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Abstract
This research study presents analytical solutions for the stresses and displacements around deeply buried non-circular

tunnels, taking into account the viscoelasticity of the ground, and the sequential excavation of the tunnels’ cross-sections.

General initial far-field stress states are assumed, and the time-dependent pressures exerted at the internal tunnel boundaries

are found to account for the support effects or water pressures of the hydraulic tunnels. Then, solutions are derived for

tunnels with a time-varying sizes and/or shape, by assuming the time-dependent functions specified by the designers. The

analytical solutions for the stresses and displacements around elliptical and square tunnels are specifically presented for

linearly viscoelastic models using a Muskhelishvili complex variable method and Laplace transform techniques. For

validation purposes, numerical analyses are performed for the excavations of elliptical and square tunnels in rock which are

simulated by Poynting–Thomson or generalized Kelvin viscoelastic models. Good agreements are observed between the

analytical and numerical results of this study. Then, parametric analyses are carried out in order to investigate the effects of

the far-field shear stress, along with the distribution forms of the internal pressures, on the ground displacements and

stresses. The proposed analytical solutions can be employed to accurately predict the stress concentrations, as well as the

time-dependent displacements around deeply buried elliptical or square-shaped tunnels. Furthermore, it is confirmed that

this study’s described methodology may be potentially applied to obtain analytical solutions for other arbitrary shaped

tunnels sequentially excavated in viscoelastic rock.
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1 Introduction

Many types of rock exhibit time-dependent behaviors [23]

which may, in some cases, contribute up to 70% of their

total deformations [33]. In addition, tunnel excavations are

long-term processes, during which the tunnel faces

advance, and the cross-sections change over time. In par-

ticular, sequential excavations are technique which are

becoming increasingly popular in several countries for the

excavation of non-circular tunnels with large cross-sections

[7, 24, 34]. Since the displacements and stresses of the

surrounding rock are important aspects for tunnel designs,

fast and detailed analyses which consider the rheology of

the rock, as well as the sequential excavations, are

important for the construction of deep tunnels [31, 34] to

achieve the optimal tunneling parameters.

In the past several decades, many numerical studies

have been carried out which were related to the
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determination of the time-dependent ground responses

around underground openings [27, 29, 30]. However, the

full three-dimensional (3D) analyses of the extended lon-

gitudinal sections of tunnels are found to be generally very

computationally expensive. As a consequence, analytical

solutions, by which a wide range of values of the input

parameters can be effectively performed [4], are employed

as first estimations of design parameters to provide guid-

ance for the preliminary designs. In addition, these solu-

tions have been generally used to validate the results of

various numerical methods [18].

In this study, the rheology of the rock is accounted for

using the linear viscoelastic relationship. Although there

have been several closed-form or theoretical solutions

developed for the excavations of rheological rock

[6, 12, 19], all of these previous studies merely focused on

circular tunnels under hydrostatic stress states, or cases

where the cross-section excavations take place instanta-

neously. Recently, several analytical solutions were pro-

vided for deeply buried lined circular tunnels, or twin

tunnels in viscoelastic rock, which considered the

enlargements of the sequential excavations [35–37, 39].

However, for the purpose of minimizing excavation vol-

umes, while still meeting the geometrical constraints,

tunnels with non-circular cross-sections (for example,

elliptical, horse-shoe, square cross-sections, and so on)

have actually became rather common for railway tunnels

[1, 2, 32], and rock caverns [40], as well as subway tunnels

[13]. The analytical or semi-analytical solutions [8, 9, 18]

for non-circular tunnels were mainly derived for elastic

two-dimensional problems by introducing complex poten-

tial functions, along with conformal mapping functions. In

the current related literature [38], the time-dependent rhe-

ological behavior of rock, as well as sequential excava-

tions, was accounted for in the excavations of elliptical

tunnels. However, the in situ initial shear stresses and

pressures along the tunnel boundaries have yet to be con-

sidered. Due to tectonic activities, or the presence of

fracture sets and discontinuities near tunnels, the principal

directions of the initial stress states will possibly no longer

be in horizontal or vertical directions [3], namely, the

initial shear stresses are generated, which have been proven

to be key parameters which significantly influence the

stresses and displacements around non-circular tunnels

[8, 20]. Moreover, the internal pressures induced by sup-

ports and water may also be crucial for tunnel stability, and

these factors should not be neglected [21, 22].

The analytical solutions presented in this study will be

potentially applicable for non-circular tunnels (e.g., ellip-

tical and square tunnels), where the initial shear stresses

and internal pressures are taken into consideration, which

were not regarded in the aforementioned related literatures.

The enlargement sequential excavations of the tunnel

cross-sections, as well as various viscoelastic rock models,

are also accounted for. These solutions potentially provide

alternative approaches for the accurate predictions of the

stress concentrations and time-dependent displacements

around non-circular tunnels in the future preliminary

designs of deep buried tunnels.

2 Descriptions and assumptions

The sequential enlargement excavations of tunnels with

non-circular cross-sections in rheological rock are consid-

ered in this study. Throughout the analysis process, the

following assumptions are made:

1. The surrounding rock is homogeneous and isotropic.

Also, its rheological behavior can be described as

linear viscoelasticity;

2. The tunnel is deeply buried and subjected to relatively

high initial stresses. Therefore, the variations in gravity

across the height of the excavations can be neglected.

The ground is subjected to in situ (or far-field) uniform

non-hydrostatic initial stresses, which are idealized as

vertical compressive stresses ry
!, horizontal compres-

sive stresses rx
!, and shear stresses rxy

!, as shown in

Fig. 1a;

3. The tunnel cross-section is sequentially excavated. For

example, for elliptical tunnels, the half major a(t) and

minor b(t) axes of the section are time-dependent, in

which the variations against time are likely to be

discontinuous. The analytical solutions which are

provided in this study will be potentially applicable

to the types of sequential enlargement excavations

which increase either stepwise or continuously over

time, as long as the mapping functions of the tunnel

shapes during the excavation times are known;

4. No dynamic stresses are induced at any time, i.e., a

quasi-static analysis is performed in this study.

For lined non-circular tunnels, it is very difficult to

determine the stresses at the interfaces by the compatibility

conditions of the stresses and displacements between the

ground and liner for time-dependent problems. However,

convergence-confinement methods [14] provide efficient

ways to determine the rock–support interactions and have

been widely used in engineering practices. By employing

this method, the support pressures can be determined by the

intersections between the convergence and confinement

curves, where the convergence curves quantify the tunnel

wall convergences as functions of the internal pressures,

while the confinement curves quantify the pressures taken

by the supports when the tunnel walls converge. In this

study, the aim is to find the time-dependent convergence of

rock as a function of the uniform internal pressures, which
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approximately accounts for the effects of the supports. For

the cases with approximate anisotropic tunnel closures and

installed liners with full slip, the supporting forces can be

approximately treated as uniform pressures. In addition, the

water pressure in the hydraulic tunnels can also be regarded

as uniform internal pressures [21, 22].

Then, by employing the same assumption as in Ref.

[38], the cross-section considered in the current analyses is

determined to be located at a sufficiently far distance away

from the longitudinal tunnel boundary, which results in the

stresses and strains being unaffected by the three-dimen-

sional effects. According to these assumptions, the equiv-

alent plane strain analysis can be reduced in the direction

perpendicular to the cross-section, as shown in Fig. 1a. The

Cartesian coordinates (x, y), as well as the polar coordi-

nates (r, a) and local coordinates (en, et), are employed in

the derivation of the analytical solutions. The sign con-

ventions are defined as positive for tension, and negative

for compression, as shown in Fig. 1b.

With regard to the sequential excavation, the construc-

tion process can be divided into two stages. The first stage

(for example, the excavation stage) spans from t = 0 to

t ¼ tsup, with tsup being the time the internal pressure is

applied. The second stage spanned from t = tsup to the end.

