundaries or

other through-going fractures, the fluid pressure within

them is uniformly distributed with no pressure change

along the fracture. As shown in Fig. 12b, the flow velocity

of fluid in the five non-through-going fractures is both zero.

Thus, the convective heat transfer does not exist in these

fractures. Therefore, the non-through-going fractures do

not affect the heat-transfer calculation. The simulation

result of the temperature field will confirm the above-

mentioned interpretations.
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Fig. 11 Two-dimensional fracture network model
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4.2.2 Temperature field

As the cold fluid injected into fractures, heat is transferred

from the high-temperature rock matrix into fluid in frac-

tures and is also transferred by the fluid through convective

heat transfer. The rock matrix temperature decreases very

fast near fractures, while the temperature of the rock matrix

far from fractures decreases slowly. In Fig. 13, the

through-going fractures form a channel of fluid flow, and

the cold fronts move very fast along those through-going

fractures and reach the right boundary quickly. As shown

in Fig. 13 at 2.32 d-23.15 d, the cold fronts preferentially

move along the through-going fractures J5, J6, and J10 and

reach the right boundary via the through-going fractures J2,

J7, and J9. The non-through-going fractures J1, J3, J4, J11,

and J12 do not affect the heat transfer in the region, as

shown in Fig. 13 at 57.87 d. Because the flow velocity of

the fluid in the non-through-going fractures is both zero

when the fluid flow is stable, as shown in Fig. 12b), heat

convection in fluid does not occur. The cold fronts move

quickly and reach the right boundary, which constitutes an

early thermal breakthrough [3] and is disadvantageous in

the utilization of geothermal resources, as shown in Fig. 13

at 57.87 d. Although the fluid temperature at the right

boundary is low, the temperature of the rock matrix at the

upper right corner is still high, as shown in Fig. 13 at

115.74 d. The high-temperature rock matrix continues to

supply heat for fluid in fractures; consequently, the fluid

temperature at the outlet does not drop rapidly to the inlet

temperature but gradually decreases after a long period of

time (i.e., the so-called long-tail effect).

For the convenience of subsequent discussions, the

average fluid temperature at the outlet is defined here [3]

Tout ¼
P

vfacaTfrac þ
R
vT dyP

vfacaþ
R
v dy

ð24Þ

where v is the flow velocity and the subscript frac repre-

sents the fracture. The addition term represents the fracture,

while the integral term represents rock matrix. Since the

permeability of rock matrix is not considered in this paper,

the fluid velocity in rock matrix is zero. Thus, Eq. [16] can

be written as

Tout ¼
P

vfacaTfracP
vfaca

ð25Þ

4.2.3 Influence of the thermal conductivity of rock matrix
on the outlet fluid temperature

The thermal conductivities k = 0.5, 1.0, 2.0, and 3.0 W/

(m �C) were used to study the effect of the thermal con-

ductivity of rock matrix on the thermal breakthrough curve.

As shown in Fig. 14, the greater the thermal conductivity

of rock matrix is, the later the thermal breakthrough occurs,

and the less obvious the long-tail effect. The outlet fluid

temperature decreases with decreasing rock matrix. After a

period of time, the outlet fluid temperature is higher than

that of rock matrix with high thermal conductivity. The

thermal conductivity of rock matrix determines the time

when the temperature of fluid and rock matrix is balanced.

If the thermal conductivity of the rock matrix is low, then

the initially high-temperature rock matrix heats the low-

temperature fluid in fractures slowly. Thus, the heat

breakthrough occurs early. After a period of time, the

energy stored in the rock matrix is less absorbed by fluid in

fractures. Thus, the outlet temperature at the late stage is

higher than that when the thermal conductivity of rock

matrix is high.

(a) (b)

0.01m/s

Fig. 12 Fluid pressure distribution and velocity distribution at a stable seepage: a fluid pressure distribution, b flow velocity distribution
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Fig. 13 Temperature distribution at different times
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4.2.4 The effect of fracture aperture on the outlet fluid
temperature

Fractures are mainly caused by hydraulic fracturing during

construction of the reservoir. Fracture aperture is closely

related to fluid circulation impedance, fluid short circuit,

heat production efficiency and reservoir life. If the flow

rate is constant, the fracture aperture determines the

amount of fluid in the fracture and the ability to extract heat

from rock matrix. The fracture aperture also determines the

heating time and the fracture path length that heats fluid to

a specific temperature. Figure 15 shows the variation of the

outlet fluid temperature with time when a = 2 9 10 - 4,

3.5 9 10 - 4, and 5 9 10 - 4 m. As can be seen from

this figure, the wider the fracture aperture is, the earlier the

thermal breakthrough occurs, and the less obvious the long-

tail effect. Moreover, the fluid temperature decreases faster

as the fracture aperture increases. Because the flow rate of

the fluid in fracture with large aperture is larger than that

with small aperture under the same boundary conditions,

the fluid is not heated sufficiently when it flows out of the

right boundary. Finally, the fluid temperature at the outlet

decreases rapidly.

5 Conclusion

In this paper, a two-dimensional coupled hydro-thermal

(FDEM-TH) model for FDEM is constructed. Three

examples with analytical solutions are given to verify the

correctness of the coupled model. The numerical results

agree well with the analytical results. Finally, a hydro-

thermal coupling example of rock mass with a fracture

network is given. The results show that heat is transferred

from high-temperature rock matrix to cold fluid in fractures

and is carried away by the heat convection of fluid. The

temperature of rock matrix near fractures decreases rapidly,

while the temperature of rock matrix far from fractures

decreases slowly. The thermal breakthrough occurs late if

the thermal conductivity of rock matrix is high, and the

long-tail effect is obvious. But if the fracture aperture is

large, the long-tail effect is not obvious. This coupled

hydro-thermal model combined with the mechanical frac-

ture calculation of FDEM can construct a complete method

for simulating rock rupture driven by the effect of THM

coupling.
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