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Abstract
The paper provides an in-depth exploration of the role of particle crushing on particle kinematics and shear banding in

sheared granular materials. As a two-dimensional approximation, a crushable granular material may be represented by an

assembly of irregularly shaped polygons to include shape diversity of realistic granular materials. Particle assemblies are

subjected to biaxial shearing under flexible boundary conditions. With increasing percentage of crushed particles,

mesoscale deformation becomes increasingly unstable. Fragmented deformation patterns within the granular assemblies

are unable to form stable and distinct shear bands. This is confirmed by the sparsity of large fluctuating velocities in highly

crushable assemblies. Without generating distinct shear bands, deformation patterns and failure modes of a highly

crushable assembly are similar to those of loose particle assemblies, which are regarded as diffuse deformation. High

degrees of spatial association amongst the kinematical quantities confirm the key role that non-affine deformation and

particle rotation play in the generation of shear bands. Therefore, particle kinematical quantities can be used to predict the

onset and subsequent development of shear zones, which are generally marked by increased particle kinematic activity,

such as intense particle rotation and high granular temperature. Our results indicate that shear band thickness increases, and

its speed of development slows down, with increasing percentage of crushed particles. As particles crush, spatial force

correlation becomes weaker, indicating a more diffuse nature of force transmission across particle contacts.

Keywords Force transmission � Granular materials � Granular temperature � Particle crushing � Particle kinematics �
Shear banding

1 Introduction

Understanding the connection between strain localization

and individual particle kinematics in granular materials is a

fundamental challenge in geomechanics research. In the

case of earth slope failures that have accumulated sizable

slip throughout their active history, it is apparent that shear

deformation localizes dynamically into very thin zones.

Unraveling how slip localizes in such thin zones, how the

thicknesses of shear bands evolve as a function of different

loading conditions, and what the implications for stability

of sliding are, may hold the key for understanding a

number of outstanding problems in geotechnics, such as

origins of earth slope failure.

Although shear banding in granular materials has been

long observed through experimental study, its particle-

scale underpinnings, interdependencies, and variabilities

under different loading conditions, and initial state and

loading history, have not been fully explored. The diffi-

culty lies in how to extract particle-scale information for

analysis. Recent developments in particle-scale spatial-

resolution laboratory experiments allow considerably more

accurate observation of granular material mechanics at the

particle length scale. Measurement of contact forces and

particle kinematics in two-dimensional idealized assem-

blies of photoelastic disks has been obtained and analyzed

[38, 57]. X-ray computed tomography (CT) image
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acquisition and processing has also greatly advanced the

quantification of particle morphology, orientation, and

contact configuration of granular materials [11]. More

recently, by combining 3D X-ray diffraction, X-ray

tomography, and a numerical force interference technique,

it is possible to quantify interparticle forces and their

heterogeneity in an assembly of quartz particles undergo-

ing one-dimensional compression [20]. Developments in

experimental techniques have stimulated advances in

measurement and representation of granular material

microstructure at smaller and smaller spatial length scales

[3, 4, 6, 10, 17–19, 43, 46, 51, 58]. These techniques derive

measurements of the trajectory of each particle and inter-

particle contact forces and have in turn enabled precise

quantification of shear band patterning, inclination, and

thickness. More importantly, these techniques enable pre-

cise detection of individual particle morphology and

kinematics, providing detailed particle position and contact

maps, and calculations of local void ratios [53]. The X-ray

CT can also be used in the quantification of particle

breakage and the resulting particle size distribution and

shape evolution [2, 23].

Another contribution toward revealing particle-length-

scale information of granular materials comes from dis-

crete element-type numerical simulations, such as the dis-

crete element method (DEM). Since its first introduction,

DEM has been used extensively in reproducing macro-

scopic mechanical response and investigating the particle-

scale behavior of granular materials. There is no doubt of

DEM’s prevalence in particle-scale analysis of shear

banding or strain localization in granular materials. The

initiation and development of shear bands under different

controlling parameters, e.g., particle rolling resistance

[21, 22, 40], particle shape [37, 64], initial packing state

[12, 13, 36, 67], and boundary conditions [9], are the main

scope of these DEM studies. The simulation results are

statistically analyzed with respect to particle kinematics

(translation and rotation) [21, 22, 37, 40, 64], column-like

structure [21, 22, 40], fabric anisotropy [12, 36], void

distribution [13, 67], and so on. By adopting numerical

particle-based methods, such as DEM, while including

laboratory experiments with particle-scale measurements,

researchers have an opportunity to integrate such infor-

mation on kinematics at the particle scale to probe simul-

taneously the macro-(continuum-scale) and micro-

(particle-scale) mechanical behavior of granular materials

[56].

However, although almost all of the aforementioned

studies highlighted the importance of particle kinematics in

the formation of shear bands, few have focused on the

additional influence of particle crushing. It is generally

accepted and recently demonstrated by Ma et al. [33, 66]

that the formation of shear bands in granular materials is

influenced by particle crushing. Particles within shear

bands are prone to crushing through surface erosion,

chipping, and fragmentation when exposed to substantial

shear stresses. Within the framework of combined finite

and discrete element modeling (FDEM) of granular mate-

rials, this paper aims to investigate the role of particle

crushing and kinematics on the onset and subsequent

development of strain localization in granular materials.

Fundamental aspects of combined FDEM can be found in

Munjiza et al. [41]. Recent developments in particle shape

representation and cohesive crack modeling make the

combined FDEM an ideal tool for modeling irregularly

shaped and crushable granular materials

[29–32, 34, 35, 65]. Following a brief description of

combined FDEM and the particle crushing model, simu-

lation results of 2D plane strain biaxial tests of particle

assemblies with different levels of ‘‘crushability’’ (per-

centage of particles that have crushed) are presented.

