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Abstract Since cross-anisotropic sand behaves differently

when the loading direction or the stress state changes, the

influences of the loading direction and the intermediate

principal stress ratio (b = (r2 - r3)/(r1 - r3)) on the

initiation of strain localization need study. According to the

loading angle (angle between the major principal stress

direction and the normal of bedding plane), a 3D non-

coaxial non-associated elasto-plasticity hardening model

was proposed by modifying Lode angle formulation of the

Mohr–Coulomb yield function and the stress–dilatancy

function. By using bifurcation analysis, the model was used

to predict the initiation of strain localization under plane

strain and true triaxial conditions. The predictions of the

plane strain tests show that the major principal strain at the

bifurcation points increases with the loading angle, while

the stress ratio decreases with the loading angle. According

to the loading angle and the intermediate principal stress

ratio, the true triaxial tests were analyzed in three sectors.

The stress–strain behavior and the volumetric strain in each

sector can be well captured by the proposed model. Strain

localization occurs in most b value conditions in all three

sectors except for those which are close to triaxial

compression condition (b = 0). The difference between the

peak shear strength corresponding to the strain localization

and the ultimate shear strength corresponding to plastic

limit becomes obvious when the b value is near 0.4. The

influence of bifurcation on the shear strength becomes

weak when the loading direction changes from perpen-

dicular to the bedding plane to parallel. The bifurcation

analysis based on the proposed model gives out major

principal strain and peak shear strength at the initiation of

strain localization; the given results are consistent with

experiments.

Keywords Bifurcation analysis � Cross-anisotropy � Non-
coaxial plasticity � Sand � Strain localization

List of symbols

A The fitting parameter for stress–

strain relationship

Ad Parameter of stress–dilatancy

b Intermediate principal stress ratio

C1, C2, C3 Parameters of the criterion of

strain localization

C
np
ijkl

Non-coaxial compliance tensor

d~r Vectorial notations of the stress

increment tensor

d~e Vectorial notations of the strain

increment tensor

D Dilatancy function

De
ijkl, D

e Elasto-plastic modulus tensor

D
p
ijkl, D

p Plastic modulus tensor

D
ep
ijkl, D

ep Elasto-plastic modulus tensor

(Dep)sys Symmetric part of elasto-plastic

modulus tensor

E Elastic modulus
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e Void ratio

eij Deviatoric strain

F Yield function

gðhrÞ Shape function in deviatoric

plane

G Pressure-dependent shear

modulus

G0, G01, G02 Regression constant of elastic

shear modulus

Hp The hardening modulus

Ht Non-coaxial hardening modulus

J2 Second stress invariant

K Bulk elastic modulus

Li The loading direction

li The unit vector specifying the

loading direction

M Stress ratio

Mf, Mf0, Mf1, Mf2, Mf3 Peak stress ratio

Md Dilatancy–stress ratio

n The unit vector which is normal

to the shear band

p Mean stress

pat Atmospheric pressure

q Equivalent shear stress

Q Plastic potential

sij Effective deviatoric stress

Sij Stress tensor independent of dij
and sij

W2 Second-order work

b The shear strength difference

between triaxial tension

compression conditions

dij Kronecker delta

d Angle between the major

principal stress and the normal

of bedding plane

eij Strain tensor

eps Equivalent plastic shear strain

ev Volumetric strain

u, uc, uE Friction angle

X1 Cross-anisotropic parameter

n, g Shear band angle
_k Plastic multiplier

M Poisson ratio

rij The stress tensor

h Equals to p=6þ hr
hr Lode angle

rij The stress tensor

f Angle between the intermediate

principal stress and fabric tensor

1 Introduction

Strain localization is a well-known instability phenomenon

in the dense sands, over-consolidated clay and soft rocks.

Originating in the 1970s, two main issues related to the

strain localization problem, which are the prediction of its

initiation and the modeling of its evolution [3, 5, 12, 20 57],

have been extensively studied using various approaches.

The precise prediction of the strain localization plays a key

role in the analysis of strain localization. Most of the current

studies are based on the pioneering works of Rudnicki and

Rice [42] and Rice [39], while these studies were mainly

based on the isotropic assumption of the soil in the consti-

tutive modeling. Although the previous studies [4, 10] have

shown that the spatial heterogeneity density of sands has a

profound impact on the shear band, the influence of the

cross-anisotropy on the initiation of strain localization in

natural soil still lacks theoretical explanation.

