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Abstract The ISA-plasticity is a mathematical platform

which allows to propose constitutive models for soils under

a wide range of strain amplitudes. This formulation is

based on a state variable, called the intergranular strain,

which is related to the strain recent history. The location of

the intergranular strain can be related to the strain ampli-

tude, information which is used to improve the model for

the simulation of cyclic loading. The present work pro-

poses an ISA-plasticity-based model for the simulation of

saturated clays and features the incorporation of a viscous

strain rate to enable the simulation of the strain rate

dependency. The work explains some aspects of the ISA-

plasticity and adapts its formulation for clays. At the

beginning, the formulation of the model is explained.

Subsequently, some comments about its numerical imple-

mentation and parameters determination are given. Finally,

some simulations are performed to evaluate the model

performance with two different clays, namely a Kaolin clay

and the Lower Rhine clay. The simulations include

monotonic and cyclic tests under oedometric and triaxial

conditions. Some of these experiments include the varia-

tion of the strain rate to evaluate the viscous component of

the proposed model.

Keywords Clays � Constitutive models � Cyclic loading �
ISA-plasticity � Viscosity

1 Introduction

Simulations of geotechnical structures dealing with satu-

rated clays require in many cases a realistic description of

the soil under monotonic and cyclic loading, e.g.,

[5, 9, 10, 28, 54]. The behavior of this material depends not

only on the material state, such as the effective stress or

density, but also on the strain amplitude [3, 4]. Researchers

have found that the clay behaves elastically only under

very small strain amplitudes, of about k De k \10�4.

Under medium strain amplitudes, the so-called small strain

effects 10�4\ k De k \10�2 take place, namely the

stiffness increase due to reversal loading and the reduction

of the plastic strain rate [19, 37]. The stiffness amplifying

factor reduces for increasing strain amplitudes, as observed

on a typical stiffness degradation curve. Finally, when the

soil is sheared under very large deformations

k De k [ 10�2, it tends asymptotically to the critical state

responsible for the failure. These are at least some relevant

aspects which are expected to be considered by competent

constitutive models.

A single model capturing all these effects is rare to find,

and therefore, researchers recommend the usage of an

‘‘appropriated’’ model for each particular problem. To give

an example, one would choose some elastoplastic models

[11, 42, 45, 56], a Karlsruhe hypoplastic model for clays

[24, 26, 35, 55] or a Barodesy model for clays [15, 36] for

the simulation of a bearing capacity problem of a shallow

foundation. These models are only able to simulate

monotonic loading for non-viscous clays, and therefore,

they would not capture the strain rate dependency typical

for plastic clays. If the clay shows a high plasticity, a rate-

dependent model could be useful to consider the influence

of the loading velocity, e.g., [7, 8, 30, 40, 44, 62, 63]. All
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the mentioned models limit their capabilities for monotonic

loading, and therefore, their use is very restricted. In con-

trast, in problems where the soil exhibits unloaded zones,

such as urban excavations with retaining walls, small strain

effects should be certainly considered [12] and robust

models to simulate memory effects, e.g., [25], or cyclic

loading are probably required, e.g., [14, 32, 33, 46, 49, 51].

Finally, if the problem deals only with small strain

amplitudes k De k \10�4, as for example a wave propa-

gation problem, an elastic relation describing the stiffness

for small strains and depending on the material state would

be sufficient for the material model [23, 47]. Hence, as one

may see, the type of constitutive model varies substantially

depending on the problem type and sometimes one may

loose the connection between their mathematical

formulations.

Among all the types of constitutive models, an inter-

esting approach called ISA-plasticity has been recently

proposed by Fuentes and Triantafyllidis [19] intending to

embrace a wide range of strain amplitudes with a single

constitutive equation. The ISA-plasticity (Intergranular

Strain Anisotropy) presents a general mathematical for-

mulation which adapts its equation to the proper one

depending on the strain amplitude. In particular, the model

recognizes a small strain amplitude at which only elastic

behavior occurs, a medium strain amplitude whereby small

strain effects are considered, and a large strain amplitude

where all these small strain effects cease. It allows also to

extent the capabilities of existing hypoplastic models

[24, 29, 35, 55, 59, 60] for the simulation of cyclic loading

and small strain effects. The first ISA-plasticity-based

model was proposed for sands [16, 19] and proved to

simulate fairly well the behavior in a wide range of strain

amplitudes. Recently, this formulation was coupled with

the hypoplastic model of Wolffersdorff [59] to simulate a

larger number of consecutive cycles (N[ 30) and complex

multidimensional loading [43]. So far, an ISA-plasticity-

based model for viscous clays has never been proposed in

the literature, although some hints were given in [17] to

simulate non-viscous clays.