Microstructures and their evolution during shearing are

carefully examined and analyzed. Suggestions for extend-

ing these results to continuum constitutive modeling are

then provided.

2 Combined FDEM modeling of biaxial tests

2.1 Principles of combined FDEM

A typical combined FDEM simulation contains a large

number of interacting particles, each of which is dis-

cretized into a finite element mesh. As the simulation

proceeds, these bodies can deform, translate, rotate, inter-

act, and fracture or fragment when satisfying certain failure

criteria and thus produce new particles also represented by

finite element meshes. The newly generated particles can

then undergo further motion, interaction, deformation, and

fracturing. A contact detection algorithm is employed to

first detect all particle pairs that are in contact and elimi-

nate those that are far apart and cannot possibly be in

contact. Subsequently, a contact interaction algorithm is

used to calculate interaction forces between all particle

pairs. The contact interaction algorithm takes advantage of

the finite element discretization of the discrete particles. In

the normal direction, repulsive forces are applied to

enforce impenetrability, while in the tangential direction,

frictional forces are applied. An explicit central difference

in time integration scheme is employed to solve the

equations of motion for the discretized system and update

the nodal coordinates every time step.

In combined FDEM, particle crushing is explicitly

modeled using the cohesive crack model. Cohesive inter-

face elements (CIEs) with zero thickness are inserted

between the edges of all adjacent bulk finite element pairs
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at the beginning of the simulation. For brevity, only key

details of the particle crushing model will be repeated,

whereas for full details of the model, as well as a critical

discussion on the choice of model parameters, the reader is

referred to prior publications [31, 32]. It should be noted

that a remeshing technique can be implemented in the

combined FDEM, but the computational cost will be

extremely high when simulating crushable granular mate-

rials. As remeshing is not performed, and mesh topology is

never updated during the simulation, the particles will not

continue to become smaller during the loading process (i.e.,

no less than about one fifth of its parent particle size).

The CIE can yield and break due to excessive tension,

shearing, or their combinations subject to mix-mode

loading. Thus, the CIE is assumed to fail if the following

coupled criterion involving tensile strength and shear

strength is satisfied:

htni
ft

� �2

þ tshear

fs

� �2

� 1 ð1Þ

where h i is the Macaulay bracket considering that com-

pressive (negative) normal traction does not affect the

onset of damage. Note that here tensile stress is positive

and compressive stress is negative. The tensile strength, ft,

is assumed to be constant, while fs is defined by the Mohr–

Coulomb criterion with a tension cutoff fs ¼ c� tn tanui,

where c is the internal cohesion, ui is the material internal

friction angle, and tn is the normal stress perpendicular to

the shear direction.

The proposed criterion correctly captures the onset of

damage under pure tension (i.e., tn ¼ ft) and pure shearing

(i.e., tshear ¼ fs), as well as provides a simple interpolation

of the mix-mode damage threshold for the combined cases

(i.e., 0\tn\ft, 0\tshear\fs). When a CIE is completely

damaged, the CIE is removed from the model, and a

physical discontinuity is formed; therefore, the model

locally transforms from a continuum to a discontinuum.

The newly created discontinuity is automatically recog-

nized and modeled by the contact interaction algorithm.

2.2 Biaxial test simulation

Simulated biaxial tests are performed on a polydisperse

assembly of polygonal particles with narrow particle size

distribution (PSD). Particles are generated by means of

Voronoi tessellation to include the shape diversity of a

realistic granular material. The shape characteristics, such

as elongation and circularity, are statistically close to the

priori knowledge about the particle shapes. The equivalent

particle diameter, d�, which is defined as the diameter of a

circle with an equivalent area to an irregularly shaped

particle, falls within the 10 mm to 40 mm range, and the

mean particle diameter d�50 is 25 mm. The assembly con-

sists of 10,217 particles, and the PSD shown in Fig. 1a has

a similar shape as that of Toyoura sand. The use of a

narrow PSD in the simulation allows the effects of particle

breakage to be easily observed. Note that the interparticle

friction coefficient is temporarily set to zero during sample

preparation to obtain a relatively dense packing, and par-

ticle crushing is also disabled. The final configuration of

the numerical specimen shown in Fig. 1b has a void ratio

of 0.156. Such small void ratio is selected to facilitate the

onset and development of localized failure mode.

The virtual biaxial compression test setup is depicted in

Fig. 1b, in which the particle assembly is confined with a

pair of smooth rigid walls on top and bottom and two

flexible membranes left and right. The membrane elements

can only support in-plane forces and have no bending

stiffness, are allowed to deform flexibly to mimic the

laboratory specimen deformation, and are capable of better

replicating the uniformly applied confining pressure during

the shearing process. The particle assembly is initially

compressed isotropically until the prescribed confining

pressure is reached. Then, the assembly is sheared by

displacing the top and bottom walls toward each other at a

constant velocity, while keeping confining pressure con-

stant. Gravity is not considered. To ensure the assembly is

sheared under quasi-static condition, the strain rate is set to

0.02/s and the corresponding inertial number I � 10�5 is

less than the limiting inertial number 10�3 [1].

Similar to a DEM simulation, the contact interaction

model in the combined FDEM determines the mechanical

behavior between two contacting particles. The repulsive

and frictional forces between contacting elements are cal-

culated using a distributed contact force penalty function

method. Two penalty terms are required as input parame-

ters, i.e., pn and pt, where the subscripts represent the

normal and tangential directions, respectively. It is noted

that as the penalty parameters tend to infinity, an impene-

trability condition and complete friction mobilization are

approached. However, in practice, finite values for the

penalty parameter must be adopted, as large values of pn
and pt lead to temporal integration problems. Although the

overall response of a model will be artificially reduced as a

result of permitting some amount of element interpene-

tration and interelement sliding, the relative contribution to

the overall model stiffness can be made negligible if suf-

ficiently large, yet practical values of pn and pt are adopted.