Since the bifurcation analysis strongly relies on the uti-

lized constitutive model, the prediction of strain localiza-

tion must be based on a reliable model. The conventional

plasticity model assumes that only the stress rate perpen-

dicular to the yield surface can produce plastic strain, so it

often cannot give out a precise prediction of the strain

localization. The non-coaxial plastic flow rule [38, 42], in

which a non-coaxial plastic strain rate caused by the tan-

gential stress rate on the yield surface is considered, pro-

vides an effective way to improve the prediction. This

model has been used to predict the onset strain localization

under plane strain [35] and true triaxial conditions [17, 18],

while these analyses were based on the isotropic assumption

of the soil. Due to the interaction between the material

fabric and the loading angle, the cross-anisotropic soil

behaves differently from isotropic soils; therefore, the

influence of the anisotropy on the strain localization needs

to be considered (e.g., [15, 25]). The experimental results

[24, 34, 44], the microscopic studies [57], and the numerical

analysis (e.g., FE calculation of shear localization in sands

by micro-polar hypoplasticity [7, 14, 45, 46, 48]) have

already shown the strong influence of cross-anisotropy on

the initiation and evolution of the strain localization.

In order to predict the strain localization of the cross-

anisotropic sand precisely, a suitable constitutive model

needs to be proposed. The most important thing is to pro-

pose a failure criterion which denotes the limit of the yield

function. The most direct method for proposing a cross-

anisotropic strength criterion is to revise the shape function

of the 3D isotropic criterion in the deviatroric plane

[21, 30, 33]. Although this type of criterion can accurately

calibrate the shear strength of the sands under true triaxial

condition in which the principal stress direction is either
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parallel or perpendicular to the bedding plane [40], this

criterion still sometimes cannot reflect the influence of the

loading direction. In order to capture the influence of the

loading direction on the shear strength, subsequent

researchers introduced the micro-structure of sand into the

failure criterion [11, 36, 54]. Comparatively, the easiest way

to calibrate the fabric effect on the shear strength is to

introduce an anisotropic variable, which can be defined by a

joint invariant of the material fabric tensor and the loading

direction tensor, into the failure criterion [53]. Another

important thing for the establishment of the cross-aniso-

tropic constitutive model is the description of stress–dila-

tancy. Stress–dilatancy, which describes the change in

volume resulting from a shear deformation of the soil, has

been widely studied under triaxial conditions [9, 43]. It has

been shown by true triaxial tests [22, 23] that the interme-

diate principal stress ratio affects the dilation. The stress–

dilatancy depends on the fabric anisotropy and the direction

of principal stress relative to the sample deposition [28, 55].

The micro-structural information has been incorporated into

the stress–dilatancy, and the influence of the material fabric

on the behavior of sand was illustrated [51]. The stress–

dilatancy in multi-axial stress space has been revised to

consider the effect of the inherent anisotropy [26, 27].

Based on this fabric-dependent dilatancy function, some

anisotropic models for sand were proposed [13, 56]. These

methods can provide an efficient way to incorporate the

cross-anisotropy in the description of stress–dilatancy.

This paper aims to theoretically study the influences of

the loading direction and the intermediate principal stress

ratio on the initiation of strain localization in cross-aniso-

tropic sand. The deviatoric hardening plasticity model is

extended to account for the effect of the initial cross-ani-

sotropy, and the predictive accuracy of the model for

bifurcation point is improved by incorporating non-coaxial

plastic flow rule. The first part of the paper characterizes

the 3D failure criterion of the cross-anisotropic sand and

the establishment of non-coaxial non-associated elasto-

plasticity model. The second part is the prediction criteria

for the potential instability and strain localization. The

third and fourth parts are the prediction of the strain

localization under plane strain and true triaxial conditions.

Some conclusions were made, and the influences of the

loading direction and the intermediate principal stress ratio

on the bifurcation points were studied.

