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Abstract Soil desiccation cracking is important for a

range of engineering applications, but the theoretical

advancement of this process is less than satisfactory. In

particular, it is not well understood how the crack spacing-

to-depth ratio depends on soil material behaviour. In the

past, two approaches, namely stress relief and energy bal-

ance, have been used to predict the crack spacing-to-depth

ratio. The current paper utilises these two approaches to

predict the approximate spacing-to-depth ratio of parallel

cracks that form in long desiccating soil layers subjected to

uniform tensile stress (or suction profile) while resting on a

hard base. The theoretical developments have examined

the formation of simultaneous and sequential crack patterns

and have identified an important relationship between the

stress relief and energy approaches. In agreement with

experimental observations, it was shown that the spacing-

to-depth ratio decreases with layer depth, and crack spacing

generally increases with layer depth. The influence of the

stiffness at the base interface indicated that decreasing the

basal interface stiffness makes the crack spacing to

increase in sequential crack formation. The experimental

observations also show a decrease in cracking water con-

tent with the decrease in layer thickness, and this behaviour

was explained on the basis of a critical depth concept.

Keywords Cracking � Desiccation � Fracture toughness �
Moisture � Soil � Tensile strength

List of symbols

d Depth of the clay layer

E Elastic modulus of clay layer

Ef Energy consumed by crack formation

(¼ Gcd)

E�
f Dimensionless form of Ef

Gc Crack energy release rate

k Shear stiffness of the interface between

clay and hard base

KIC Fracture toughness in Mode I (pure tensile)

cracking

s Crack spacing

ub Relative displacement at the basal

interface

x Distance from the crack face

wcr Water content at crack initiation

a Factor of tensile strength needed to from a

sequential crack

Drx Change in normal stress in x direction

Dex;Dey;Dexy Change in strain in x and y directions

DU;DU� Change in strain energy and its

dimensionless form

ravx ; ravy ; savxy Average normal stresses and shear stresses

in x and y directions

t Poisson’s ratio

sb Shear stress at the base of the interface

ro Normal stress prior to cracking
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rt Tensile strength of soil

rxc Horizontal stress due to an isolated crack

subject to uniform compressive stress

1 Introduction

Desiccation cracking can have a severe impact on the

performance of clay soils in various geotechnical, agri-

cultural and environmental applications. In geotechnical

engineering, the presence of desiccation cracks can weaken

the stability, serviceability and hydraulic performance of

earthen structures. In agricultural science, cracks can be

beneficial for aeration and plant-root growth, but can pose

problems as a result of rapid water and solute movement

through cracks. In geo-environmental engineering, barriers

of low hydraulic conductivity made of compacted and

natural clayey soils are commonly relied upon to minimise

the contamination of soil and groundwater. The develop-

ment of desiccation cracks can rapidly deteriorate the

performance of low hydraulic conductivity barriers. It

follows that in the design of these structures a deeper

understanding of crack formation and the development of

predictive tools for crack formation could be of great

benefit.

Previous studies of desiccation cracking have spread

across several disciplines and date back to the early

twentieth century [16]. The majority of these studies are

predominantly qualitative, highlighting the observations on

crack depth and spacing, and the mechanism of crack

formation [18]. These studies have shown that crack ini-

tiation and propagation are affected by the layer thickness,

drying rate, initial moisture content, specimen size, soil

type and fracture properties of the material [e.g.

8–11, 21, 23–26]. However, theoretical research on desic-

cation crack spacing and the relationship of depth-to-

spacing ratio is relatively limited, and the current under-

standing is less than satisfactory. Basically, two approaches

have been utilised in the past for examining crack spacing-

to-depth ratio in drying or cooling of materials. The first

involves the use of stress relief caused by crack formation

where the distance between the first crack and second crack

is examined [21, 22]. Kodikara and Choi [19] also exam-

ined the use of stress relief to predict subdivision that takes

place in sequential cracking of clay layers of finite extent.