It is noted that, from t = 0 to t ¼ texc in the first stage,

where texc represents the ending time of the cross-section

excavation, the shape or size of the hole vary with time. For

example, the values of the half major and minor axes of the

elliptical tunnel are found to vary as follows:

aðtÞ ¼ a0 þ amðtÞ
bðtÞ ¼ b0 þ bmðtÞ;

�
ð1Þ

where a0 and b0 represent the initial values of the axes at

t = 0; am(t) and bm(t) are function variations over time,

which account for the real excavation process as prescribed

by the designers. Following the cross-section excavations,

from t ¼ texc to t ¼ tsup represents a period of stabilization,

with the half major and minor axes represented by a1 and

b1 (constants), respectively.

3 Solutions to the viscoelastic problem
involving time-dependent boundaries

3.1 Analysis of the general viscoelastic problem

The stress–strain behavior of the linear viscoelastic rock’s

constitutive equations can be expressed in an integral form

as follows:

svijðX; tÞ ¼ 2 GðtÞevijðX; 0Þ þ
R t

0
Gðt � sÞ

devijðX; sÞ
ds

ds

� �
;

rvkkðX; tÞ ¼ 3 KðtÞevkkðX; 0Þ þ
R t

0
Kðt � sÞ devkkðX; sÞ

ds
ds

� �
;

8>><
>>:

ð2Þ

where X is the position vector; sij
v and eij

v represent the

tensors of the stress and strain deviators (the superscript ‘v’

denotes the quantities applied in the viscoelastic cases),

respectively, which are defined as follows:

(a) (b)

xy

x

y

( )a t

( )b t

r

x

y

te
ne

rr

ruusup ( )n t

Fig. 1 Boundary conditions, coordinate system and sign conventions: a boundary conditions and coordinate system; b sign conventions for polar

coordinate
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svij ¼ rvij �
1

3
dijr

v
kk ; evij ¼ evij �

1

3
dije

v
kk; ð3Þ

where dij denotes the unit tensor; and G(t) and K(t) repre-

sent the shear and bulk relaxation moduli of viscoelastic

models, respectively. In geo-material, a usual assumption is

that the rock exhibits a purely elastic volumetric response

[26]. Therefore, K(t) can be treated as equal to the elastic

bulk modulus Ke. Figure 2 presents five physical vis-

coelastic models commonly employed in geo-engineering

to simulate the rheological characteristics of different rock.

The expressions of the shear relaxation moduli G(t) of

these models are detailed in Table 1.

The methodology for solving general viscoelastic

problems involving time-dependent boundaries is expoun-

ded in reference section [38]. With respect to time, the

Laplace transformation can be applied to the constitutive

equations in Eq. (2), in order to obtain the linear relation-

ships between the Laplace transformed stress and strain. By

applying the Laplace transformation to all of the governing

equations, with the exception of the boundary conditions,

the relationship between the general viscoelastic and elastic

solutions can be obtained as follows:

uvi ðX; tÞ ¼ L�1 uei ðX; sÞ
��
Ge!sbG
Ke!sbK

2
64

3
75 and

rvijðX; tÞ ¼ L�1 reijðX; sÞ
���
Ge!sbG
Ke!sbK

2
64

3
75 ;

ð4Þ

where ui
e and rij

e denote the elastic solutions of displace-

ment and stresses, respectively; L�1 �½ � denotes the inverse

Laplace transformation; Ge and Ke are the elastic shear and

bulk moduli, respectively; and bf ðsÞ denotes a function with

respect to the variable s defined in the Laplace transfor-

mation of the function f(t) as follows:

bf ðsÞ ¼
Z 1

0

exp�st f ðtÞdt: ð5Þ

In the following, the symbol L �½ � also denotes the

Laplace transformation of [�]. Therefore, by substituting

Eq. (4) into the boundary conditions, the set of equations

can be addressed as satisfied by the particular solution of

the viscoelastic case.

3.2 Complex potential representation
for the viscoelastic problem

In regard to the mechanical analyses of the non-circular

tunnel excavations in this study, a Muskhelishvili complex

potential representation [25] is combined with the confor-

mal mapping, which is found to be effective in determining

the elastic solutions. All of the physical quantities can be

expressed in terms of two complex potential functions, i.e.,

u1 = u1(z) and w1 = w1(z) with z = x ? iy and i ¼
ffiffiffiffiffiffiffi
�1

p

[25]. If the boundaries are determined to be time-depen-

dent, the two complex potentials become time-dependent

as well.

In this study, according to Eq. (4) and the complex

variable theory, the general solutions for the viscoelastic

problem can be performed as follows:

M M( )E G M
K K( )E G

Kor
H H( ) 0E G

M M P P( ) ( )E G E G
M P

(a)

(d) (b)

(c)

(e) 

K K( )E G

M M M( )E G

K
K K( )E G

K

K K( )E G

K

M M( )E G

M M( )E G

Mand

M

H H( )E G
P P( )E G PP P( )E G

K P

K K H H( ) ( )E G E G

Fig. 2 Viscoelastic models and the degeneration relationship between the models, a Maxwell model, b Kelvin model, c generalized Kelvin

model, d Burgers model, e Poynting–Thomson model
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uvx þ iuvy ¼ L�1

1

2sbGðsÞ
lðsÞbu1ðz; sÞj Ge!sbG

Ke!sbK

2
64

8><
>:

�z
obu1ðz;sÞ

oz

���� Ge!sbG
Ke!sbK

�bw1ðz; sÞ
���
Ge!sbG
Ke!sbK

3
75
9>=
>;

rvx
rvy

¼ Re 2L�1 obu1ðz;sÞ
oz

���
Ge!sbG
Ke!sbK

2
64

3
75�L�1

*

z
o2bu1ðz;sÞ

oz2

���
Ge!sbG
Ke!sbK

þobw1ðz;sÞ
oz

���� Ge!sbG
Ke!sbK

2
64

3
75
+

rvxy

¼ Im L�1 z
o2bu1ðz;sÞ

oz2

���
Ge!sbG
Ke!sbK

þobw1ðz;sÞ
oz

���� Ge!sbG
Ke!sbK

2
64

3
75

* +

ð6Þ

where lðsÞ ¼ 3bK ðsÞþ7bGðsÞ
3bK ðsÞþbGðsÞ

for the plane strain analysis;

gðz; tÞ denotes the conjugate of the complex function

g = g(z, t); and Re½�� and Im½�� denote the real and imag-

inary components of the complex variable [�], respectively.

Then, by imposing the boundary conditions, the equations

for the unknown time-dependent coefficients in u1 and w1

are established.