As suggested by Tatone and Grasselli [55], the assumption

of normal penalty parameter equal to the tangential penalty

parameter can produce the correct elastic response of rocks.

The ‘‘crushability’’ of a particle is characterized by the

embedded CIE’s strength and quantified by three parame-

ters: uniaxial tensile strength, ft, internal friction angle, ui,
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and cohesive strength, c. For simplicity, the internal fric-

tion angle, ui, and the ratio of the unconfined compressive

strength (UCS) fc to the tensile strength, fc=ft, are set to 40�
and 12�, respectively. Therefore, one can use the UCS to

calculate the other two strength parameters ft ¼ fc=12 and

c ¼ fcð1� sinuiÞ=ð2 cosuiÞ. This is particularly conve-

nient in the description of particle crushability and subse-

quent analysis of simulation results. The contact

interparticle friction coefficient is equal to 0.6, which

yields similar values of macro-mechanical friction angles

to those obtained in real granular materials, such as gravel

or sand. Four levels of particle crushability are considered

using CIEs: fc = 30, 60, 90, and 120 MPa, respectively.

Generally, a particle assembly with a higher degree of

crushability (fc ¼ 30 MPa) means that its particles are

more vulnerable to crush. Other parameters are selected for

general applications rather than for a specific granular

material. The input parameters are summarized in Table 1.

2.3 Macroscopic response

For convenience, each simulation is labeled by boundary

condition types, initial confining pressure, and level of

particle crushability. The abbreviation FM denotes flexible

membrane (FM) boundary condition. Particle crushability

is denoted by the unconfined compressive strength (UCS)

fc. For example, FM-2.0-120 indicates a biaxial compres-

sion test with flexible boundary condition under an initial

confining pressure of 2.0 MPa and UCS fc = 120 MPa. To

obtain the ‘‘real’’ stress tensor inside the assembly, a mask

is defined in Fig. 2a. Due to distortion of the assembly with

flexible boundaries, the particles that bulge outside are not

included in the mask for calculating stress, and the mask is

changed at each 0.1% axial strain. As each particle, no

matter it is an intact one or a newly generated one due to

the breakage of parent particle, is associated with a finite

element mesh. The average stress tensor inside the mask is

calculated as [48]:

rij ¼
1

A

XNp

p¼1

rpijA
p ð2Þ

where the summation is over Np solid elements inside the

mask with area A, rpij is the stress tensor of the pth solid

element, and Ap is the area of the pth solid element.

Components of the assembly stress tensor rij can also be

calculated by dividing the resultant force applied on the

rigid wall by the relevant assembly size to obtain the major

Fig. 1 a Particle size distribution (PSD) and b setup of biaxial numerical simulation

Table 1 Simulation parameters used in numerical biaxial tests

Parameter Value Units

Solid elements

Mass density, q 2700 kg/

m3

Young’s modulus, E 40 GPa

Poisson’ s ratio, t 0.2 –

Cohesive elements

Tensile strength, ft 2.5, 5.0, 7.5, 10 MPa

Friction angle of intact material,

ui

40� �

Friction angle of fractures, uf 30� �
Cohesion, c 6.99, 13.99, 20.98,

23.98

MPa

Mode I fracture energy, GI 100 N/m

Mode II fracture energy, GII 500 N/m

Contact law

Interparticle sliding friction, l 0.6 –

Normal penalty, pn 4.0 9 1011 N/m3

Tangential penalty, pt 4.0 9 1011 N/m3
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principal stress (now assuming positive in compression) r1,
while the minor principal stress r3 is directly applied on the
surfaces with flexible membranes. The principal stress ratio

calculated using the mask and directly from the boundaries

is compared in Fig. 2b. It can be seen that the average

stress tensor inside each mask is roughly coincident with

the stress values calculated at the boundaries. As defor-

mation continues, curves begin to slightly diverge from

each other, and noticeable differences are observed in the

peak values. As the peak stress inside the mask with a

clearance of 0.1H is closest to the value calculated at the

boundary, this mask is used in subsequent particle assem-

bly stress tensor calculations.

Principal stress ratio r1=r3 and volumetric strain ev
(using mask with clearance 0.1H) are plotted versus axial

strain in Fig. 3a, b. The simulation results, including strain

softening and shear dilatancy, are typical of stress and

strain response for drained biaxial tests in plane strain

conditions [5]. With lower percentage of particle crushing,

i.e., higher CIE strength, r1=r3 versus ea plots exhibit a

steeper slope (higher initial stiffness), notable post-peak

strain softening, and strong dilation. As additional shear

force is required to dilate the particle assemblies, a dilative

assembly generally mobilizes greater shear strength than a

contractive assembly. Once peak strength has been over-

come through continued shearing, the resistance to applied

shear stress reduces, and strain softening is observed. FM-

2.0-120 shows the largest stress drop after peak, accom-

panied by the strongest bulk dilatancy. With increasing

particle crushability (i.e., lower CIE strength), strain soft-

ening becomes more mild and in fact vanishes in FM-2.0-

30. Four strain levels labeled in Fig. 3a will be used in

subsequent sections to illustrate progressive formation of

strain localization. The volumetric response becomes

progressively more compressive with increase in particle

crushing. This behavior is clearly a result of extensive

particle crushing, which suppresses the mobilization of

particle assembly dilation. The stress–strain curves of less

crushable assemblies are associated with significant stress

drops and local fluctuations, especially in the post-peak

strain softening regime. After an axial strain of � 8%, the

stress ratio reaches a steady-state value with small oscil-

lations. The principal stress ratios of four assemblies reach

the same steady-state value of � 2.8. However, the rate of

change of volumetric strain at 8–11% axial strain is small

but still perceptible.