The second approach involves the use of energy balance

between the strain energy released and the energy used in

formation of new cracks [4]. While these two approaches

appear to capture the essential physics influencing crack

spacing, the combined influence of stress relief and energy

balance is not clear and the prediction of crack spacing in

desiccating soil is not possible with any certainty. A rig-

orous analysis of the problem is unduly complex due to

multitude of interacting nonlinear processes. These pro-

cesses include material property changes (e.g. strength and

stiffness) with drying increase in suction and soil stress due

to moisture evaporation under ambient climatic conditions,

and crack initiation and crack propagation influenced by

changing soil behaviour and boundary conditions. A

complete theoretical model will need to incorporate the

interaction of all the above variables in order to simulate

the evolution of cracking patterns. The simulation could

only be accomplished through the use of a highly complex

numerical model. In the recent past, some researchers

[1, 2, 12, 20, 28] attempted to handle this complicated

problem by simplified approaches. In addition to the

apparent deterministic processes involved, the desiccation

cracking process is also dependant on the distribution of

micro-cracks within the material and/or spatial variations

in the material properties, particularly the tensile strength

of the soil. It would be almost impossible to develop a

complete model that would predict the exact crack patterns

of desiccating soil because of the inherent stochastic nature

of the soil. It may, however, be possible to theoretically

predict cracking patterns that are statistically similar to the

actual behaviour and determine parameters of crack

statistics. The development of this capability is beneficial

because its application is not only confined to the desic-

cation of soil but also to a range of other industrial pro-

cesses, involving the drying of porous materials (e.g.

ceramic, polymers and cemented materials). The statistical

nature of the cracking process has been explained by some

researchers (e.g. [5–7]).

Approximate theoretical formulations are developed for

the crack spacing of a desiccating long soil layer resting on

a hard base in this paper. The formulations are used to

explain some crack behavioural patterns and intriguing

observations made on desiccation cracking in the labora-

tory and the field. The assumption is made that cracks

occur under plane conditions (i.e. parallel cracking) in

linear elastic materials. Once the crack is initiated, it will

propagate to the full depth of the layer. It is assumed that a

near uniform shrinkage stress distribution occurs across the

layer depth. This is a reasonable assumption for relatively

thin clay layers losing moisture [14]. Based upon these

assumptions, the work is considered to be relevant for the

interpretation of laboratory test data and for field applica-

tions involving relatively thin geomaterial layers such as

clayey liners and road pavements.
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2 Basic mechanisms

Crack initiation is generally modelled using a strength

criterion. Under uniaxial conditions, the tensile strength

(rt) can be simply determined from the tensile stress (r)
generated due to the matric suction at failure (i.e. when

r ¼ rt). Tensile stresses within the soil medium are gen-

erated when the soil is in some way restrained against

potential shrinkage. These restraints can initially come

from non-uniform shrinkage and/or at the interfaces

between various materials. Generally, cracks initiate at the

soil surface where the horizontal tensile stress is the

highest. It is also possible to initiate a crack at some depth

due to defects, combined stress conditions and the shape of

the suction profile. The effect of defects in crack initiation

was illustrated by Costa et al. [11]. Once cracks are initi-

ated, the depth of propagation is governed by energy

release due to energy consumption for the formation of

cracks as characterised by material fracture toughness.

Konrad and Ayad [21] used this approach to compute the

stable depth of an isolated crack.

The relationship between crack depth and spacing is not

clear although there is a general trend of larger crack

spacing for deeper cracks as observed from field evidence

[9, 11]. As suggested by Costa et al. [11] from the labo-

ratory experiments of circular specimens, shallow, closely

spaced cracks are commonly observed on clay surfaces

owing to rapid desiccation after a heavy rain. Deeper

cracks, widely spaced, are normally associated with slow

desiccation. Therefore, it appears that fracture spacing may

be strongly related to the depth and intensity of the suction

profile developed in the soil. Using a stress relief (or per-

turbation) approach, the spacing associated with the

development of a second crack will depend on the zone of

stress relief caused by the first crack. If a crack has already

formed, a zone of stress relief is generated where the ten-

sile stress on the surface will be zero at the crack and will

increase asymptotically with depth. A second crack is

likely to occur when the tensile stress on the surface (where

it is considered to be the largest) reaches the tensile

strength of the material. Ignoring the change in tensile

strength with drying time, some [21, 22] have argued that

the second crack occurs sequentially when the developed

tensile stress approaches a significant fraction (e.g. 90%) of

the tensile strength of the material. This allows an estimate

to be made of the likely crack spacing. Ayad et al. [3]

applied this concept in the analysis of their field results and

indicated that the average spacing in the field could be

predicted if the factor was around 80 to 88% of the tensile

strength. This factor is somewhat arbitrary, and its rela-

tionship to physical behaviour was not explained. In this

paper, an explanation is provided for this factor using the

fracture mechanics principal.

Several researchers [11, 17, 18] attempted to provide an

explanation for possible theoretical patterns and observed

field cracking patterns in homogenous media. Theoretically

plausible cracking patterns in homogenous media were

considered under parallel, orthogonal (square) and non-

orthogonal (triangular and hexagonal) patterns. It was

found that hexagonal patterns provided the most efficient

geometrical shape for energy release during cracking, fol-

lowed by square and triangular patterns. These theoretical

patterns have been observed in experimental and field

observations, but combination of these patterns and their

variations are also common. The combinations are believed

due to spatial variations in material properties, material

thickness and drying conditions. Geometric shapes com-

prising 4 and 5 sides are most common with predominantly

orthogonal crack intersections.