According to the analyses detailed by Muskhelishvili

[25], in case of the finite multiplied connected regions

bounded by several simple closed contours (L1,

L2, …, Lm), the two potentials can be determined via

equilibrium equations, strain displacement relationships

and constitutive equations. The two potentials can be

expressed as follows:

u1ðz; tÞ ¼ � 1

2pð1 þ jÞ
XN
k¼1

ðXk þ iYkÞlnðz� zkÞ þ u1�ðz; tÞ

w1ðz; tÞ ¼
j

2pð1 þ jÞ
XN
k¼1

ðXk � iYkÞlnðz� zkÞ þ w1�ðz; tÞ

ð7Þ

where (Xk, Yk) represents the resultant vector of all of the

external forces acting on the contours Lk; zk denotes the

fixed point chosen inside the contours Lk; N denotes the

number of the holes; and u1* and w1* represent the unde-

termined analytic functions with respect to variables z and

t. For the cases which are analyzed in this study, a single

hole is contained in an infinite plane (simply connected

region, N = 1), and the resultant vector of the external

forces acting on the internal boundary is zero. Therefore,

the two potentials in these cases can be expressed as

follows:

u1ðz; tÞ ¼ u1�ðz; tÞ ¼
Xþ1

k¼0

akz
�k

w1ðz; tÞ ¼ w1�ðz; tÞ ¼
Xþ1

k¼0

bkz
�k

ð8Þ

It is worth noting that in Eq. (8), no material parameters

are shown in u1 and w1. Therefore, the stress expressions in

Eq. (6) can be rewritten as follows:

rvx
rvy

¼ Re 2
ou1ðz; tÞ

oz

� �
� z

o2u1ðz; tÞ
oz2

þ ow1ðz; tÞ
oz

� �� �

rvxy ¼ Im z
o2u1ðz; tÞ

oz2
þ ow1ðz; tÞ

oz

� �

ð9Þ

By comparing Eq. (9) with the stress expressions of the

elastic problems, it is observed that the stresses are the

same in both the elastic and viscoelastic cases. According

to Eq. (6), the displacements in the viscoelastic cases are

addressed as follows:

uvx þ iuvy ¼ L�1 1

2sbGðsÞ
lðsÞbu1ðz; sÞ � z

obu1ðz; sÞ
oz

"(

�bw1ðz; sÞ
io ð10Þ

Assuming that:

HðtÞ ¼ L�1 1

sbGðsÞ

" #
; IðtÞ ¼ L�1 lðsÞ

sbGðsÞ

" #
; ð11Þ

Table 1 Shear relaxation modulus for the five viscoelastic models

Viscoelastic model Maxwell

model

Kelvin

model

Generalized Kelvin

model

Poynting–Thomson

model

Burgers model

Shear relaxation modulus

G(t)
GMe

�GM
gM

t GK þ gKdðtÞ G2
M

GMþGK
e
�GMþGK

gK
t þ GMGK

GMþGK
GPe

�GP
gP
t þ GH GM c1e

� t
g1 þ c2e

� t
g2

h i

c1 ¼ g2GMðgMþgK Þ�g1GKgM
ðg2�g1ÞA2

, c2 ¼ g2GKgM�g1GM ðgMþgK Þ
ðg2�g1ÞA2

, g1 ¼ 2A3

A2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2
�4A1A3

p , g2 ¼ 2A3

A2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2
�4A1A3

p

A1 = GMGK, A2 = GMgM ? GMgK ? GKgM, A3 = gMgK
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and together with the properties of the convolution integral,

the displacements in Eq. (10) are rewritten as follows:

uvx þ iuvy ¼
1

2

Z t

0

Iðt � sÞu1ðz; sÞds

� 1

2

Z t

0

Hðt � sÞ z
ou1ðz; sÞ

oz
þ w1ðz; sÞ

" #
ds:

ð12Þ

The expressions of H(t) and I(t) of the five viscoelastic

models are detailed in Table 2.

For the cases which are analyzed in this study, the initial

stresses and internal pressures are successively applied at

different stages. Therefore, if the rock rheology is consid-

ered, the displacements at specific times are dependent on

the entire stress history. This is different from what occurs

in the elastic cases, where the displacements are solely

dependent on the stresses applied at that time. In this study,

it is assumed that the external forces (Loads 1, 2, …, l) are

exerted successively on the structures at the times tb1, -

tb2, …, tbl, and then removed at the times tm1, tm2, …, tml,

respectively. If u1
(k) and w1

(k) are the two potentials for the

elastic problem only with the application of Load k, then

based on the superposition principle for viscoelastic prob-

lems [11] and Eq. (12), the total displacements at time t

(t C tbl) can be achieved as follows:

uvx þ iuvy ¼
1

2

Xl
k¼1

Z T
k

t
bk

Iðt � sÞuðkÞ
1 ðz; sÞds

� 1

2

Xl
k¼1

Z T
k

t
0
bk

Hðt � sÞ z
ouðkÞ

1 ðz; sÞ
oz

þ wðkÞ
1 ðz; sÞ

" #
ds

ð13Þ

where Tk = min {tmk, t}. Then, according to Eq. (9), the

stress expressions can be obtained as follows:

rvx
rvy

¼ Re 2
Xl
k¼1

ouðkÞ
1 ðz; tÞ
oz

" #*

� z
Xl
k¼1

o2uðkÞ
1 ðz; tÞ
oz2

þ owðkÞ
1 ðz; tÞ
oz

 !" #+

rvxy ¼ Im z
Xl
k¼1

o2uðkÞ
1 ðz; tÞ
oz2

þ owðkÞ
1 ðz; tÞ
oz

" #* +
:

ð14Þ

4 Displacements and stresses around non-
circular tunnels

In this study, the stresses along the anticipated tunnel

boundary prior to the excavation (for example, the hori-

zontal and vertical components rx
0 and ry

0 shown in Fig. 3a)

Table 2 Two functions defined in Eq. (11) for the five viscoelastic models

H(t) in Eq. (11) I(t) in Eq. (11)

Maxwell model 1
GM

dðtÞ þ 1
gM

6

3Ke

	
þGM þ 1

GM

ÞdðtÞ þ 1

gM
þ 6G2

M

gM 3Ke þ GMð Þ2
exp � 3KeGM

gMð3Ke þ GMÞ
t

� �

Kelvin model 1
gK

exp � GK

gK
t


 �
6
gK

exp � 3KeþGK

gK
t


 �
þ 1

gK
exp � GK

gK
t


 �

Generalized Kelvin

model
1

GM
d tð Þ þ 1

gK
exp � GK

gK
t


 �
6

3Ke þ GM

þ 1

GM

	 �
dðtÞ þ 6G2

M

gKð3Ke þ GMÞ2
�

exp � 3KeGK þ GMð3Ke þ GKÞ
gKð3Ke þ GMÞ

t

	 �
þ 1

gK

exp �GK

gK

t

	 �

Poynting–Thomson

model
1

gP

GP

GP þ GH

	 �2

exp � GPGH

ðGP þ GHÞgP

t

	 �

þ 1

GP þ GH

d tð Þ

6

3Ke þ GP þ GH

þ 1

GP þ GH

	 �
dðtÞ þ 6G2

P

gPð3Ke þ GP þ GHÞ2
�

exp � GPð3Ke þ GHÞ
gPð3Ke þ GP þ GHÞ

t

	 �
þ 1

gP

GP

GP þ GH

	 �2

exp � GPGH

ðGP þ GHÞgP

t

	 �

Burgers model 1
gM

þ 1
gK

exp � GK

gK
t


 �
þ 1

GM
d tð Þ 1

gM

þ 6

ð3Ke þ GMÞ
þ 1

GM

� �
d tð Þ þ 1

gK

exp �GK

gK

t

	 �
þ 3G2

M

gMgKð3Ke þ GMÞ2
�

ðgM þ gK �M1ÞeðN1�
N2
2
Þt þ ðgM þ gK þM1Þe�ðN1þ

N2
2
Þt

h i

M1 = [GKgM(3Ke ? GM)(gM - gK) ? 3KeGM(gM ? gK)2]/M2,

M2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½GMGK

p
þ3ðGM þ GKÞKe�2g2

M � 6GMKegMgKðGMGK � 3GMKe þ 3GKKeÞ þ 9G2
MK

2
e g

2
K ,

N1 ¼ M2

2ð3KeþGMÞgMgK
, N2 ¼ 3GKgMKeþGMGKgMþ3KeGMðgMþgK Þ

ð3KeþGMÞgMgK
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are induced by the initial far-field stresses. However, these

boundary stresses become zero following the tunnel exca-

vation. Therefore, the excavation-induced incremental

displacements can be achieved by exerting the tractions

- rx
0 and - ry

0 on the tunnel boundary from t = 0, as

shown in Fig. 3b [38]. Following the excavation, the

additional boundary stresses rij
a (for example, the uniform

internal pressures) are subsequently applied. In the fol-

lowing derivation, the tractions - rx
0 and - ry

0 are repre-

sented as Load 1, which is applied from tb1 = 0 to

tm1 = !. The other additional loads (rij
a) are represented as

Load 2, up to l. First of all, the two elastic potentials for

case only subjected to Load j (j = 1, 2, …, l) will be

obtained, and then the viscoelastic solutions will be

addressed in the following subsections according to the

derivation in Sect. 3.