Particle size distributions (PSDs) of four simulations at

the axial strain of 10% are shown in Fig. 3c, in which the

percentage by mass finer is plotted against particle size

(i.e., equivalent particle diameter) on semilogarithmic axis.

It is clear that substantial particle breakage takes place,

which changes the overall trend of PSDs as compared to

their initial distribution. As particle crushability increases,

the grading curves gradually shift to left and change from

concave downward to convex upward, while particles of

the largest size remain throughout. The convex-type PSD is

attributed to the fact that particles in FDEM simulation

cannot keep breaking into smaller particles. Therefore, the

smallest particle size will not continuously decrease. As

explained in Sect. 2.1, we need to add a remeshing algo-

rithm into the FDEM to generate an increasing range of

particle sizes. This function is not yet implemented in the

present FDEM studies, mainly due to it becoming too much

computationally expensive. Figure 3d shows the particle

size distributions displayed in terms of the frequency

counts with a bin size of 2.5 mm. As can be seen, starting

at the largest particles (40 mm), the lower bins increase in

Fig. 2 a Definition of mask used in calculation of assembly stress tensor; b assembly stress tensor calculated by boundary and three masks with

different clearance
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quantity, reaching a peak, after which the subsequent bins

display a rapidly decreasing quantity.

3 Characteristics of particle kinematics

3.1 Distribution of kinematical quantities

Different spatially distributed quantities are used to

demonstrate strain localization in a particle assembly, such

as void ratio, particle rotation, local shear intensity, local

shear strain, energy dissipation, relative displacement, and

‘‘granular temperature.’’ In this section, particle rotation

from the beginning of shearing is used to identify local-

ization of strain into shear zones. The rotation of a particle/

fragment is calculated by averaging the rotation of each

solid element that belongs to this particle/fragment. The

deformation of a solid element, i.e., finite element used in

the mesh discretization of a particle, is ignorable when

compared with its transition and rotation. Therefore, the

rotation of a solid element belonging to that fragment can

be easily determined by coordinate transformation. Shear

zones are generally marked by significant particle rotation,

so it can be taken as a well-recognized identifier of strain

localization within granular materials [21, 25]. Figures 4

and 5 show the deformed specimen geometries and con-

tours of particle rotation at different axial strain levels for

FM-2.0-120 (low crushability) and FM-2.0-30 (high

crushability), respectively. As a consequence of flexible

membranes bounding the specimen laterally, bulging is

observed in all of the subplots. At each stage of loading,

rotation and deformation are concentrated within small

regions, which demonstrates that the motions of individual

particles are not random and unrelated, but instead interact

with the motions of nearby particles to form large long-

range deformation structures. It is clear that the shear band

pattern is sensitive to particle crushability.

As shown in Fig. 4, the highly rotated particles con-

centrate in an x-shaped zone transversing the low crushable

assembly (FM-2.0-120), which manifests as two conjugate

shear bands with developed and distinct configuration. As

shearing continues, the deformation is concentrated within

much thicker shear bands. When shearing to large strains,

shear bands become stationary and persistent. The lateral

membranes are seen to deform severely to form local

‘‘wraps’’ around the ends of the shear bands, which is a

clear indication of strong dilation associated with strain

localization. Back to Fig. 4a, although the assembly has

Fig. 3 Macroscopic responses obtained for assemblies with different crushability: a principal stress ratio; b volumetric strain; c particle size

distributions at the axial strain of 10%; d number of particles plotted as functions of particle size at the axial strain of 10%
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entered a strain softening stage (see Fig. 3a), the shear

bands are still in development. With an increase in particle

crushability, rather than two dominant X-shaped shear

bands developing, one or two major shear bands are

observed and accompanied by less-developed shear bands

intersecting with the major bands (see Fig. 5 for FM-2.0-

30). For the highly crushable assembly (FM-2.0-30), the

distribution and failure patterns are significantly different

from the low crushability FM-2.0-120, where clear and

persistent shear bands can be identified. Even though many

irregularly and locally banded domains exist, the distribu-

tion of these domains is blurry and disorganized (see

Fig. 5), and they fail to form a connected zone.

In a dense assembly, contacts of individual particles

give rise to local fluctuating components of stress, strain

rate, and local void ratio with reference to the macroscopic

deformation. The ensemble average of these fluctuating

components allows the time-averaged, mean-field values of

stress, strain rate, and void ratio parameters to be estab-

lished. A pseudo-‘‘granular temperature’’ is calculated

from these local fluctuating values to quantify a granular

state in a form similar to the definition of thermodynamic

temperature of fluids [8]. Campbell [8] pointed out that

granular temperature is generated by either a collisional

mechanism or a streaming mechanism. Because of the

polygonal particle shapes, interparticle contacts will ran-

domize the impact velocity, thus converting the mean

motion of the flow into granular temperature. This mech-

anism is an exact analog of the thermal motion of mole-

cules. Following statistical thermodynamics of molecular

fluids, the granular temperature T of particle i is calculated

using the fluctuating velocity vreli as follows:

Ti ¼
vreli;x

v�

 !2

þ
vreli;y

v�

 !2

ð3Þ

where the fluctuating velocity of a particle vreli is defined as

the vector difference between the particle velocity vi and a

mean local velocity �vi [24, 50]. The mean local velocity is

calculated by averaging the particle velocities surrounding

the selected particle within a certain preset region. The

reference velocity v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1d50g

p
is calculated to non-di-

mensionalize the granular temperature, where g is the

gravitational acceleration and d50 is the mean diameter of

the particles in the initial particle assembly. The space-

averaged granular temperature in a two-dimensional sys-

tem is computed as �T ¼ 1
2N

PN
i¼1 Ti over the region, where

N is the number of particles. It should be noted that

Fig. 4 Contours of particle rotation (in degrees) at different axial

strain levels for FM-2.0-120: a ea ¼ 2:5%; b ea ¼ 5:0%; c ea ¼ 7:5%;

d ea ¼ 10%

Fig. 5 Contours of particle rotation (in degrees) at different axial

strain levels for FM-2.0-30: a ea ¼ 2:5%; b ea ¼ 5:0%; c ea ¼ 7:5%;

d ea ¼ 10%
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granular temperature can be ‘‘absolute zero’’ for a granular

assembly at rest, or a ordered particle assembly in a

smooth, static deformation pattern with no fluctuating

velocity component, such that vreli = 0.

As a result of the irregularities of microstructure at the

particle scale (i.e., the structural environment around each

particle is unique), the particle velocities have a non-affine

fluctuating component of zero mean with respect to the

mean local velocity. Three snapshots of fluctuating velocity

field for FM-2.0-120 are presented in Fig. 6. We can see

that large-scale well-organized displacements coexist with

a strongly inhomogeneous distribution of amplitudes and

directions on different scales. During strain hardening, and

prior to shear banding, the assemblies deform in an

essentially affine or uniform manner. The deformation is

characterized by a presence of separately distributed

microbands, which undergo slip deformation due to large

relative tangential movement of particles, and organize

themselves into thin obliquely trending bands [24, 56]. It

can be seen that the fluctuating velocity vectors form many,

randomly distributed circulation cells, also referred to as

vortex structures at small strain levels (as shown in

Fig. 6b) [24, 62]. The vortex or circulation cell has been

proven to be a significant transient-correlated particle

structure in densely packed granular assemblies [50, 59].

They play an important role in the formation of shear

bands. Because particles in between and around vortices

have large relative rotations, these structures are located

within and around shear bands. As shearing proceeds, the

fluctuating velocity vectors rearrange, and the enlarged

vortex structures gradually align in opposite directions

along a district shear zone. With the increase in particle

crushability, the vortex structures become weak, they break

down after a short time, and new vortex structures appear.

It can be seen in Fig. 7 that such mesoscale structures

undergo a transition from ordered to disordered distribution

Fig. 6 Fluctuating velocity vectors within outlined box region in a at different axial strains for FM-2.0-120 MPa: a observation region; b
ea ¼ 0:8%; c ea ¼ 5:0%; d ea ¼ 10:0%
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for a highly crushable assembly, which is a sign of loss of

correlation with previous particle configurations. As shown

in Fig. 8, strong positive linear correlations are observed in

both subplots with log–log scales, which implies that

highly rotated particles are generally accompanied by

intense fluctuation. High degrees of spatial association

between particle angular velocity and relative velocity

confirm the key role that non-affine deformation and par-

ticle rotation play in the onset of shear banding.

We further consider the probability distribution function

(pdf) of the x component of fluctuating velocity as a

function of particle crushability. They are typically lep-

tokurtic distributions where the points along the x-axis are

clustered, resulting in a higher peak and fatter tails than the

curvature found in a normal distribution (Fig. 9a). At the

axial strain of 2.5%, the pdf of lower crushability particle

assembly is characterized by broader and stretched tails,

which is a sign of developed velocity differences. The

sparsity of large fluctuating velocities in highly crushable

assemblies also indicates the fragmented deformation pat-

tern due to intense particle crushing. It is interesting to note

that the disparity of pdfs demonstrated in Fig. 9a reduces

gradually when assemblies are sheared to large strains

(Fig. 9(b)). In order to quantify the tailedness of the

probabilistic distribution of fluctuating velocity, we cal-

culate the kurtosis g2 ¼ l4
�
r4 � 3, where r is the standard

deviation and l4 is the fourth central moment. The kurtosis

as a function of axial strain for different crushable

assemblies is plotted in Fig. 10a. A larger positive kurtosis

value indicates a leptokurtic distribution with fatter tails

and higher peak. It is clear in Fig. 10b that kurtosis values

during the last 2% of axial strain (9–11%) are close for

different levels of crushability. Similar behavior has been

found for the y component of fluctuating velocity (results

not shown). In addition to particle fluctuating velocity, both

the particle angular velocity and granular temperature of

Fig. 7 Fluctuating velocity vectors at the end of shearing for different crushable assemblies: a FM-2.0-120; b FM-2.0-30

Fig. 8 Correlation between particle angular velocity and relative velocity: a FM-2.0-120; b FM-2.0-30
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assemblies with different levels of crushability have similar

distributions when shearing to large enough strains, as will

now be demonstrated.

In the case of quasi-static shearing, granular temperature

is generated by a complex pattern of particle motions. By

decomposing the particle velocity into a mean local

velocity and a superimposed fluctuating velocity, we can

calculate the granular temperature according to Eq. (4).

Figures 11 and 12 plot the contours of granular tempera-

ture at different strain levels for FM-2.0-120 and FM-2.0-

30, respectively. For ease of visualization, the contour

legend uses a logarithmic scale. ‘‘High-temperature’’ par-

ticles are concentrated within banded regions, which are

wide enough to form macroscopic bands in FM-2.0-120,

compared with narrow and isolated regions in FM-2.0-30.