Predominantly parallel cracks are common in long strips

of material such as the fractures found in road pavements,

concrete pathways, and in laboratory tests where the soil is

subjected to linear shrinkage [18, 23, 24]. Parallel crack

patterns have also been observed parallel to the crest of

slopes and between rows of plants such as corn [30]. Par-

allel cracks are simple in nature and less complicated for

analysis purposes. The following sections of this paper

present two approaches, namely stress relief approach and

energy balance approach, which can be used to predict

spacing between parallel cracks.

3 Application of stress relief approach

The stress relief arising from an isolated crack penetrating

to the full depth of an elastic clay layer, due to the

development of a uniform suction profile, is examined as

part of this research programme. The influence of the

bottom interface was simulated using a spring of stiffness

k, which gives a linear relationship between the bottom

shear stress and shear displacement. The method of

superposition was used to separate the problem into two

parts for the theoretical analysis as shown in Fig. 1. Fig-

ure 1a shows the condition after a crack has formed, while

Fig. 1b shows uniform conditions prior to the formation of

a crack, and Fig. 1c shows the cracked condition with

compressive stresses applied on the crack surface. There-

fore, the horizontal tensile stress remaining after the crack

is formed, rx, can be expressed as:

rx ¼ �r0 þ rxc ð1Þ

where ð�r0Þ is the original horizontal tensile stress and rxc
is the horizontal tensile stress (at any general location [x,

y]) due to an isolated crack subjected to a uniform
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horizontal compressive stress r0([ 0) at the crack face. A

solution for rx can be determined whether a solution for rxc
is found. Compressive stresses are assumed to be positive.

The authors developed an approximate analytical solu-

tion for rxc (as shown in Fig. 1c) on the basis of an elastic

stress analysis. (The details of the solution are given in

Appendix to this paper.) Based on this analysis, the hori-

zontal stress distribution on the top surface (i.e. y = 0) can

be given by Eq. (2).

ry¼0
xc

r0
¼ e

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ð1�mÞþ

E

kdð1�m2Þ

p

x
dð Þ

ð2Þ

where E is elastic modulus, m is the Poisson’s ratio, k is the
interface shear stiffness, and d is the depth of the layer. If

plane stress conditions are assumed, the square root term in

Eq. (2) will become
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ mÞ þ E=kd
p

. The non-dimen-

sional parameter, E=kd, signifies relative interface shear

stiffness with respect to the top material surface. It is clear

that the solution satisfies the boundary conditions;

rxc ¼ r0 when x ¼ 0, and ry¼0
xc ! 0when x ! 1.

Substituting Eq. (2) into (1) makes it possible to deter-

mine the horizontal tensile stress distribution (ry¼0
xc ) at the

surface after the development of a crack:

ry¼0
x

ð�r0Þ
¼ 1� e

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ð1�mÞþ

E

kdð1�m2Þ

p

x
dð Þ

ð3Þ

The accuracy of this approximate solution was compared

with a numerical solution obtained using a commercial

finite difference numerical code, FLAC [15]. In the

numerical simulation, an elastic layer of thickness d with

basal interface as shown in Fig. 1c was used. A uniform

horizontal stress of rxc was applied on the front vertical

face. Figure 2a shows a comparison of the solution of

Eq. (2) with the numerical solution for the condition of a

fully restrained base signifying E=kd ¼ 0. The solution is

inaccurate close to the crack surface primarily because

vertical equilibrium conditions are not satisfied in the

analytical solution. However, the analytical solution

becomes reasonably accurate far away (at about x ¼ 3d)

from the crack surface and this is important for the pre-

diction of crack spacing. As illustrated in Fig. 2b, similar

observations can be made when nonzero E=kd values are

applied at the bottom interface that undergoes elastic shear

displacements immediately after cracking. Hence, it may

be used to predict the approximate spacing of subsequent

crack initiations by the stress relief approach.

o

xco

(a) (b) (c) 

xco

Fig. 1 Application of the superposition principle for computation of stress relief

(a) 
x/d 

x/
0

(b) 

x/d 

x/
0

numerical 

analytical 
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Fig. 2 Comparisons of numerical and analytical results for stress

perturbation due to an isolated crack: a m = 0.4 and fixed base (E/

kd = 0); b m = 0.4 and E/kd = 3
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3.1 Prediction of sequential crack spacing