2 Non-coaxial plasticity model for cross-
anisotropic sand

Among various methods, the yield function could be rep-

resented by an isotropic function of both stress and a fabric

tensor [36]. Based on a Lode-dependent formulation, the

yield function of the cross-anisotropic soil is proposed by

considering the influence of loading direction as

[31, 36, 41]

F ¼ q�M 1þ X1 � 3X1l
2
2

� �
g hrð Þp ¼ q� gp ¼ 0 ð1Þ

where p ¼ rii=3 is the mean stress, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij

�
2

q
is the

equivalent shear stress, sij ¼ rij � dijp is the deviatoric

stress, hr ¼ sin�1½�3
ffiffiffi
3

p
J3

.
ð2J3=22 Þ�

.
3 is the Lode angle,

J2 ¼ sijsij
�
2 is the second invariant, J3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sijsjkski

�
3

q
is

the third invariant of deviatoric stress, gðhrÞ is a Lode

angle-based function characterizing the shape of yield

surface in a deviatoric plane, X1 is an cross-anisotropic

parameter, and li is the unit vector specifying the loading

direction

li ¼
Liffiffiffiffiffiffiffiffiffiffiffi
P3

i¼1

L2i

s ð2Þ

where

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r211 þ r212 þ r213

p

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r221 þ r222 þ r223

p

L3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r231 þ r232 þ r233

p

8
><

>:
ð3Þ

For cross-anisotropic sand, X3 = X1, X2 = -2X1,

l21 þ l22 þ l23 ¼ 1; then,

l22 ¼
r21 cos

2 dþ r22 sin
2 d cos2 fþ r23 sin

2 d sin2 f
r21 þ r22 þ r23

ð4Þ

where d is the angle between the major principal stress and

the normal of bedding plane and f is the angle between

intermediate principal stress and the normal of bedding

plane. These relationships are shown in Fig. 1.

The cross-anisotropic parameter X1 is obtained by

X1 ¼
Mf2 �Mf1

Mf1 �Mf2 �
Mf1 3�Mf 2ð Þ2

9þ2M2
f 2

þ 3þ2Mf 1ð Þ2Mf2

9þ2M2
f1

ð5Þ

where Mf1 and Mf2 are the peak stress ratios of triaxial

compression tests when the major principal stresses are

perpendicular and parallel to the horizontal bedding plane.

In order to reflect the difference of shear strength under

triaxial tension and compression condition, the shape

function in Eq. 1 is [6, 18, 52]

g hrð Þ ¼ B=C ð6Þ

where

B ¼ 2 1� b2
� �

cos h

þ 2b� 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1� b2
� �

cos2 hþ b 5b� 4ð Þ
q

;
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C ¼ 4 1� b2
� �

cos2 hþ 2b� 1ð Þ2;

h ¼ p=6þ hr;

b denotes the shear strength difference between triaxial

tension (b = 1) and compression (b = 0) conditions.

In the isotropic case, parameter b can be obtained by

b ¼ MfE

MfC

¼ ð3� sinuCÞ sinuE

ð3þ sinuEÞ sinuC

ð7Þ

where uE and uC are the friction angles obtained from the

triaxial tension test and triaxial compression test.

In the cross-anisotropic case, it becomes

b ¼ Mf3

1þ X1 � ð3þ2Mf 3Þ2
9þ2M2

f3

X1

� �
Mf0

ð8Þ

where Mf3 is the peak stress ratio of the triaxial tension test

in which the major principal stress is perpendicular to the

bedding plane.

σ
2

σ
3

σ
1

δ

ζ

Lz
σzx σzy

σzz

σyz

Ly

Lx

σxx

σxy

σxz

σyx
σyy

(a) (b) (c)

Fig. 1 Relationship between the principal stress axes and the bedding plane. a Bedding plane, b coordinates, c stress state and loading directions

Fig. 2 Stress–strain relationships in plane strain tests with different loading angle (bifurcation point given by: open diamond isotropic coaxial

model, filled diamond isotropic non-coaxial model, open star anisotropic non-coaxial model, filled star anisotropic non-coaxial model,

experimental data after [34]). a d = 0o, b d = 30, c d = 60o, d d = 90o
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The evolution of the M is characterized by [37]