4.1 Conformal mapping process and its inverse

In regard to the elastic problems involving a single non-

circular hole in an infinite medium, conformal mapping

z = x(f) is introduced so that the tunnel boundary and its

exterior in the z-plane are mapped into the exterior or

interior of the circle boundary, with a unit radius in the f-

plane (f = n ? ig = qeih). If the region involving a time-

dependent inner boundary in the z-plane, is mapped into

the exterior of the circle in the f-plane, the conformal

mapping can be expressed in the following series form,

with respect to time [25]:

z ¼ x f; tð Þ ¼ RðtÞ fþ
X1
i¼1

aiðtÞf�i þ a0ðtÞ
" #

; fj j � 1

ð15Þ

where R(t) is a positive real function which reflects the size

of the hole in the z-plane; ai (i = 1, 2, …, !) are complex

functions which reflect the shape of the hole; and a0 is

correlated with the position of the coordinate origin in the

z-plane. For example, the conformal mapping of the

elliptical tunnels can be expressed as follows:

z ¼ x f; tð Þ ¼ c tð Þ fþ mðtÞ
f

� �
ð16Þ

where

cðtÞ ¼ aðtÞ þ bðtÞ
2

and mðtÞ ¼ aðtÞ � bðtÞ
aðtÞ þ bðtÞ ð17Þ

and a(t), b(t) represent the half major and minor axes of the

ellipse, respectively. In regard to squared tunnels, the

conformal mapping is an infinite series, which is detailed in

Eq. (39) in ‘‘Appendix’’ section.

In this research study, by employing mapping functions,

the potentials of u1 and w1 are expressed with respect to

the variables f and t. However, for the viscoelastic cases

which involve time-dependent boundaries, the displace-

ments in Eq. (10) are expressed by u1(z, t) and w1(z, t), in

which the variable ‘z’ should be treated as a constant for

the Laplace transform. In order to replace f with z and t in

the final solutions, an inverse function of the conformal

(a) (b)

xy

x

y

x

y

0
y

0
x z

x

y

0
y

0
x z

a
ij

z

Fig. 3 Boundary conditions, a prior to excavation; b for calculations of excavation-induced incremental components. rij
a is the additional load

applied after excavation
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mapping f = v(z, t) is required to be formulated. The

determination of the inverse mapping function, and the

investigation of its reliability and accuracy, are presented

in Appendixes 7.1 and 7.2, respectively.

4.2 Determination of the potentials

In accordance with the complex variable theory and con-

formal representation, the potentials (represented by ‘PA’)

for the elliptical and square holes in an infinite plane,

which is subjected to tension at infinity in a direction with

an angle b0 with respect to the Ox axis, have been provided

in References [25] and [28], respectively. The potentials

(represented by ‘P0’) of an infinite plane without holes

subjected to the same far-field stresses are as follows:

uð0Þ
1 zð Þ ¼ �

ðr1x þ r1y Þz
4

;

wð0Þ
1 zð Þ ¼ �

ðr1y � r1x Þz
2

þ r1xy zi
ð18Þ

Therefore, by subtracting the P0 potentials from the PA

potentials (shown in References [25] and [28]), the

potentials of an infinite plane with holes which is subjected

to tractions (Load 1) along the boundary can be obtained.

In the following, the solutions are given by superposi-

tion principle for the cases subjected to far-field stresses

which are shown in Fig. 1a. Due to the fact that the signs of

the initial far-field stresses in Fig. 1a have been considered

in the derivation, rx
!, ry

!, and rxy
! are all positive values in

the following equations.

The potentials for Load 1 (traction on the boundary) of

the elliptical and square tunnels under complex initial

stress states can be obtained by a summation of the

potentials under the following four simple initial stress

states as follows:

Case (1): Only with compressive stress rx
! at infinity

with b0 ¼ 0
�
, as shown in Fig. 4;

Case (2): Only with compressive stress ry
! at infinity

with b0 ¼ 90
�
, as shown in Fig. 4;

Case (3): Only with tensile stress rxy
! at infinity with

b0 ¼ 45
�
, as shown in Fig. 4;

Case (4): Only with compressive stress rxy
! at infinity

with b0 ¼ 135
�
, as shown in Fig. 4.

It is also worth noting that the combination of Cases (3)

and (4) is equivalent to the case with only far-field shear

stress rxy
!. Therefore, by utilizing the summation of the

aforementioned four potentials, the potentials under the

complex initial stress state are achieved as follows:

For the elliptical tunnels:

uð1Þ
1 f; tð Þ ¼

r1y � r1x þ 2ir1xy þ ðr1y þ r1x ÞmðtÞ
h i

cðtÞ
2f

wð1Þ
1 f; tð Þ ¼ cðtÞ

2f

ðr1y þ r1x Þ 1 þ m2ðtÞ
 �

þ 2ðr1y � r1x ÞmðtÞ
h i

þ
r1y � r1x þ 2ir1xy þ ðr1y þ r1x ÞmðtÞ
h i

1 þ m2ðtÞ½ �cðtÞ

2f f2 � mðtÞ
� �

ð19Þ

For the square tunnels:

uð1Þ
1 f; tð Þ

¼
r1y � r1x


 �
3
7
þ 6

5
ir1xy

h i
RðtÞ

f
�

r1x þ r1y


 �
RðtÞ

12f3

wð1Þ
1 f; tð Þ ¼ 13

6

r1y � r1x


 �
3
7
þ 6

5
ir1xy

h i
RðtÞf

2f4 þ 1

þ 13

12

r1x þ r1y


 �
RðtÞf3

2f4 þ 1

þ
r1x � r1y þ 2ir1xy


 �
RðtÞ

12f3

ð20Þ

If assuming rx
! = ry

! = - rn
sup and rxy

! = 0, with rn
sup

being the value of the uniform internal pressure along the

tunnel boundary (Load 2), the tractions acting on the tunnel

boundary are reduced to the uniform normal tensile stress,

with the value being rn
sup. Therefore, the potentials for the

tunnel subjected to Load 2 can be obtained by replacing rx
!

and ry
! with - rn

sup, and rxy
! with zero in Eqs. (19) and

(20) as follows:

For the elliptical tunnels: uð2Þ
1 f; tð Þ ¼ � rsup

n ðtÞm1c1

f
;

wð2Þ
1 f; tð Þ ¼ �

rsup
n ðtÞc1 1 þ m2

1

 �
f

f2 � m1

; t� tsup

ð21Þ

For the square tunnels: uð2Þ
1 f; tð Þ ¼ rsup

n ðtÞR1

6f3
;

wð2Þ
1 f; tð Þ ¼ � 13rsup

n ðtÞR1f
3

6ð2f4 þ 1Þ
; t� tsup

ð22Þ

where m1, c1, and R1 are the final values of m(t), c(t), and

R(t), respectively.