Once the first crack occurs it may be assumed that

�r0 ¼ �rt, where rt ([ 0) is the tensile strength of the

material. Following the work of Konrad and Ayad [21] and

Lachenbruch [22], it is assumed that a second crack would

initiate when the horizontal tensile stress reaches a ð� 1Þ
times the tensile strength rt. If it is also assumed that this

crack occurs reasonably fast and there is no change in

tensile stress and tensile strength due to further drying, the

following equation can then be derived from Eq. (3) for the

non-dimensional crack spacing s/d, under plane strain

conditions:

s

d

� �

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð1� mÞ þ
E

kdð1� m2Þ

s

ln 1� að Þ ð4Þ

An interesting practical feature of this equation is the fact

that the crack spacing will increase for the same layer

depth, as E=kd increases. For instance, the crack spacing

may increase due to the interface getting more ductile (i.e.

k reduces) or the material getting stiffer (E increases). For

an ideally smooth surface (say, E=kd � 1Þ, cracks do not

occur since the crack spacing become infinitely large. The

crack spacing increases with layer depth when other vari-

ables are kept constant. These suggestions are compatible

with general observations on cracking [9, 17].

4 Application of energy balance approach

Bazant and Cedolin [4] proposed an energy approach for

the prediction of the spacing of shrinkage cracks formed

during sudden cooling of hot rock media. It was postulated

that the strain energy released during crack formation was

balanced by the energy consumed during the formation of

cracks. Under plane strain and isothermal conditions, the

energy balance can be expressed by the following Eq. (4):
Z

V

DU dV ¼ Gca ð5Þ

where DU is the strain energy released for a small soil

element and V is the material volume which underwent

strain release in association with a single crack. The

parameter Gc is the crack energy release rate, which is

related to material fracture toughness, KIc, under plane

strain conditions by KIc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GcE=ð1� m2Þ
p

, and a is the

crack depth. Under linear elastic conditions, Gc is consid-

ered to be a material constant. This approach is applied to

the simultaneous cracking of a desiccating layer in the

following section.

4.1 Prediction of simultaneous crack spacing

It was assumed that cracks are formed simultaneously at a

spacing s in an elastic soil layer of depth d that is placed on

a hard surface as shown in Fig. 3. The energy balance can

be taken into account by considering a single crack with

vertical boundaries midway between adjacent cracks. The

change in horizontal stress, (Drx), due to crack formation

can be expressed as:

Drx ¼ �r0 þ rxcð Þ � ð�r0Þ ¼ rxc ð6Þ

Changes in other stress components Dry andDsxy can also

be established. Under plane strain conditions, the

accompanying stress change in the z direction,Drz, can

be computed as mðDrx þ DryÞ. Therefore, the direct strain

components ðDex;DeyÞ and the shear strain component

(Dcxy) associated with the crack formation can be

computed using linear elastic stress–strain relations,

involving Young’s modulus E and Poisson’s ratio m. The
strain energy loss, DU, associated with this stress reduction

can be computed by integrating the sum of average stress

ravx ; r
av
y ; s

av
xy

� �

times the respective strain component

ðDex;Dey;DcxyÞ over the area (i.e. unit length in

z direction) influenced by a single crack as:

- 

Fig. 3 Methodology used in the analysis of simultaneous cracking

in an elastic layer with a fixed-hard base
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DU ¼
Z

s=2

�s=2

Z

d

0

ravx Dex þ ravy Dey þ savxyDcxy
� �

dydx ð7Þ

Equation (7) can be expressed in a non-dimensional form

as:

DU� ¼DUE
r2od

2
¼
Z

s=2d

�s=2d

Z

1

0

ravx Dex þ ravy Dey þ savxyDcxy
� � E

r2o

� �

d
y

d

� �

d
x

d

� �

ð8Þ

The non-dimensional strain energy loss, DU�, was evalu-

ated using the FLAC finite difference code. The same

model developed earlier (with respect to Eq. 3) for stress

relief approach was used here. The boundary conditions

were chosen such that only a half of the area applicable to a

single crack was modelled owing to symmetry about the

crack plane (see Fig. 3). The strain energy associated with

each element in the model was summed when evaluating

the integral given in Eq. (7) using the numerical model. On

the basis of an analytical formulation, it was established

that DU� was a function of the non-dimensional parameters

s/d and m. Figure 4 shows the relationship of DU� with s/d

for m ¼ 0:4 and m ¼ 0:3: It is clear that the typical rela-

tionship of non-dimensional strain energy with s/d ratio

(also the strain energy with spacing) has a similar shape to

that of stress relief caused by an isolated crack. When s/d

increases, DU� asymptotically reaches a maximum value,

DU�
max. Based on the numerical model used, DU�

max appears

to be unity. It is not completely clear why DU�
max ¼ 1 is

obtained, but by expressing this condition as

DU ¼ 2 1
2
ro

ro
E
d2

� �

, it seems that the maximum strain

energy that can be released by an isolated fully penetrating

crack is equivalent to virtual release of full strain energy

uniaxially up to a spacing of 2d. The influence of Poisson’s

ratio on the strain energy relationship appears to be less

important. Based on the computations performed, DU�

tends to reach 99% of DU�
max around an s/d ratio of 10.