M ¼ eps
Aþ eps

Mf0 ð9Þ

where eps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e

p
ije

p
ij

.
3

r
, e

p
ij ¼ epij � dije

p
ij

.
3 is the deviatoric

plastic strain, and

Mf0 ¼
Mf1

1þ X1 � ð3þ2Mf 1Þ2
9þ2M2

f1

X1

� 	 ð10Þ

In order to consider the influence of the intermediate

principal stress ratio and cross-anisotropy, a fabric-

dependent plastic potential function is as follows

Q ¼ qþ Ad

1� Ad

McpgðhrÞ 1þ X1 � 3X1l
2
2

� �

� 1þ p

pat

� 	�ð1�AdÞ
" #

¼ 0

ð11Þ

where Mc is the M value with zero volumetric strain rate

where Ad and Mc are material parameters.

_r ¼ Dep _e ð12Þ

The elasto-plastic constitutive tensor Dep is

Dep ¼ De � De�
oQ
or

oF
or

HP þ oF
orD

e oF
or

þ Ht

Ht þ 2G
Cnp

 !

� De ð13Þ

Fig. 3 Volumetric strain in plane strain tests under different loading angle (bifurcation point given by: open diamond isotropic coaxial model,

filled diamond isotropic non-coaxial model, open star isotropic non-coaxial model, filled star anisotropic non-coaxial model, experimental data

after [34]). a d = 0o, b d = 30o, c d = 60o, d d = 90o

Fig. 4 Evolution of the determinant of elasto-plastic tensor and

acoustic tensor in plane strain tests (d = 30o)
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where De is the elastic tensor, Cnp is the non-coaxial

compliance tensor, HP is the hardening modulus, and Ht is

the non-coaxial hardening modulus.

The gradient of the yield function is

oF

or
¼ 3s

2q
�Mp

og hrð Þ 1þ X1 � 3X1l
2
2

� �

ohr

� 3 tanð3hrÞ
2q2

s� 9

2q3 cosð3hrÞ
s � s� 2

9
q2

� 	
d

� �

�
Mg hrð Þ 1þ X1 � 3X1l

2
2

� �

3
d ð14Þ

The gradient of the potential function is

oQ

or
¼ 3s

2q
�Mcp ln

p

p0

� 	
og hrð Þ
ohr

1þ X1 � 3X1l
2
2

� �

� 3 tanð3hrÞ
2q2

s� 9

2q3 cosð3hrÞ
s � s� 2

9
q2

� 	
d

� �

�
Mcg hrð Þ 1þ X1 � 3X1l

2
2

� �
ln p

p0


 �
þ 1

h i

3
d ð15Þ

The elastic moduli matrix of isotropic material is

De
ijkl ¼ K � 2

3
G

� 	
dijdkl þ Gðdikdjl þ dildjkÞ ð16Þ

In order to consider the influence of cross-anisotropy,

the shear modulus was assumed dependent on the loading

direction with the bedding plane. The elastic bulk modulus

and shear modulus are

K ¼ 2ð1þ mÞ
3ð1� 2mÞG

G ¼ G01 þ G02 � G01ð Þ sin2 d
� 


pat
ð2:97� eÞ2

1þ e

ffiffiffiffiffiffi
p

pat

r

8
>><

>>:

ð17Þ

where G01 is the shear modulus when the major principal

stress is parallel to the bedding plane, G02 is the shear

modulus when the major principal stress is perpendicular to

the bedding plane, m is the Poisson ratio, e is the void ratio,

pat = 101.3 kPa is the atmospheric pressure.

The hardening modulus is

Fig. 5 Influence of loading angle on the bifurcation points in plane

strain tests (filled circle experimental data, after [34]). a The major

principal strain at the bifurcation point and b the peak stress ratio at

the bifurcation point

Fig. 6 Influence of confining stress on the bifurcation points in plane

strain tests [bifurcation point given by: open diamond coaxial model

(a = 0o), filled diamond non-coaxial model (a = 0o), open circle

coaxial model (a = 90o), filled circle non-coaxial model (a = 90o)].