4.3 Solutions for the displacements and stresses

By substituting the potentials [Eqs. (19) and (21), or

Eqs. (20) and (22)] into Eq. (13), and then replacing the

variable f with the inverse mapping v(z1, t) [see Eq. (34)],
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the excavation-induced displacements Duvd1
ðtÞ and Duvd2

ðtÞ
along the d1 and d2 directions, respectively, are obtained,

where d1 and d2 denote the two orthogonal directions of the

coordinates system. The expressions of the induced dis-

placements for the elliptical tunnels are as follows:

Duvd1
ðtÞ þ iDuvd2

ðtÞ

¼
e�icB1ðz; tÞ 0	 t\tsup

e�ic B1ðz; tÞ þ B2ðz; tÞ½ � t� tsup

(
ð23Þ

where c denotes the angle between the horizontal axis x and

d1, and

Case (2)

y

y

0 90o

x x

Case (1)

0 0o

Case (3)

0 45o

xy

xy

xy

xy

Case (4)

0 135o

Fig. 4 Far-field stress conditions of various cases in derivation of solutions for problem under complex initial stress state

B1ðz; tÞ ¼
1

2

Z t

0

Iðt � sÞuð1Þ
1 ðz; sÞds�

1

2

Z t

0

Hðt � sÞ z
ouð1Þ

1 ðz; sÞ
oz

þ wð1Þ
1 ðz; sÞ

( )
ds

¼ 1

4

Z t

0

Iðt � sÞ
r1y � r1x þ 2ir1xy þ ðr1y þ r1x ÞmðsÞ
h i

cðsÞ
vðz1; sÞ

2
4

3
5ds

þ z

4

Z t

0

Hðt � sÞ
r1y � r1x � 2ir1xy þ ðr1y þ r1x ÞmðsÞ

v2ðz1; sÞ � mðsÞ

� �
ds

� 1

4

Z t

0

Hðt � sÞ
1 þ m2ðsÞð Þðr1y þ r1x Þ þ 2mðsÞðr1y � r1x Þ

h i
c sð Þ

v z1; sð Þ

2
4

3
5ds

þ 1

4

Z t

0

Hðt � sÞ
r1x � r1y þ 2ir1xy � ðr1y þ r1x ÞmðsÞ
h i

1 þ m2ðsÞ½ �c sð Þ
vðz1; sÞ v2ðz1; sÞ � mðsÞ½ �

2
4

3
5ds

ð24Þ
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B2ðz; tÞ ¼
1

2

Z t

tsup

Iðt � sÞuð2Þ
1 ðz; sÞds� 1

2

Z t

tsup

Hðt � sÞ

z
ouð2Þ

1 ðz; sÞ
oz

 !
þ wð2Þ

1 ðz; sÞ

2
4

3
5ds

¼ � m1c1

2vðz1Þ

Z t

tsup

Iðt � sÞrsup
n ðsÞds

�
zm1 � c1 1 þ m2

1

 �
vðz1Þ

2 v2ðz1Þ � m1

h i
Z t

tsup

Hðt � sÞrsup
n ðsÞds

ð25Þ

In Eq. (25), B1 represents the displacements induced by

the tractions, and B2 represents the displacements induced

by the internal pressure.

Therefore, for the elliptical tunnels, according to

Eq. (14), the excavation-induced stresses Drvd1
and Drvd2

,

and shear stress Drvd1d2
, can be obtained as follows:

Drvd1
¼

Drvd1�1 t\tsup

Drvd1�1 þ rvd1�2 t� tsup

(
;

Drvd2
¼

Drvd2�1 t\tsup

Drvd2�1 þ rvd2�2 t� tsup

(
;

Drvd1d2
¼

Drvd1d2�1 t\tsup

Drvd1d2�1 þ rvd1d2�2 t� tsup

(
ð26Þ

where

Drvd1�1

Drvd2�1
¼ Re D1ðz; tÞf g

� Re e2ic D2ðz; tÞ þ D3ðz; tÞ þ D4ðz; tÞ½ �
� �

ð27Þ

Drvd1d2�1 ¼ Im e2ic D2ðz; tÞ þ D3ðz; tÞ þ D4ðz; tÞ½ �
� �

ð28Þ

rvd1�2

rvd2�2
¼ rsup

n ðtÞRe E1ðz; tÞf g � rsup
n ðtÞ � Re e2icE2ðz; tÞ

��
ð29Þ

rvd1d2�2 ¼ rsup
n ðtÞ � Im e2icE2ðz; tÞ

��
ð30Þ

with

Therefore, the total stresses in the rock mass can be

obtained by superimposing the initial stresses in Eq. (26).

Table 3 Notations of directions d1 and d2, angel c in the Cartesian, polar and local coordinates

Cartesian coordinates Polar coordinates Local coordinates

Direction d1 x r en

Direction d2 y a et

Angle c between horizontal axis x and direction d1 0� a b

D1ðz; tÞ ¼
r1x � r1y � 2ir1xy � ðr1y þ r1x ÞmðtÞ

v2ðz1; tÞ � mðtÞ ;

D2ðz; tÞ ¼ �
z r1x � r1y � 2ir1xy � ðr1y þ r1x ÞmðtÞ
h i

v3ðz1; tÞ

cðtÞ½v2ðz1; tÞ � mðtÞ�3
;

D3ðz; tÞ ¼ �
ðr1y þ r1x Þ 1 þ m2ðtÞð Þ þ 2ðr1y � r1x ÞmðtÞ

2½v2ðz1; tÞ � mðtÞ� ;

D4ðz; tÞ ¼
1 þ m2ðtÞ½ � r1x � r1y � 2ir1xy � ðr1y þ r1x ÞmðtÞ

h i
½3v2ðz1; tÞ � mðtÞ�

2 v2ðz1; tÞ � mðtÞ½ �3
;

E1ðz; tÞ ¼
2m1

v2ðz1Þ � m1

; E2ðz; tÞ ¼ �
2zm1v3ðz1Þ � c1v2ðz1Þ 1 þ m2

1

 �
v2ðz1Þ þ m1½ �

c1 v2ðz1Þ � m1½ �3
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The expressions for the stresses [Eq. (26)] are deter-

mined to be suitable to all of the linear viscoelastic models,

due to the fact that the stress state is independent of the

viscoelastic constitutive parameters. However, the dis-

placement expressions are dependent on the considered

viscoelastic model. Therefore, by substituting the functions

H(t) and I(t) defined in Eq. (11) (which are detailed in

Table 2 for the five viscoelastic models) into Eqs. (23)–

(25), the exact expressions of the displacements are

obtained for the specific models. When the notations d1, d2,

and c in Eqs. (23) and (26) are replaced with those listed in

Table 3, then the solutions for the displacements and

stresses in the corresponding coordinate systems (for

example, the Cartesian, polar, or local coordinates) are

obtained.

In regard to the square tunnels, by substituting the

potentials in Eqs. (20) and (22) into Eq. (13), and then

replacing the variable f with the inverse mapping v(z, t) in

Eq. (34), the excavation-induced displacements are

obtained. Furthermore, substituting the potentials into

Eq. (9) yields the induced stresses. It is found that the use

of this method can be extended for tunnels with any cross-

section shape, if the potentials for the tunnels subjected to

far-field stresses and internal uniform pressures have been

available.

4.4 Comparison with the numerical results

In order to validate the proposed analytical solutions which

were derived in the previous sections, a number of exam-

ples are performed in this subsection to compare the results

obtained from the analytical solutions with those predicted

using the finite element method (FEM) software ANSYS.

The problems encountered in tunnel excavations in

infinite viscoelastic rock masses are examined for the ini-

tial conditions of vertical stresses r1y ¼ 10 MPa, horizontal

stresses r1x ¼ 5 MPa, and shear stresses r1xy ¼ 1 MPa.