Figure 13 plots the evolution of space-averaged tempera-

ture inside and outside the shear bands of FM-2.0-120. The

average granular temperature remains relatively low before

reaching the peak stress state, which indicates that at this

stage the assembly deformation is relatively uniform at the

particle scale, and the complex mesoscale structures have

not yet formed. The granular temperature inside the shear

bands increases sharply at the start of strain softening, and

the granular temperature outside the shear bands stays

comparatively low. The many particle contacts and for-

mation of circulation cells inside the shear bands result in

higher granular temperatures compared to outside the shear

bands. The fluctuation of granular temperature, especially

inside the shear bands, also implies continuous slip–stick

and stick–slip transitions in the granular material.

3.2 Spatial association of strain field and particle
kinematics

In order to tackle the difficulty of calculating strain inside a

particle assembly experiencing a localization pattern, a

mesh-free method is employed in this work. The mesh-free

strain calculation method was initially proposed by

O’Sullivan et al. [47] and later improved by Wang et al.

[61] and was recently employed by Zhu et al. [67] in their

shear banding research. The method calculates the defor-

mation gradient based on the particles’ translation and

rotation, leading to an accurate and smooth strain field.

Again, we make a comparison between the shear strain

Fig. 9 Probability distribution function (pdf) of fluctuating velocity at two stages of shearing: a ea ¼ 2:5%; b ea ¼ 10:0%

Fig. 10 a Evolutions of kurtosis as a function of axial strain (the solid black line represents the trend line of scattered points); b box charts of the

kurtosis values during the last 2% of axial strain
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field and particle kinematics of FM-2.0-120 on the square

area depicted in Fig. 6a. When strain localization occurs,

shear deformation mainly develops inside the shear bands,

whereas the adjacent material acts in a quasi-elastic man-

ner. Therefore, due to structuring of the material, the

material as a whole may no longer be described as a

mechanical state of the material [67]. As the mesh-free

method involves the two most important mechanisms in the

calculation of strain field, i.e., particle rotation and a high

level of non-affine deformation inside and outside the shear

bands, it is not surprising that the shear strain field and

kinematic quantities demonstrate strong degree of spatial

association (as shown in Fig. 14).

4 Identification of shear bands

4.1 Variation of shear band thickness

Depending on the boundary conditions, loading rates, ini-

tial state of the material (mean effective stress and void

ratio), gradation characteristics (grain size, uniformity,

Fig. 11 Contours of granular temperature at different axial strain levels of FM-2.0-120: a ea ¼ 2:5%; b ea ¼ 5:0%; c ea ¼ 7:5%; d ea ¼ 10%

Fig. 12 Contours of granular temperature at different axial strain levels of FM-2.0-30: a ea ¼ 2:5%; b ea ¼ 5:0%; c ea ¼ 7:5%; d ea ¼ 10%

Fig. 13 Evolution of averaged granular temperature inside and

outside shear bands of FM-2.0-120
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etc.), and the size and slenderness of the specimen, shear

bands of various widths can develop in a soil specimen

[10]. For example, the shear band thickness tends to

decrease with increasing particle size [4, 10], particle

rolling coefficient [40], and confining pressure [13]. Few

studies have shown that the band thickness decreases with

decrease in initial void ratio or increase in density [13, 67].

However, Alshibli and Sture found that an increase in

density would result in an increase in shear band thickness

[4]. This study does not aim to delineate their disparities,

but rather focus on the influence of particle crushability on

shear band thickness.

We analyze the same region as shown in Fig. 6a to

characterize the shear band in FM-2.0-120. Five profiles

perpendicular to the shear band area framed by two solid

black lines (Fig. 15a) are used to investigate the distribu-

tions of particle rotation, angular velocity, and granular

temperature across the shear bandwidth. As shown in

Fig. 15b–f, the value of these quantities is larger within the

band and decreases rapidly when further away from the

middle line of the shear band area. By superimposing the

data points from the five profiles (Fig. 16), we can see

clearly that the distributions of these quantities along the

axis perpendicular to the middle line of shear band zone

display prominent unimodal feature, i.e., they increase

dramatically when approaching the center and oscillate

near zero on both sides. Their distributions are fitted by a

unimodal Gaussian function y ¼ a expð�ðx=bÞ2Þ, where a

and b are fitting parameters. As shown in Fig. 16, the

points with small particle rotation, low angular velocity,

and low fluctuating velocity are not accounted for in the

curve fitting. The boundaries of shear band area can be

approximated at the location where these quantities start to

increase noticeably. The shear band thickness in FM-2.0-

120 is estimated as 2d � 0:2, which is approximately 8

times the mean particle diameter d50 prior to particle

crushing.

Published experiments and DEM simulations show that

shear band thicknesses are typically reported to be 8–20

times the mean particle diameter, and suggest a relation-

ship of shear band thickness tband � 10d50 for most cases

[3, 14, 52, 53]. In our simulations, the shear band thickness

normalized by d50 is 8 which is a little smaller than that

usually found for sands and other granular materials. It may

be attributed to two reasons: (1) the narrow particle size

distribution and (2) high confining pressure. The shear

band of a two-dimensional granular material composed of

circular grains with a narrow range of particle diameters

involves fewer particle sizes, e.g., 2–8 particle sizes [7, 18].

The high confining pressure would also confine the particle

movement and thereby impede further propagation of shear

banding. As demonstrated in Fig. 17, the shear band

bounded by the solid lines increases in thickness with

increase in particle crushability. The spread of the particle

kinematics shown in Fig. 17 also implies that multiple

localized events occur in highly crushable assembly.

Therefore, it should be mentioned that the localization

mechanism is more scattered and less intense than for low

crushable assembly. As discussed in the previous section,

the deformation pattern and failure mode in highly crush-

able assembly FM-2.0-30 are quite different from the

localized mode observed in the other three assemblies. The

failure mode of the highly crushable assembly can be

regarded as a diffuse one, which is characterized by

homogeneous deformation patterns without any apparent

and persistent strain localization [67].