a Principal strain and b stress ratio
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Hp ¼ � oF

oM

oM

oeps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
dev

oQ

or

� 	
dev

oQ

or

� 	s

¼
ApMf0gðhrÞ 1þ X1 � 3X1l

2
2

� �

ðAþ eps Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
dev

oQ

or

� 	
dev

oQ

or

� 	s

ð18Þ

According to the consistency condition, the plastic

multiplier is

_k ¼ 1

Hp

oF

or
_r ð19Þ

By assuming that the non-coaxial plastic rate linearly

depends on the stress rate which is tangential to yield

surface, the non-coaxial compliance tensor C
np
ijkl can be

obtained. Under a 3D stress condition, the compliance

tensor is [38]

C
np
ijkl ¼

1

Ht

dikdjl þ dildjk
2

� dkldij
dmndmn

� sijskl

smnsmn
� SijSkl

SmnSmn

� 	

ð20Þ

where Sij ¼ sikskj � 2
3
J2dij � 3

2
J3
J2
sij


 �
and Ht is the plastic

modulus governing the response to the stress rate tangential

to the yield surface.

In order to consider the influences of loading direction

and intermediate principal stress ratio on constitutive

model, the non-coaxial hardening modulus is formulated as

Ht ¼ Ht1 þ Ht2 � Ht1ð Þ sin2 d sin2 f
� 


1� ðb� 0:45Þ2
h i

ð21Þ

where Ht1 and Ht2 are the non-coaxial plastic moduli when

the loading axis is perpendicular and parallel to the bedding

plane.

In the proposed elasto-plasticity model, there are three

elastic parameters and eight plastic parameters. The elastic

parameters G01, G02, and v can be obtained by a loading–

unloading tests. The plastic parameter Mf1 can be obtained

a triaxial compression test where the major principal stress

is perpendicular to the bedding plane; Mf2 can be obtained

by a triaxial compression test where the major principal

stress is parallel to bedding plane; Mf3 can be obtained by a

triaxial extension test where the major principal stress is

parallel bedding plane. A is a model parameter and can be

determined by fitting the stress–strain curve. Mc and d0 are

stress–dilatancy parameters which can be obtained by

experimental results of volumetric strain. Assuming that

the stress peak in experiment is the initiation point of strain

localization, Ht1 and Ht2 can be obtained by fitting the

predicted bifurcation points and the stress peak in experi-

ments. Different from hypoplasticity [7, 14, 19, 53], the

elasto-plastic model has to be calibrated each time when

changing the pressure and initial void ratio unless the

critical state theory being taken into account. It should be

noted that the proposed model cannot be used for FE

modeling of strain localization because it does not consider

softening and does not include a characteristic length of

micro-structure for regularization purposes.

3 The criteria of potential instability and strain
localization

For the numerical integration of rate form of a stress–strain

relationship, we need to change Eq. 12 into matricial and

vectorial notations

d~r ¼ ~D
ep
d~e ð22Þ

where d~r and d~e are the vectorial notations of stress and

strain increment tensors. Since the stress and strain are

symmetric second-order tensors, their vectorial notations

are vectors of six independent components. ~D
ep

is the

Fig. 7 Influence of the initial void ratio on the bifurcation points in

plane strain tests (a = 0o, bifurcation point given by: open diamond

coaxial model, filled diamond non-coaxial model). a Principal strain

and b stress ratio
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Fig. 8 The prediction of stress–strain relationship of true triaxial tests in sector I (dot-experimental data of r1/r3, open circle experimental data

of ev, open star bifurcation point, experimental data after [1, 22]) a b = 0, b b = 0.11, c b = 0.26, d b = 0.45, e b = 0.6, f b = 0.82, g b = 1
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matricial notation of the fourth-order elasto-plastic tensor,

and it is a 6 9 6 matrix.

In the viewpoint of classical elasto-plasticity model, the

failure of soil means the reach of plastic limit, and it means

detð ~DepÞ ¼ 0 ð23Þ

Most of the soil failure analyses are based on the plastic

limit failure criterion. However, for the non-associated

plastic material, the failure modes caused by diffuse

instability or strain localization instability precede the

plastic limit condition [8]. According to Hill’s theory [16],

the material becomes unstable when the second-order work

W2 becomes negative

W2 ¼ d~r � d~e ¼ d~e � ~Dep � d~e� 0 ð24Þ

It implies that

det ~D
ep

sys


 �
� 0 ð25Þ

Equation 25 is a potential instability criterion; it gives

out a lower bound of the instability cone in a stress space.