Then, two tunnel excavation cases with different tunnel

shapes and excavation processes are adopted for the fol-

lowing analyses, and the time variations of the tunnel

boundaries are presented in Table 4. It should be noted that

the cross-section excavations finishes at texc = 3rd day for

the elliptical tunnel, while the square tunnel is assumed to

be excavated instantaneously. Following the excavations,

time-dependent uniform internal pressures are applied from

t = 6th day, with the value being given as follows:

For elliptical tunnel:

rsup
n ðtÞ ¼

1=7 � ðt � 6Þ 6	 t\20

2:0 t� 20

(

Units: ‘‘MPa’’ for stress; ‘‘Day’’ for timeð Þ:
For square tunnel: rsup

n ðtÞ ¼ 1 t� 6

ð31Þ

The rock is simulated as a Poynting–Thomson model in

the elliptical tunnel case, whereas generalized as a Kelvin

model in the square tunnel case. The constitutive parame-

ters are listed in Table 5. The stresses discussed in the

following figures of this section are defined as positive for

the compression, and negative for the tension. All of the

FEM analyses are carried out with a small displacement

formulation in order to be consistent within the derivation

of the analytical solutions.

In the FEM simulations, plane strain conditions are

employed with far boundaries located at a distance further

than 16–40 times that of the tunnel size. Figure 5 presents

the calculation domain and mesh of the vicinity of the rock

mass. In the numerical simulations, the initial stresses are

first applied on the finite planes in order to obtain the

displacements and stresses prior to the excavations. For the

two viscoelastic models with parameters listed in Table 5,

these displacements are found to be almost stable after

30 days. Therefore, the 31st day is chosen to be the time

when the excavations begins. Parts I–III (Fig. 5a) of the

Table 4 Variation of tunnel boundary (excavation steps) in FEM simulations

Time t (day) Step 1: [0, 1) Step 2: [1, 3) Step 3: [3, !)

Elliptical tunnel Half major axis a(m) 2.0 4.0 6.0

Half minor axis b(m) 2.0 3.0 4.0

Square tunnel Side length (m) 5.0 5.0 5.0

R in Eq. (38) (m) 2.96 2.96 2.96

Table 5 Parameters of viscoelastic models in the FEM and analytical

calculations

Viscoelastic model Values of material parameters

GP (MPa) GH (MPa) gP (MPa day)

Poynting–Thomson model 1000 2000 5000

GK (MPa) GM (MPa) gK (MPa day)

Generalized Kelvin model 1000 2000 5000
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elliptical tunnel are sequentially excavated on the 31st day

(t = 0 day), 32nd day (t = 1 day), and 34th day

(t = 3 day), respectively. Meanwhile, the square tunnel

was excavated instantaneously on t = 31st day. Conse-

quently, the induced displacements and stresses by the

FEM can be obtained by subtracting the quantities occurred

before the excavation from the total. In the FEM analyses,

the elements were removed at the respective excavation

times, in a way that the stiffness of these elements was set

to zero (the stiffness matrix was multiplied with coefficient

(a)

(b)

Rectangular region 200 m long and 200 m wide 

with 52682 elements. 

Point A

Point B

Point C ( )=0.159 m
=4.000 m

x
y

( )=3.393 m
=3.299 m

x
y

( )=6.000 m
=0.000 m

x
y

y
x

Part
Part

PartFinal geometry 
of elliptical Tunnel 

94m 2m 4m2m 2m 2m 94m

96m

4m

1m
1m

1m
1m

96m

Rectangular region 200 m long and 200 

m wide with 10513 elements. 

y
x

Final geometry 
of Tunnel 

Point E =0.000 m
=3.048 m( x

y )

5m

97.5m97.5m 97.5m5m

97.5m

97.5m

O

Point D( )=-3.393 m
=3.299 m
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y

Fig. 5 Mesh of the domain of the tunnel in FEM simulation, a Mesh of the domain for the elliptical tunnel, A, B, C and D are the points where

displacements and stresses were compared. Parts I–III are sequentially excavated. b Mesh of the domain for the square tunnel, E is the point

where displacements and stresses were compared
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10�6), and then recalculated. During the calculation pro-

cess, the time step was set to 0.1 day.

Figure 6 details this study’s comparison of the dis-

placements at points A, B, C, and D (Fig. 5a) on the final

internal boundary of the elliptical tunnel, between the

analytical solution and the FEM results. Figure 7 presents

the comparison of induced stresses. In this example, the

numerical results are found to be almost the same as the

analytical ones. In regard to the square tunnel, the same

quantities are also compared between the analytical and

numerical results for point E (Fig. 5b), as shown in Fig. 8.

These figures show that all of the analytical quantities for

the square tunnel can matched well with the results

obtained from the FEM analyses.

5 Examples and discussion

In this section, the proposed analytical solutions are

employed to study the influences of the initial shear

stresses and internal pressures on the displacements and

stresses of the elliptical and square tunnels. For the
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Fig. 6 Comparison on the displacements versus time for elliptical tunnel between analytical and FEM results at the points A, B, C and D (see

Fig. 5a) at the final tunnel boundary: a horizontal displacements; b vertical displacements
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elliptical tunnel, a0 and b0 represent the values of the half

major and minor axes at time t = 0, respectively. Mean-

while, a1 and b1 represent the final values of the axes. The

functions of the half major and minor axes representing the

time-dependent excavations are as follows:
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Fig. 9 Boundary shape variations due to sequential excavation for a elliptical tunnel; b square tunnel

Table 6 Parameters of viscoelastic models and initial stress conditions in parametric investigation

Relaxation shear modulus Coefficient of the dashpot elements

GK (MPa) GM (MPa) gK (MPa day) gM (MPa day)

Parameters of Burgers model 1533 1498 13,850 100,600

Parameters of generalized Kelvin model 1533 1498 13,850 –

Initial stresses Vertical stress Horizontal stress Shear stress

ry
! (MPa) rx

! (MPa) rxy
! (MPa)

15.0 7.5 2.0 (in Sect. 5.2)
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aðtÞ ¼
1:5 0	 t\2 Step 1

3:0 2	 t\5 Step 2

5:0 t� 5 Step 3

8><
>: ;

bðtÞ ¼
1:5 0	 t\2 Step 1

3:0 2	 t\5 Step 2

3:0 t� 5 Step 3

8><
>:

Unit: ‘‘mrdquor; for aðtÞ and bðtÞ;
‘‘Dayrdquor; for time t:

	 �
ð32Þ

For the square tunnel, a circular cross-section with a

radius of 3 m is first excavated at t = 0 (Step 1), and a final

square cross-section with a side length of 6 m is achieved

at t ¼ 5th day by the enlargement excavation (Step 2). The

variations of the tunnel boundaries are displayed in Fig. 9.

In the following analyses, the rock is simulated using a

Burgers viscoelastic model in the case of the elliptical

tunnel excavation, and simulated by a generalized Kelvin

model for the square tunnel excavation. Table 6 presents

the values of the parameters of the viscoelastic models

[10, 41], as well as the initial stresses employed in the

calculations. Also, the internal pressures, which are applied

at the t = 10th day, are a constant (0.1 MPa) in the fol-

lowing examples in Sect. 5.1.

5.1 Influences of the initial shear stresses

Figure 10 presents the variations in the excavation-induced

displacements (displacement in short) over time along the

final tunnel boundary, at the points wherea = 0�, 45�, 90� and

135�, for the elliptical tunnels subjected to various values of

initial shear stress. It is observed that the displacements

instantaneously increase or decrease at each excavation time,

gradually increase over time following the completion of the

tunnel excavation, and reach constant values after a certain

period of time. Figure 10a and e illustrates that the normal

displacements at the points with a = 0� and 90� are inde-

pendent of the initial shear stresses, whereas, at the point

where a = 45�, the final normal displacement is observed to

decrease with the increase of initial shear stress (Fig. 10c).