The energy balance during crack formation requires that

DU must be balanced by energy consumed by the crack Ef,

which is equal to Gcd (per unit length in z direction). For

fully penetrating cracks, however, there may be excess

energy that is released in forms other than the crack surface

energy. For example, this extra energy may lead to gen-

eration of heat, sound, plastic work or curved cracks.

Therefore, using Eq. (8) and the same non-dimensionali-

sation procedure, the energy balance requirement may be

expressed as:

DU� �E�
f ð9Þ

where E�
f ¼ GcE

r2od
, which is also given by E�

f ¼ KIc

ro

� �2ð1�m2Þ
d

.

The requirement given by Eq. (9) is illustrated in Fig. 4,

indicating that (s/d) ratio must be equal or greater than a

certain minimum value, (s/d)min.

4.2 Prediction of sequential crack spacing

The energy balance approach can also be used to predict

crack spacing if the cracks were to occur sequentially. In

this case, the formation of the first crack will release

stresses (and strain energy) in the soil layer in a manner

similar to that considered in the stress relief approach. If

shear displacements are allowed to occur at the basal

interface, then further reduction in stresses could occur

before the next crack initiates. It follows that the strain

energy associated with the second (subsequent) crack for-

mation is dependent on the characteristics of the basal

interface. The modelling approach is illustrated in Fig. 5.

Figure 5a shows initial conditions with uniform hori-

zontal stresses and a vertical gravity stress field contained

by the horizontal restraints on either side of the soil layer.

The spacing between the first and second cracks, crack

width and the remaining length are marked by s, e and l,

respectively. The length of the specimen is taken to be at

least 20 times its thickness for it to be considered a thin,

long layer. The basal interface is represented by a linear

spring with shear stiffness k. Figure 5b shows the situation

after the formation of the first crack at the left-hand

boundary. When the x restraint is removed to simulate the

first crack, some horizontal stresses are released. Interface

shear displacements can also occur at the basal interface if

the shear stiffness k is finite. Figure 5b also shows a typical

schematic of the horizontal stress distribution at the surface

after the stress release. As shown in Fig. 5c, the second

crack is assumed to form at a spacing s from the first crack.

This is modelled by forming a thin void in the elastic layer.

The dimensional proportions used in the model are shown

in Fig. 5. The strain energy loss associated with the for-

mation of the second crack is computed as follows:

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

U
* 

s/d 

=0.4 

=0.3 

min)/( ds

*
fE

Fig. 4 Variation of non-dimensional strain energy (DU*) with s/d

ratio for simultaneous cracking
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DU� ¼DUE
r20d

2
¼
Z

l=d

�s=d

Z

1

0

ravx Dex þ ravy Dey þ savxyDcxy
� � E

r20

� �

d
y

d

� �

d
x

d

� �

ð10Þ

The stresses ðravx ; ravy ; savxyÞ in Eq. (10) correspond to the

averages of the corresponding normal and shear stresses for

conditions depicted in Fig. 5b and c, respectively.

The resulting DU� relationships are functions of non-

dimensional parameters, s/d, m, E/kd and if gravity stresses

are included, cd=r0. However, in this instance, the general

variation of DU� is examined only for a range of s/d and E/

kd parameters by using the FLAC computer program.

Figure 6 shows typical results obtained. It should be noted

that the same relationship between DU�, and s/d is obtained
for the condition of a fully restrained base (i.e. E/kd = 0),

and for simultaneous cracking as shown in Fig. 4. As the E/

kd parameter is reduced, the curves progressively flattened

indicating that lower strain energy is available for subse-

quent crack formation at the same spacing. This reduction

in strain energy loss is due to the increase in stress release

assisted by the ductile interface (i.e. low k). This feature

can alternatively be viewed as the influence of the

increased stress relief zone resulting from an increase in

modulus or a decrease in layer thickness.

As for the simultaneous cracking, the formation of the

subsequent (second) crack may be determined by balancing

the energy released by the soil with the energy consumed

during crack formation, (i.e. DU� � E�
f ). Therefore, a

minimum spacing-to-depth ratio (s/d)min can be found

when there is an intersection between DU� and Ef.