The strain localization criterion corresponds to the

vanishing value of the acoustic tensor [39, 42]

det Að Þ ¼ det n � Dep � n� 1

2
n � n � rð Þ

�

þ 1

2
n � r � nð Þ � dþ 1

2
n � rð Þ � n� 1

2
r

� ð26Þ

where n is the unit vector normal to the shear band.

The components of the unit vector n are

n1 ¼ sin n
n2 ¼ cos n cos g
n3 ¼ cos n sin g

8
<

:
ð27Þ

When under plane strain condition, n ¼ p=2, and Eq. 26

is simplified as

detðAÞ ¼ C1 tan
4 nþ C2 tan

2 nþ C3 ¼ 0 ð28Þ

where C1 ¼ D
ep
1313D

ep
1111, C2 ¼ D

ep
1111D

ep
3333 � D

ep
1133D

ep
1313�

D
ep
3311D

ep
1313 � D

ep
1133D

ep
3311, C3 ¼ D

ep
1313D

ep
3333.

4 Strain localization prediction of experimental
results

4.1 Plane strain tests

The proposed model was used to simulate plane strain tests

by Oda et al. [34] of Toyoura sand. The sand was com-

posed of 75% quartz, 22% feldspar, and 3% magnetite. The

mean diameter of sand was 0.18 mm, the uniformity

coefficient Cu = 1.5, and the maximum and minimum void

ratios were 0.99 and 0.63. The initial void ratio of soil

samples was 0.67–0.68, and the confining stress was

49 kPa. According to the experimental results of Oda et al.

[34], all the material parameters were specified. The

material parameters adopted in the modeling are:

G01 = 150, G02 = 100, v = 0.25, Mf1 = 1.870,

Mf2 = 1.720, Mf3 = 1.286, Mc = 1.0, d0 = 1.68,

A = 0.002, and Ht1 = 15000 kPa, Ht2 = 5000 kPa.

The predicted stress–strain relationships and volumetric

strain are shown in Figs. 2 and 3. For comparison, the

predicted results by isotropic model were also plotted. In

case of isotropic model, material parameters Mf1 and Mf2

were the same, and then, X1 is zero. The obtained stress–

strain relationships by isotropic model underestimate the

shear stresses when loading angle (angle between the major

principal stress direction and the normal of bedding plane)

is small, while they overestimate the shear stresses when

loading angle is large. It is obvious that the cross-aniso-

tropic model gives out much better predictions than the

isotropic one. During the integration of the rate form

stress–strain relationship, determinants of elasto-plastic

tensor and its symmetric part and the acoustic tensor were

calculated. The evolutions of these three determinants (e.g.,

d = 30o) are shown in Fig. 4, and the results in different d
conditions show the same varying pattern. The determinant

of elasto-plastic tensor keeps approaching zero as a limit,

but never becomes negative; it implies the failure surface is

a limit of yield surface and never exceeded. The vanishing

value of the determinant of symmetric part of elasto-plastic

tensor indicates potential instability. It is shown that the

sand becomes potentially unstable at a very early loading

stage. The attainment of zero value of determinant of

acoustic tensor, which corresponds to the bifurcation of

deformation, denotes onset of strain localization. The

major principal strains corresponding to onsets of strain

localization are shown in Fig. 5a; the experimental data

were obtained from the peak shear stress point. The

increase in loading angle results in a delay of strain

Fig. 9 Evolution of determinant of tensors (sector I, b = 0.45)
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localization. The isotropic model, which cannot reflect the

influence of loading angle, gives out constant strain at

bifurcation points. Without considering the non-coaxial

plastic flow rule, the predicted bifurcation points are earlier

than those in the experiment data. The peak stress ratios

given by both coaxial and non-coaxial models with

different loading angle are shown in Fig. 5b. These stress

ratios were underestimated by the coaxial model, and the

predictions by the non-coaxial model are close to the

experiments. These results are consistent with previous

bifurcation results by non-coaxial theory [35, 38]. If non-

coaxial plastic behavior was neglected, the strain at

Fig. 10 Prediction of true triaxial tests in sector II (data after [1, 22]). a b = 0, b b = 0.13, c b = 0.31, d b = 0.63, e b = 0.82, f b = 1
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initiation point of strain localization (corresponding to