Also, at the point where a = 135�, it is found to increase

against the initial shear stress (Fig. 10g). As can be seen in

Fig. 10b, d, f, and h, the tangential displacements are signif-

icantly influenced by the initial shear stresses. For example,

the final tangential displacements increase with the increase of

the initial shear stresses at the points where a = 0�, 45�, and

90�; rather than at the point where a = 135�, the final tan-

gential displacements are observed to first decrease from

negative values to zero, and then increase to positive values

with the increases in the initial shear stresses. Generally

speaking, the presence of initial shear stress (positive) will

lead to additional significantly positive tangential displace-

ments along the upper half of a tunnel boundary, as well as

additional negative/positive normal displacements along the

upper right/left sections of a tunnel boundary.

In this study, for the square tunnels subjected to various

values of initial shear stresses, the displacements versus h

bFig. 10 Excavation induced displacements versus time under differ-

ent condition of initial shear stress: a, c, e, g normal displacements

versus time at the boundary points with a = 0�, a = 45�, a = 90�,
a = 135�, respectively; b, d, f, h tangential displacements versus time

at the boundary points with a = 0�, a = 45�, a = 90�, a = 135�,
respectively
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(the angle of the radial direction in the f-plane with respect

to the horizontal direction, as shown in Fig. 17d) are

plotted in Fig. 11 at three specific times (t = 3rd, 8th, and

50th day). It is observed that the variation patterns of the

displacements against h are similar. However, the magni-

tudes are found to be quite different at the three specific

times. The horizontal displacements (Dux
v) are observed to

first decrease, and then increase over h. They are observed

to be almost the same value on the right side of the tunnel

boundary (h = 0�–30�, the right side of square tunnel)

under the different conditions of the initial shear stresses.

However, in the other region, they are quite different. The

horizontal displacements are observed to increase, and

finally remain at peak values against h (h 2 [30�, 180�])
when the initial shear stress is 7 MPa. Meanwhile, they

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

x[m]x[m]
y

y[m]y[m]

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

x[m]x[m]

y[m][m]y

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

x[m]x[m]

y[m]y[m]

(a)

(b)

(c)

0MPaxy 0MPaxy

ssertslapicnirproniMssertslapicnirprojaM

3MPaxy
3MPaxy

Major principal stress Minor principal stress

7MPaxy
7MPaxy

Major principal stress Minor principal stress

Fig. 12 Contour maps of principal stresses for elliptical tunnel excavation under various conditions of initial shear stress, a contour maps of the

final major and minor principal stresses for initial shear stress being zero, b contour maps of the final major and minor principal stresses for initial

shear stress being 3 MPa, c contour maps of the final major and minor principal stresses for initial shear stress being 7 MPa

bFig. 11 Excavation induced displacements versus h at different times:

a, b horizontal and vertical displacements for initial shear stress being

zero, respectively; c, d horizontal and vertical displacements for

initial shear stress being 3 MPa, respectively; e, f horizontal and

vertical displacements for initial shear stress being 7 MPa,

respectively
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continuously increases against h (h 2 [90�, 180�]) when

the initial shear stresses are zero or 3 MPa. If the initial

shear stress is zero, the vertical displacement (Duy
v) first

increases with h to a peak value (at the tunnel crown), and

then decreases. However, it is found to first decreases to

zero, and then increases to a peak value (at approximately

h = 100�, left side of the tunnel near the crown), and

finally decreases, if the initial shear stress is not zero

(positive value). At the tunnel crown (at approximately

h = 90�), the Duy
v is found to be less influenced by the

initial shear stresses. However, at the sides of the tunnel,

especially in the region with h = 0�–45� and 135�–180�,
the vertical displacements are found to be quite different

under the various conditions of the initial shear stresses. It

is observed that, with the increase in positive initial shear

stresses, the upward vertical displacement at h = 0� sig-

nificantly increases.

The contour maps of the final state of the principal stress

under the various conditions of the initial shear stresses are

presented in Fig. 12 (for the elliptical tunnel) and Fig. 13

(for the square tunnel). It can be observed from figures that

the presence of the initial shear stresses leads to a lack of
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major and minor principal stresses for initial shear stress being zero, b contour maps of the final major and minor principal stresses for initial

shear stress being 3 MPa, c contour maps of the final major and minor principal stresses for initial shear stress at infinity being 7 MPa
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symmetry in the stress contours, along with larger stress

concentrations around the tunnels. For elliptical tunnel

(Fig. 12), when the initial shear stress is zero, the major

and minor principal stresses are found to all be compres-

sive. The maximum major principal stress with a value of

3.3 ry
! occurred at the points along tunnel boundary with

a = 0� and 180�. However, when the initial shear stress is

not zero (3–7 MPa), the minor principal stress becomes

tensile at the left of the tunnel, at approximately the point

with a = 120�–135�, and the maximum major principal

stress along the tunnel boundary, whose value is between

3.5ry
! and 4.1ry

!, occurs at the point where a = 5�–10�.
Therefore, if the initial shear stress is positive, the major

principal stress around the left side of the tunnel is

observed to be much less than that around the right side of

the tunnel.

In regard to the square tunnel (Fig. 13), the stress con-

centration is observed to occur at the corners in all of the

cases. The maximum major principal stresses are deter-

mined to be 4.5 ry
!, 6.3 ry

!, and 8.2 ry
!, respectively, in

the cases with initial shear stresses of 0, 3, and 7 MPa. The

larger positive initial shear stresses lead to the higher stress

concentration occurring at the right corner. Furthermore,

when the initial shear stress is zero or 3 MPa, all of the

principal stresses are observed to be compressive; however,

the minor principal stress becomes tensile at the left corner

of the square tunnel when the initial shear stress increases

to 7 MPa, which indicates that a tensile failure tends to

occur.

5.2 Influences of the time-dependent internal
pressures

In this subsection, three variation forms against the times

of the internal pressure rn
sup are assumed in the elliptical

tunnel excavation in order to simulate the time-dependent

water pressures as follows:

Exponential form: rsup
n ðtÞ ¼ p1 � p1

� exp½�0:1 � ðt � tsupÞ�
Linear form: rsup

n ðtÞ ¼
p1 � ðt � tsupÞ=ðte � tsupÞ tsup 	 t\te

p1 t� te

(

Constant: rsup
n ðtÞ ¼ p1;

ð33Þ

where p! represents the final value of rn
sup(t); tsup is the

time that the internal pressure is initially applied; and te
represents the ending time of the pressure variation. As an

example, this study assumes that the final pressure is

approximately 20% of the initial horizontal stress. The

other parameters are adopted as: tsup ¼ 10:0 day, and

te ¼ 25 day. Then, the three forms of pressure in Eq. (33)

of the internal pressures over time are plotted, as detailed in

Fig. 14.

At this point, the displacements and principal stresses

versus time at two points (a = 0� and 135�) along the final

elliptical tunnel boundary are plotted for the various

internal pressures, as shown in Figs. 15 and 16. It should be

noted that the tangential displacements are independent of

the internal pressure, as shown in Fig. 15b and d. However,

the normal displacements are found to be significantly

influenced by the variation forms of the internal pressures

(Fig. 15a, c). When the pressures display exponential

forms, the normal displacements are observed to be

increased functions of time following the applications of

the pressures. Furthermore, it first increases with time, then

decreases, and finally increases to stable values when the

internal pressures are in linear forms. It is found that the

normal displacements instantaneously drop at t = tsup, and

then quickly increase with time to stable values if the

internal pressures are constants.

As can be seen in Fig. 16, the presence of internal

pressures leads to smaller final major principal stresses, and

larger final minor principal stresses at the point where

a = 0�, which indicates that safer conditions existed in the

rock around this point, according to the Mohr–Coulomb

failure criteria. However, at point a = 135�, the final minor

principal stress is observed to be tensile, and the major

principal stress is compressive. It is observed that these

both increase with the increase in internal pressures,

probably resulting in the tensile failures of the rock in this

region. It should also be noted that the variations in the
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Fig. 14 Internal pressure versus time
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stresses against time after 10th day display forms similar to

the internal pressures.