5 Minimum crack spacing

For fully restrained base condition (i.e. E/kd = 0), the

variation of DU� with s/d ratio is the same for both

simultaneous cracking and sequential cracking (see Figs. 4,

6), and its dependence on Poisson’s ratio is small. It is

possible to represent this variation using an exponential

curve as follows:

DU� ¼ 1� e�0:55 s
dð Þ ð11Þ

By using the non-dimensional energy balance at crack

formation (i.e. DU� �E�
f ) and rearranging terms in the

previous equation, the following equation is obtained.

s

d

� �

min
¼ �1:82 ln 1� E�

f

� �

¼ �1:82 ln 1� GcE

r20d

� �

¼ �1:82 ln 1� KIc

rt

� �2
1� m2ð Þ

d

 !

ð12Þ

At the rightmost part of Eq. (12), the condition, � ro ¼
� rt is assumed at the point of cracking rupture stress

(�roÞ and is represented by the tensile strength of the

material. It is interesting to compare Eq. (12) with (4),

which was derived using the stress relief approach. On

comparison, it could be argued that the arbitrary parameter

- 

(a)

(b)

(c)

Fig. 5 Methodology used in the analysis of sequential cracking in an

elastic layer with a hard base and elastic basal interface characteristics

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12
s/d 

U
* 

25kd
E

5kd
E

0kd
E

Fig. 6 Variation of non-dimensional strain energy (DU*) with s/d

ratio for sequential cracking (m ¼ 0:4)
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a used in Eq. (4) is related to the term,

ðKIc=rtÞ2 1� m2ð Þ=d. For the fully restraint base condition

(i.e. E=kd ¼ 0 ), the constant in Eq. (4) is equal to - 1.3

and compares reasonably well with the constant - 1.82 in

Eq. (12). An exact match is not expected in any event

because Eq. (4) is an approximate solution for stress relief.

Nonetheless, it is clear that the energy balance and stress

relief approaches are closely related, and the energy

balance approach imposes a minimum spacing limit for

cracks to occur. A normalisation of data presented in Fig. 6

gave the following approximation for DU� and (s/d)min for

the general case:

DU� � 1� e

� 0:66
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ð1�mÞþ

E

kdð1�m2Þ

p

s
dð Þ

ð13Þ

and

s

d

� �

min
� �1:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð1� mÞ þ
E

kdð1� m2Þ

s

ln 1� KIc

rt

� �2
1� m2ð Þ

d

 !

: ð14Þ

6 Critical layer thickness

Equation (12) [or (14)] also shows that E�
f ¼

KIc

rt

� �2ð1�m2Þ
d

\1 for a fully penetrating crack to occur under

a uniform stress profile. This requirement can be rear-

ranged to provide a critical layer thickness (dmin) for

cracking to occur.

dmin ¼
KIc

rt

� �2

ð1� t2Þ ð15Þ

Equation (15) needs to be interpreted as the minimum

thickness for fully penetrating cracking to occur in a thin

layer of uniform suction. These conditions may not be

satisfied when layer thickness is large under field condi-

tions, but cracks may propagate progressively. For

instance, several researchers [e.g. 8] have reported that

drying of granular ceramic films with thicknesses ranging

from tens to hundreds of micrometres has shown the

presence of a similar critical layer thickness. This simi-

larity can be explained using equations similar to Eq. (15).

Figure 7 shows the variation of spacing-to-depth ratio with

a normalised layer depth (given by d rt=KIc

� �2

) computed

using Eq. (14), for a range of E/k values. Also shown, in

this figure is a fracture mechanics solution developed by

Thouless [27] for brittle films on an elastic substrate with

the same modulus. It should be noted that the present

solution agrees reasonably well with this solution when no

base slippage is allowed, (i.e. E/k = 0). The figure also

illustrates the presence of a critical layer thickness.

Examination of Eq. (14) also shows that crack spacing

decreases as the depth of the layer decreases, and cracks

will disappear altogether at the critical depth.

7 Discussion and validation of the model using
laboratory observations on soil desiccation
cracking

The approximate theoretical development presented above

is used to interpret observations on laboratory desiccation

cracking tests. The test results are drawn from Corte and

Higashi [9], who conducted tests in boxes with soil initially

at slurry and loosely compacted states, and Nahlawi and

Kodikara [23], who conducted cracking tests in long

moulds conducive to parallel cracking with soil initially at

slurry and compacted states.

7.1 Cracking water content, wcr

Both Corte and Highashi [9] and Nahlawi and Kodikara

[23] measured the soil water content at which cracking

initiated. Some of their results are shown in Fig. 8. It is

clear that the cracking water content decreases as the soil

thickness is decreased. This requires a special explanation

because according to the strength failure criterion, the

failure stress should remain at the same cracking water

content (assuming a unique soil–water characteristic curve)

for the same initial conditions. Corte and Higashi [9]

explained this observation assuming that the cracking

water content was a function of desiccation rate (the des-

iccation rate increases with decreasing thickness, see [23]),

where a high desiccation rate gives rise to less opportunity

for micro-crack coalescence. An alternative explanation is

now proposed on the basis of a critical layer thickness.