bifurcation point) changes little with the loading angle; this

conforms to the FE numerical modeling [45, 46, 48]. The

influence of the confining pressure on the bifurcation

results is shown in Fig. 6; a larger loading angle results in a

later bifurcation points. To analyze the influence of the

initial void ratio on bifurcation points, the critical state

theory was incorporated into the proposed model. The

critical state line is ec = 0.934 - 0.019 (p/pat)
0.7 [29, 32],

the peak stress ratio and stress ratio at zero volumetric

strain rate were assumed state dependent, Mf = Mf0

exp(-1.1w), Mc = Mf0 exp(3.5w), and w = e - ec is the

state parameter. The influence of the initial void ratio e0 on

the bifurcation results is shown in Fig. 7. The results show

that the larger the initial void ratio, the later the bifurcation

point and the smaller the peak stress ratio. The results are

in accordance with previous experiments [2] and theoreti-

cal study [47, 49] that low hardening materials are more

prone to strain localization.

4.2 Strain localization prediction of true triaxial

tests

The true triaxial tests of Santa Monica beach sand [1, 22]

were simulated by the proposed model. The sand was

uniformly graded with sizes between 0.075 and 0.600 mm.

The width of the cubical specimen was 76 mm. The void

ratio of specimen was 0.601, and the relative density was

Dr = 90%. The confining pressure was 50 kPa, and the

intermediate principal stress ratio was always kept constant

during tests. The model was used to simulate stress–strain

relationship when b [intermediate principal stress ratio

b = (r2 - r3)/(r1 - r3)] equals to 0, 0.11, 0.26, 0.45, 0.6,

0.82, and 1. All material parameters in the model were

obtained from the experimental data [1, 22]. The elastic

parameters G01, G02, and v can be obtained by loading–

unloading tests. Mf1 was obtained from the b = 0 test

where the major principal stress is perpendicular to the

bedding plane, Mf2 was obtained from the b = 0 test where

the major principal stress is parallel to the bedding plane,

and Mf3 was obtained from the b = 1 test where the major

principal stress is parallel to the bedding plane. Mc and d0
were determined by the experimental results of volumetric

strain. A was determined by fitting the stress–strain curve.

The determined model parameters are: G01 = 150,

G02 = 100, m = 0.2, Mf1 = 1.8756, Mf2 = 1.7739,

Mf3 = 1.2628, Mc = 1.15, d0 = 1.8, A = 0.002,

Ht1 = 380 kPa, Ht2 = 320 kPa. According to the rela-

tionship between loading axis and bedding plane, the true

triaxial tests of cross-anisotropic sand were characterized

by three sectors. These sectors are: sector I, d = 0,

f ¼ p=2; sector II,d ¼ p=2, f ¼ 0; and sector III, d ¼ p=2,
f ¼ p=2.