4.2 Onset of shear banding

It has been found that onset of shear banding is a pre-peak

phenomenon, i.e., initiating during strain hardening

[10, 64]. Tordesillas et al. [58] also noted in their experi-

ments that the formation and location of the shear band

may be decided in the earlier stages of loading, well before

Fig. 14 Strain field and particle kinematics in the square zone depicted in Fig. 6a: a shear strain field; b angular velocity; c relative velocity
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Fig. 15 a Identification of shear band area in FM-2.0-120, framed between two solid black lines. The shear band thickness is denoted as 2d; b–
f distributions of particle rotation, angular velocity, and granular temperature along the Profiles I to V perpendicular to shear band area (as

demonstrated in a)

Fig. 16 Superimposed plots of a particle rotation, b angular velocity and c granular temperature along the axis perpendicular to the middle line

of shear band area. Scattered points are fitted by the solid line. Vertical dashed lines represent boundaries of the shear band area
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the peak stress. They found that the onset of shear banding

coincides with the beginning of force chains buckling [58].

A general algorithmic identification of the occurrence of

shear bands is difficult, especially regarding the identifi-

cation of non-persistent shear bands of a loose sample, or a

highly crushable sample. By conducting a statistical anal-

ysis of the kinematical quantities, e.g., particle angular

velocity, fluctuating velocity, and granular temperature, we

are able to reveal the main aspects of the strain localization

process. Figure 18 presents histograms of granular tem-

perature for FM-2.0-120. At the beginning of shearing, up

to approximately 1% axial strain, in the granular temper-

ature histogram of FM-2.0-120, a small number of particles

begin to increase their ‘‘temperature’’. This is because prior

to onset of shear banding, intense shearing occurs within an

evolving network of microbands. They have a smaller

width and span over the entire assembly. These predomi-

nant deformation structures result in a slight increase in

both the non-affine deformation and energy dissipation and

therefore produce higher granular temperature [56].

Within the strain range at peak stress, another type of

mesoscale structure with larger and stronger configuration,

i.e., a vortex, starts to form and dominate the local defor-

mation patterns, which causes the particle-scale non-affine

strain suddenly to intensify and become localized along the

shear bands. The induced system disturbance can lead to an

increase in granular temperature. Consequently, in the

granular temperature histogram (Fig. 18), the boundary

between green and blue areas rises sharply. The histogram

also becomes more structured, showing evidence of a non-

homogeneous material. The process of shear banding can

be illustrated by the evolution of granular temperature

corresponding to 97.5th and 99th percentiles (i.e., granular

temperature of 97.5 and 99% particles smaller than this

value). Figure 19 indicates that strain localization begins to

develop rapidly (i.e., granular temperature increases) when

an assembly reaches the peak shear stress. This phe-

nomenon is much clearer in the low crushable assembly

FM-2.0-120 (see Fig. 19a), which is consistent with the

observation that strain localization develops more rapidly

in an assembly with a lower degree of particle crushability.

5 Long-range correlation of contact
networks

In this section, we analyze the influence of particle

crushability on the structural properties of a particle

assembly. We investigate the spatial force distribution

Fig. 17 Failure pattern colored by magnitude of particle rotation for different levels of particle crushability: a FM-2.0-120; b FM-2.0-90; c FM-

2.0-60; d FM-2.0-30

Fig. 18 Granular temperature histogram map for FM-2.0-120 (The occurrences are encoded with color scale shown at right, and red line

represents evolution of corresponding shear stress)
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through the calculation of a spatial force correlation

function GðrÞ [27, 28, 54] as;

GðrÞ ¼
PN

i¼1

PN
j¼iþ1 d rij � r

�� ��� �
fifjPN

i¼1

PN
j¼iþ1 d rij � r

�� ��� � ð4Þ

where N is the total number of contact points, fi is the

normalized contact force at contact i, rij is the distance

between contacts i and j, and dð0Þ ¼ 1. Therefore, GðrÞ
measures the contribution of a pair of contact forces fi and

fj separated by rij and summed over all contact points. A

nonzero value of GðrÞ reveals that, on average, two con-

tacts separated by a distance r have forces that are

correlated.

The correlation indicates that two contacts at distance r

are connected through a cluster of simultaneously con-

tacting particles, and force from one particle is being

transmitted through the network to the other particle [27].

It thereby gives a quantitative measurement of the average

effect of force chains of length r in the assembly. Because

the contact network is changing during shearing, the cor-

relation function provides information on the average size

of structures that are fluctuating in both space and time.

Figure 20 plots the correlations of normal contact force for

different crushable assemblies at the end of shearing. Note

that the radial distance has been normalized by the mean

particle diameter d50. It shows that all assemblies have a

strong peak near r ¼ 0:3� 0:4d50, indicating that a corre-

lation exists for a radial distance extending to less than one

particle diameter. The peak decreases as particle crusha-

bility increases, suggesting weak packing due to intense

particle crushing. We also note that the peaks shift to larger

radial distances with increasing particle crushability. This

behavior is consistent with less particle interlocking of

increasingly crushable particles. Small oscillations around

unity are observed when extending to greater than two

mean particle diameters. The amplitude of oscillation is

seen to decrease with increasing particle crushability and

larger values of radial distance. In all, our results indicate

that the contact forces are correlated, but only over short

distances. With the increase in particle crushability, such

correlation becomes weaker, indicating a more diffuse

nature of force transmission across particle contacts.