Fig. 7 Spacing/depth (s/d) ratio against normalised layer thickness

given by d rt=KIc

� �2

(Poisson’s ratio, m ¼ 0:4)
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According to Eq. (15), if the soil thickness is less than

the corresponding critical thickness, then cracks will not

occur. If this is the case, the soil will need to dry further in

order that the critical thickness, which is a function of

ðKIc=rtÞ2, can decrease sufficiently to allow cracking to

occur. There is experimental evidence that ðKIc=rtÞ2
decreases as the material becomes brittle. For instance,

Haberfield and Johnston [13] indicated that this term can

take values of 9 mm for harder rocks, 11 mm for relatively

soft mudstones and as much as 466 mm for soft clays.

Ayad et al. [3] reported some results for soft marine silty

clay which gave a value of about 20 mm for ðKIc=rtÞ2.
Experimental data presented by Wang et al. [29] also

confirm the decreasing trend of ðKIc=rtÞ2 during drying.

Values calculated from their results show that this ratio

reduces from 125 to 107 mm as the dry density increases

from 1.6 to 1.72 g/cm3 (during drying dry density increases

as soil shrinks, see [25]). Therefore, for clay soils, this ratio

can decrease as the soil dries. A comprehensive data set

would be useful for a closer examination of this issue.

A decreasing cracking water content is also apparent

when the desiccation rate (rate of decrease in water content

with time) is increased [9, 11, 23]. It is apparent that as the

layer thickness is decreased, the desiccation rate increases,

explaining this dependency. For thicker layers, Costa et al.

[11] suggested the existence of an effective drying depth

(i.e. the depth of tensile stress profile, which could be

sharply curved) which can be captured by the ratio between

soil moisture diffusivity and evaporation rate. Effective

depth becomes small under high desiccation rates. When an

effective depth exists in a thick soil layer subjected to

desiccation, the situation will be similar to having a layer

with a smaller thickness despite the overall layer thickness

being relatively large.

7.2 Crack spacing/layer depth ratio, (s/d)

Figure 9 shows a comparison of mean (s/d) ratios with depth

between theoretical and experimental results of Nahlawi and

Kodikara [23] for compacted and slurry soils. Nahlawi and

Kodikara [23] identified three forms of cracking, namely

primary, secondary and tertiary cracking in experimental

observations on parallel cracking when drying long soil lay-

ers. Primary cracking was defined as when the first set of

cracks appear, while secondary cracks occur between two

primary cracks. Tertiary cracks were defined as those cracks

that occur between a primary crack and a secondary crack or

between other crack combinations. In the current analysis,

sequential cracking strictly refers to primary cracking that

occurs in sequence. In other words, only one crack influences

the formation of the next crack.The results relevant to primary

cracks are presented in Fig. 9. It is clear that the (s/d) ratio

decreases with layer depth, and this behaviour is generally

captured by the model. However, layers with smaller depths

(i.e. close to the critical depth) show a sharper decrease in the

(s/d) ratio. In reality, the parameters ðKIc=rtÞ2 andE/k vary as
the cracking water content changes for different layer depths,

limiting the precise application of the model.

7.3 Evolution of cracking patterns

When the normalised fracture energy required for cracking

is small (i.e. E�
f\\1; refer Fig. 4), the non-dimensional

fracture energy will intersect the DU� curve at a relatively

low s/d ratio, giving a small (s/d)min. This means that there

is sufficient energy to generate a full crack at a spacing

greater than (s/d)min. The strain energy available per unit

volume of soil for crack propagation can become very large

for small s/d ratios [for instance, from Eq. [8], strain

energy per unit volume, ðDU=sdÞ ¼ DU� r2o=Eðs=dÞ
� �

,

which will increase (s/d) decreases]. At these levels, cracks

need to release relatively large amounts of strain energy per
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Fig. 9 A comparison of theory and experimental results of Nahlawi
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Acta Geotechnica (2018) 13:39–49 47

123



unit volume of soil. Consequently, simultaneous cracking

appears to be the optimal mechanism at relatively small

spacing. Alternatively, cracks can still occur at larger

sequential spacing because the energy balance requires that

s/d to be only greater than (s/d)min. Lower E
�
f is likely to be

generated for materials with a lower ðKIc=rtÞ2 ratio, which
is associated with brittle materials with lower water con-

tents, or with very loose soil deposits.