6 Conclusions

It was found in this study that the derived analytical

solutions of the non-circular tunnels subjected to far-field

stresses and uniform pressures at the internal boundaries

accounted for the sequence of the excavations, and the

rheological properties of the host rock. The initial vertical

and horizontal stresses, as well as shear stresses, were

applied for the purpose of accounting for more general

geological conditions. In addition, uniform pressures were

applied at the internal boundaries of the tunnels in order to

simulate the water and supporting pressures. Then, solu-

tions were derived for the excavations of the tunnel cross-

sections, with the sizes and/or shapes of the tunnels varying

with time, in accordance with the time-dependent function

specified by the designers.

In this study, particular viscoelastic solutions for both

elliptical and squared tunnels were derived by employing
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Fig. 15 Excavation induced displacements along tunnel boundary versus time for different time-dependent internal pressures: a, b normal and

tangential displacements at point with a = 0�, respectively; c, d normal and tangential displacements at point with a = 135�, respectively
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Laplace transform techniques, and a Muskhelishvili com-

plex variable method. The obtained solutions were con-

firmed to be suitable for any viscoelastic models by

substituting the corresponding relaxation moduli into the

general solutions. Then, in order to validate the method-

ology, FEM analyses were performed for both elliptical

and square tunnel excavations using Burgers or Poynting–

Thomson viscoelastic models. It was observed that there

was a good agreement between the analytical and FEM

solutions. Finally, a parametric analysis was performed to

investigate the influences of the initial shear stresses and

internal pressures on the displacements and stresses. The

methodology described in this study may in principle be

applied to obtain analytical solutions for arbitrary tunnel

shapes which have been sequentially excavated in vis-

coelastic rock masses.

Furthermore, coupling analyses with presented analyti-

cal solutions, and a discrete element method (DEM)

[5, 15–17], will be proposed in future research endeavors,
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in order to consider other potential failures in the zones

near deep tunnel excavations.
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Appendix: Method used to determine
the inverse mapping function

Determination of the coefficients in the inverse
mapping function

In accordance with the expression of the conformal map-

ping in Eq. (15), the inverse mapping can be similarly

expressed in a Laurent series as [42]:

f ¼ vðz; tÞ ¼ AðtÞ zþ
X1
i¼1

biðtÞz�i þ b0ðtÞ
" #

ð34Þ

where A(t) is a positive real function, and bi(t) (i = 0,

1, …, !) are the complex functions. If the region in a z-

plane has an axis of symmetry (for example, the x axis in

the Cartesian coordinates), then the parameters ai in

Eq. (15) and bi in Eq. (34) will be real numbers.

Generally speaking, the coefficient A(t) relates with R(t)

by the following equation:

AðtÞ ¼ 1

RðtÞ ð35Þ

Due to the fact that a region with an elliptical boundary

is not only centro-symmetrical with respect to its origin,

but also symmetric on the Ox axis, it can be demonstrated

that the coefficients bi(t) will be real numbers, with i being

odd, whereas zero with i being even.

A finite number of items (for example, l items) can be

adopted to approximately express the inverse mapping

functions. By using the mapping function in Eq. (15), the

point zi in the z-plane will be related with the point fi in the

f-plane. Then, the corresponding two points, zi and fi
(i = 1, 2, …, q), can be substituted into Eq. (34) in order

to provide the set of linear equations with respect to bk
(k = 1, 2, …, l) as follows:

Xl
k¼1

bkðtÞz�k
i ¼ RðtÞfi � zi � b0; i ¼ 1; 2; . . .; q; ð36Þ

Then, in order to improve the accuracy of the inverse

mapping function, the number q of the chosen points can

be larger than l (the number of the unknown coefficients in

the inverse mapping), which makes Eq. (36) a set of over-

determined systems. Then, a least squares method can be

adopted to calculate all of the coefficients [38].

Reliability and accuracy of the inverse mapping
function

In the case of the elliptical boundary, if a dimensionless

complex variable z1 is defined as z1 ¼ z
cðtÞ, the mapping

function in Eq. (15) can be rewritten as:

z1 ¼ fþ mðtÞ
f

ð37Þ

In regard to the square tunnels, z1 is defined as follows:

z1 ¼ z

RðtÞ : ð38Þ

Also, the mapping function, which mapped the bound-

ary of the square tunnel and its exterior in the z1-plane into

the interior of the circle with a unit radius in the f-plane,

can be expressed as follows [28]:

z1 ¼ f� 1

6
f�3 þ 1

56
f�7 � 1

176
f�11 þ 1

384
f�15 � � � ð39Þ

where R(t) is dependent on the square length. For example,

if the square length is 5 m, and the first two terms are

adopted in Eq. (39), then R can be determined as 2.96 m in

order to achieve fewer errors for the majority of the map-

ped points. Then, by utilizing the method described in

Appendix 7.1, where the four negative power terms in the

mapping function [Eq. (39)] are employed, the inverse

mapping function of the square tunnel can be determined.

In this study, in order to verify the accuracy of the

inverse mapping, the curves around the holes on the z1-

plane and f-plane determined by the mapping and its

inverse are plotted in Fig. 17 for the elliptical and square

tunnels. In the figure, the curves in the z1-plane, which

include the mapping of the families of curves with

q = constant and h = constant in the f-plane (red dashed

line), are obtained by Eqs. (37) and (39) [in Eq. (39), only

the first two terms in the series are employed]. The curves

with a continuous black line on the f-plane are obtained by

the inverse conformal mapping. By comparing the dashed

red lines with the black continuous lines in f-plane, it is

observed that the curves determined by the inverse map-

ping are almost consistent with the original curve family

(q = constant and h = constant).

Figures 18 and 19 detail the mapping of the elliptical

and square tunnel boundaries in the f-plane, respectively,

where different numbers of terms in the inverse mapping

functions are adopted. Tables 7 and 8 present the coeffi-

cients in the inverse mapping of all the cases. Due to the
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absence of some terms in the mapping function of the

square tunnel, the coefficients bk (k = 1, 5, …) in the

inverse mapping of the square tunnel are approximated at

zero. Therefore, these coefficients are not presented in

Table 8. For the elliptical tunnels (Fig. 18), it is observed

that when m is small (for example, m = 0.25 or 0.35),

increases in the adopted terms can improve the accuracy of

the inverse mapping function. However, the highest accu-

racy of the case with m = 0.45 (where 12 negative terms

are adopted) is still found to be much less than that of the
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bFig. 18 Mapping of tunnel boundary in the f-plane by inverse

mapping function with different terms: a1 elliptical boundary with

m = 0.25; a2–a4 mappings (with black continuous line) in the f-
plane when the maximum power of 1/1 z.z in inverse mapping

function is 3, 5, 9, respectively; b1 elliptical boundary with m = 0.35;

b2–b4 mappings in the f-plane when the maximum power of 1/1

z.z in inverse mapping function is 5, 9, 17, respectively; c1 elliptical

boundary with m = 0.45; c2–c4 mappings in the f-plane when the

maximum power of 1/1 z.z in inverse mapping function is 9, 17, 23,

respectively

With inverse 
conformal mapping

With conformal 
mapping
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Fig. 19 Mapping of square tunnel boundary: a ‘‘squared boundary’’ determined by conformal mapping; b–d ‘‘unit circle’’ (with black continuous

line) in the f-plane when the maximum power of 1/1 z.z in inverse mapping function is 7, 15, 31, respectively
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first two cases. In regard to the square tunnels (Fig. 19), it

is shown that the accuracy of the inverse mapping function

can be slightly improved by increasing the number of

terms. Furthermore, it is also observed that the mapped unit

circle has greater errors at the corner of the square in all of

the cases.
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