The simulated stress–strain relationships and volumetric

strains in sector I are shown in Fig. 8. The ultimate shear

stress ratio, which corresponds to the plastic limit, changes

with b and shows a peak value. The influence of b on

stress–strain relationship and volumetric strain can be well

captured by the proposed model. During the integration

process of the rate form stress–strain relationship, three

instability criteria were checked. The determinants of

elasto-plastic tensor, its symmetric part, and the acoustic

tensor when b = 0.45 are shown in Fig. 9. The determinant

of the symmetric part of elasto-plastic tensor (i.e.,

detð ~Dep

sysÞ) turns zero at a very early loading stage of

loading process. detð ~Dep

sysÞ� 0 indicates the instability

potential of sands, while it does not guarantee the occur-

rence of instability. The zero value of the determinant of

acoustic tensor depends on the intermediate principal stress

ratio. In sector I, since the determinant of acoustic tensor

never turns zero when b = 0, localized instability does not

occur under this condition. With the increase in b value,

bifurcation points were produced. All those conditions as

long as b are bigger than 0.06 give out bifurcation points,

so strain localization occurs when b[ 0.06. The initiation

of strain localization prohibits the full mobilization of shear

strength and induces shear stress peak before the plastic

limit. As shown in Fig. 8, the bifurcation points agree very

well with peak shear stress points in experiments. In sector

II, the predicted stress–strain relationships and volumetric

strains when b equals 0, 0.13, 0.31, 0.63, 0.82, and 1 are

shown in Fig. 10. The shear stresses at plastic limits are

lower than those in sector I. This is due to the weakening

effect of cross-anisotropic sand when the direction of major

stress changes from perpendicular to parallel to bedding

plane. The determinant of acoustic tensor never turns

negative when b is less than 0.2. As shown in Fig. 11, the

varying patterns of instability criteria are the same with

those in sector I. In sector III, the predicted stress–strain

relationship and volumetric strain when b equals to 0, 0.11,

Fig. 11 Evolution of determinant of tensors (sector II, b = 0.31)
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0.39, 0.60, 0.8, and 1 are shown in Fig. 12. The predicted

shear stresses are smaller than those in sectors II and III

with the same b value and imposed strain. The determinant

becomes negative when b is 0.11, 0.39, 0.6, 0.8, and 1, and

the obtained evolution patterns of the determinant of

acoustic tensors when b = 0.39 are shown in Fig. 13. The

bifurcation points, which correspond to the changing value

of the determinant of acoustic tensor from positive to

negative, are plotted in Fig. 12. It should be noted that all

the bifurcation points were obtained in the hardening

regime of the soil; those bifurcation points that occur in the

softening regime were not within the scope of this study.

Fig. 12 Prediction of true triaxial tests in sector III (experimental data after [1, 22]). a b = 0, b b = 0.11, c b = 0.39, d b = 0.6, e b = 0.8,

f b = 1
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Although there are some differences between experiments

and theoretical predictions, the overall trend of the pre-

dictions is consistent with experimental data. The differ-

ences may be caused by the simplified description of Lode

dependency of non-coaxial hardening modulus. If an

elaborate Lode-dependent function was proposed, this

difference can be reduced. The quantification of the

influence of Lode angle on non-coaxial hardening modulus

still needs further study.

In summary, the bifurcation points in all three sectors

are plotted in Fig. 14. As shown in Fig. 14a, the stress

ratios given by plastic limit obviously overestimate

experimental results. The onset of strain localization

instability prohibits the mobilization of stress ratio, and the

predicted peak shear strengths compare well with those

peak points in experiments. As shown in Fig. 14b, the

major principal strains at bifurcation points also compare

well with the experimental results. The stress–strain rela-

tionship does not produce bifurcation point when b is near

0; specifically, strain localization does not occur in hard-

ening regime under a triaxial compression condition.

However, strain localization can be easily triggered when

b is near 0.4 (close to plane strain condition) in all three

sectors. Previous experimental results and bifurcation

analysis have shown that shear band is more likely occur in

plane strain state than triaxial state [3, 42, 50]. The pre-

dicted results in this paper are consistent with the previous

studies.

Fig. 13 Evolution of determinant of tensors (sector III, b = 0.39)

Fig. 14 Influence of intermediate principal stress ratio b on onset of strain localization (data after [1]). a The influence of b on peak principal

stress ratio at bifurcation point and b the influence of b on major principal strain at bifurcation point
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5 Conclusions

By introducing a fabric tensor into the Lode angle formu-

lation of Mohr–Coulomb yield/failure criterion, a 3D yield/

strength criterion for cross-anisotropic sand was proposed.

Based on the proposed criterion and utilizing an appropriate

stress–dilatancy function, a non-coaxial non-associated

elasto-plasticity model was established. The model was

shown to be able to capture influences of loading direction

and intermediate principal stress ratio on stress–strain rela-

tionships and volumetric characteristics. The bifurcation

analysis under plane strain condition showed that the stress

ratio at bifurcation point decreases with loading angle, while

the major principal strain at bifurcation point increases with

loading angle. The proposed model was further used in the

strain localization analysis under true triaxial conditions;

analyses were done in three sectors characterized by loading

direction and bedding plane in deviatoric plane. Strain

localization occurs in most b value conditions except for

those which are close to the triaxial compression condition.

Shear strength of sands was not fully mobilized for the ini-

tiation of strain localization preventing the attainment of

plastic limit. This prevention becomes significant when b is

near 0.4. The influence of deformation bifurcation on shear

strength becomes weak when the loading axis changes from

perpendicular to parallel to the bedding plane.
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