When E�
f is close to unity, theoretically, sequential and

simultaneous cracking are equally possible. However, it

would appear that sequential cracking is more likely to

dominate because these cracks can be triggered by a small

local variation of parameters such as the tensile strength of

the soil (or larger flows). The field studies [3, 22] have

indicated that E�
f [or a in Eq. (4)] can be over 80% for

sequential crack formation. The actual s/d ratio of the

cracking will be dependent on the local variation of tensile

strength, and E�
f will only impose the minimum require-

ment of (s/d) ratio possible. The other point is that during

sequential cracking, the influence of ductility (given by E/

kd) can come into play (see Fig. 6) causing this form of

cracking to be more favoured. Soft ductile materials like

soft clay feature a higher ðKIc=rtÞ ratio giving a higher E�
f

and higher interface ductility and, therefore, are more

likely to fail by sequential cracking. These theoretical

inferences are in agreement with generally observed

behaviour.

8 Concluding remarks

Theoretical explanations were provided for desiccation

cracking of thin elastic soil layers subjected to a uniform

stress (suction) profile. The spacing-to-depth ratio of fully

penetrating cracks was analysed on the basis of both a

stress relief and a fracture energy balance approach. It was

shown that the energy required for crack formation places a

lower limit for the spacing-to-depth ratio. In agreement

with experimental observations, it was shown that the

spacing-to-depth ratio decreases with layer depth. How-

ever, theory showed that there exists a critical depth of the

layer below which cracking may not occur or the spacing-

to-depth ratio is infinite. Similar arguments have been put

forward with respect to the drying of thin ceramic films

where defect-free films were impossible to manufacture

above the critical depth. The influence of the stiffness at the

base interface was also analysed. In agreement with

experimental observations, it is clear that decreasing the

basal interface stiffness makes the crack spacing increase

for sequential crack formation where the final limit is that

no cracks will appear if the basal interface is perfectly

smooth. The experimental observation of a decrease in

cracking water content with a decrease in layer thickness

was also explained on the basis of the critical depth con-

cepts. From a practical standpoint, this issue is only rele-

vant for very thin soil layers.

The theoretical explanations were consistent with some

experimental observations, but it should be noted that a

number of simplifying assumptions were made. The main

assumption involves the neglect of a change in the tensile

stress profile, material properties and behaviour with time

during desiccation. In future studies, it would be enlight-

ening to examine these issues from both an experimental

and theoretical approach.

Appendix

Approximate analytical solution for horizontal stress relief

due to an isolated crack in an elastic layer with a hard base.

A solution is presented for a horizontal stress rxc for the
situation depicted in Fig. 1c. The governing equations can be

described as follows. The sign convention uses compressive

stress as positive and clockwise shear as positive. This is

traditional in soil mechanics. For horizontal equilibrium,

orxc
ox

¼ � osxy
oy

ð16Þ

where sxy is the shear stress in xy plane. Ignoring normal

stress change in y direction and considering plane strain

condition, rxc can be expressed as:

rxc ¼ � E

ð1� m2Þ
ou

ox
ð17Þ

where u is the shear displacement in x direction. E and m are
the Young’s modulus and Poisson’s ratio of the soil,

respectively. The shear stress is assumed to follow a linear

stress distribution as follows:

sxy ¼
y

d

� �

sb ð18Þ

where sb is the shear stress at the basal interface. Assuming

a spring of shear stiffness of k to represent the basal

interface characteristics, sb can be related to the shear

displacement at the base ub as:

sb ¼ kub ð19Þ

Ignoring the shear strain component associated with

vertical displacement, the shear stress sxy can be expressed:

sxy ¼ �G
ou

oy
ð20Þ

Equations (16), (18) and (19) can be rearranged to give:

o2rxc
ox2

¼ � k

d

oub

ox
ð21Þ
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Also, Eqs. (18), (19) and (20) can be rearranged to obtain:

ou

oy
¼ � k

G
ub

y

d
ð22Þ

Equation (22) can be solved for u by using the boundary

condition u ¼ ub; y ¼ d: Using this result and Eq. (17), it

is possible to obtain the following expression from

Eq. (21).

o2rxc
ox2

� 1

d2
1

1
1�mð Þ þ E

kd
1

1�m2ð Þ

h i rxc ¼ 0 ð23Þ

Equation (23) can be solved subject to the boundary

conditions: rxc ¼ r0 when x ¼ 0; and rxc ! 0 when

x ! 1 . The solution for ry¼0
xc in non-dimensional form

can be expressed as:

ry¼0
xc

r0
¼ e

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1�vð Þþ

E
kd

1

1�m2ð Þ

q

x
dð Þ
: ð24Þ
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