The influence of particle crushability on the contact

network can also be illustrated using the probability dis-

tribution function (PDF) of contact forces. The normal

contact forces of different assemblies are normalized by

their corresponding mean normal force. As shown in

Fig. 21, all PDFs are nearly linearly distributed in log-

linear scales. The highly crushable assembly is character-

ized by a larger proportion of weak forces (fn\ fnh i) and a

smaller number of strong forces, and the low crushable

assembly is the opposite. The downward trend of PDFs

with increasing particle crushability implies that the inho-

mogeneity of normal forces becomes lower as the particles

become more crushable. In other words, that the proportion

of strong contacts declines with increasing particle

crushability is a clear sign of weakened force chain

networks.

Fig. 19 Values of granular temperature corresponding to 97.5th and 99th percentiles for a FM-2.0-120 and b FM-2.0-60

Fig. 20 Spatial force correlation function GðrÞ plotted as a function

of distance r normalized by mean particle diameter d50 for different

crushable assemblies at end of shearing
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6 Discussion

Based on a 2D plane strain FDEM simulation, which may

not fully represent the real soil behavior, the observations

made of the relationship between onset and subsequent

development of strain localization and particle crushability

in this paper have provided a basis for the development of

micromechanics-based constitutive models for crushable

soils in future studies. Therefore, it is time to have a second

look, with the particle kinematical information, to assess

what can be added to a current constitutive modeling

framework. At present, it is still unclear how to rationally

introduce microscopic behavior of granular geomaterials

into a well-established constitutive framework. Some

researchers have attempted to develop micromechanics-

based constitutive models for shear band modeling in

granular materials, in which the macroscopic parameters

are derived with respect to the particle-scale structure and

information [42, 49, 63]. However, most of the microme-

chanics-based constitutive models have not been fully

accepted, mainly because they are not as straightforward as

conventional phenomenological models. Besides, the

aforementioned studies have not considered the role of

particle crushing in strain localization and shear banding

behavior. Some pioneering works have attempted to

develop a rational and rigorous constitutive model for

granular materials accounting for particle crushing associ-

ated with micromechanics [44]. Building upon the

micromechanics-based approaches mentioned above, it is

possible that our work could provide a changeable internal

length scale that is used to describe the shear band thick-

ness in a micropolar constitutive theory [60].

Another way of incorporating our findings into consti-

tutive modeling of granular materials is based on a hier-

archical multiscale framework. With the coupling of FEM

and DEM, hierarchical multiscale modeling of granular

materials has been proposed by several researchers

[15, 16, 26, 39, 45]. The FEM is employed to discretize the

continuum domain of a boundary value problem (BVP)

into FE mesh and to solve the governing equations over the

discretized domain. To date, such research has only con-

sidered uncrushable particle assemblies at each Gauss point

of the FEM mesh, which receives boundary conditions

from the FEM and is solved by DEM to derive the local

constitutive response. As highlighted in this paper, particle

crushing has a significant effect on shear banding behavior.

Thus, there will be a need to add the crushable particle

feature in future FEM/DEM hierarchical multiscale mod-

eling efforts.

7 Conclusions

The cohesive crack model is introduced into the combined

finite discrete element method (FDEM) to simulate particle

crushing on the basis of damage mechanics. This devel-

opment makes combined FDEM an ideal tool for modeling

irregularly shaped and crushable granular materials. An

exploration has been conducted on the influence of particle

crushability on particle kinematics and shear banding of

granular materials. Lateral flexible boundary conditions are

employed to mimic realistic laboratory biaxial tests,

although all FDEM simulations are 2D plane strain. Due to

distortion of specimens, the ‘‘real’’ stress tensor is calcu-

lated by defining a kinematically moving mask inside the

specimen. The main conclusions of the study are summa-

rized as follows:

1. For the highly crushable assembly, many irregular and

local zones of strain localization are observed, but they

fail to form a connected zone, and therefore, no distinct

shear band is formed. The distributions of particle

kinematical quantities indicate that the mesoscale

structures, like microbands and vortices, are much

weaker due to the erratic contact between neighboring

particles of increasing crushability. The sparsity of

large fluctuating velocity in highly crushable assem-

blies also indicates a fragmented deformation pattern

due to intense particle crushing.

2. The mesh-free strain calculation method includes the

two most important mechanisms in the calculation of

strain, i.e., particle translation and rotation. High

degrees of spatial associations occur amongst the shear

strain, angular velocity, and fluctuating velocity, which

confirms the key role that non-affine deformation and

particle rotation play in shear band formation. It also

verifies the usage of particle kinematics to identify

shear bandwidth and the onset and subsequent devel-

opment of shear banding. Our results indicate that

Fig. 21 Probability distribution function of normal contact forces fn
normalized by mean normal force hfni in log-linear scales for different
assembles at end of shearing
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shear bandwidth increases, and the development speed

slows down, with increasing particle crushability.

3. The spatial force correlation functions for different

crushable assemblies demonstrate that the contact

forces are correlated, but only over short distances.

With the increase in particle crushability, such corre-

lation becomes weaker, indicating a more diffuse

nature of force transmission across particle contacts for

weaker particles. The probability distribution functions

of normal contact force suggest that the inhomogeneity

of normal forces becomes lower as the particles

become more crushable. All evidence suggests a

weakening of particle crushing influence on the contact

network.
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image correlation. Géotechnique 60(5):315–322

18. Hall SA, Wood DM, Ibraim E et al (2010) Localised deformation

patterning in 2D granular materials revealed by digital image

correlation. Granul Matter 12(1):1–14

19. Hasan A, Alshibli KA (2010) Experimental assessment of 3D

particle-to-particle interaction within sheared sand using syn-

chrotron microtomography. Géotechnique 60(5):369
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