In this work, an ISA-plasticity-based formulation is pro-

posed to simulate the monotonic and cyclic behavior of

saturated clays. An extension is also proposed to simulate the

strain rate dependency shown by some clays. In contrast to

most of the conventional models, the strain rate dependency

is simulated by an additional strain mechanism whose

intensity depends on the material viscosity. The extension

proposed by Poblete et al. [43] to enhance the ISA-plasticity

for a larger number of repetitive loading (N[ 30) is

accounted in the present work. The structure of this article is

as follows: At the beginning, the formulation of the proposed

model is explained. Then, a short guide to determine its

parameters is provided. Finally some simulations are care-

fully analyzed to discuss the model performance. The nota-

tion of this article is as follows. Scalar quantities are denoted

with italic fonts (e.g., a,b), second-rank tensors with bold

fonts (e.g.,A, r) and fourth-rank tensors with Sans Serif type

(e.g., E; L). Multiplication with two dummy indices, also

known as double contraction, is denoted with a colon ‘‘ : ’’

(e.g., A : B ¼ AijBij). When the symbol is omitted, it is then

interpreted as a dyadic product (e.g., AB ¼ AijBkl). The

deviatoric component of a tensor is symbolized with an

asterisk as superscript A�. The effective stress tensor is

denoted with r and the strain tensor with e. The Roscoe

invariants are defined as p ¼ �trr=3, q ¼
ffiffiffiffiffiffiffiffi

3=2
p

k r� k,
ev ¼ �tre and es ¼

ffiffiffiffiffiffiffiffi

2=3
p

k e� k. The stress ratio tensor is

defined as r ¼ r�=p.

2 ISA-plasticity formulation with viscous strain

The ISA-plasticity is a family of constitutive models able

to describe the monotonic and cyclic behavior of soils. Its

key characteristics among other models are to incorporate

the strain amplitude dependency and to simulate small

strain effects. Accordingly, the elastic locus of the material

is enclosed by the size of a strain amplitude denoted with

k De k¼ R, commonly known as the threshold strain

[1, 52]. This strain amplitude takes a value of approxi-

mately R � 10�4 for clays according to some experiments

reporting shear modulus degradation curves [1, 52]. The

ISA-plasticity can be cataloged as an elastoplastic model,

but in contrast to conventional models, its yield surface is

defined within the space of a state variable related to the

strain amplitude. This variable is a second-rank tensor

called the intergranular strain and denoted with h. It was

originally introduced by Niemunis and Herle [39] to

improve some existing hypoplastic models (e.g., [59]) but

entirely reformulated by Fuentes and Triantafyllidis [19] to

incorporate the elastic locus of the material. Although both

formulations present similar parameter meanings, they

operate in different ways and do not share any mathemat-

ical relation. The general formulation of the ISA-plasticity

has been tackled in former works [16, 19, 43]; however,

some aspects are in the following sections explained. In

Sect. 2.1, the evolution equation of the intergranular strain

h will be described. Subsequently, the mechanical model

formulation relating the stress rate _r to the strain rate _e is

explained (Sect. 2.2). The general formulation of the

mechanical model features for this work the incorporation

of a viscous strain rate to simulate the strain rate depen-

dency of the material. This and other details of the

mechanical model will be explained in Sect. 2.2.
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2.1 Evolution equation of the intergranular strain

In this section the evolution of the intergranular strain h is

described. Detailed description of these relations can be

also found in [16, 19, 22, 43] but will be summarized in the

following lines. The equation for the rate _h is based on a

simple elastoplastic relation which reads:

_h ¼ _e� _kHN ð1Þ

whereby _e is the strain rate, kH � 0 is a consistency

parameter, also known as plastic multiplier, and N is the

flow rule (k N k¼ 1) considered as associative, i.e., normal

to the yield surface. Under elastic conditions, the

consistency parameter is equal to kH ¼ 0 and the

intergranular strain h evolves identically as the strain e,

i.e., _h ¼ _e. The aforementioned feature allows us to

introduce a yield surface related to the strain amplitude

k De k¼ R through the following yield function FH:

FH ¼k h� c k �R=2 ð2Þ

whereby c is a hardening variable of the intergranular strain

model and describes the center of the yield surface. This

variable has been also termed the back-intergranular strain

[19] considering its kinematic mechanism. As in

conventional elastoplasticity, an elastic condition is

described through the condition FH\0 while FH ¼ 0

implies plasticity. The shape of the yield surface is very

simple: It describes a perfect sphere within the principal

space of the intergranular strain space as depicted in

Fig. 1a. The yield surface turns into a circle within the

space of the invariants hv ¼ �trðhÞ and hs ¼
ffiffiffiffiffiffiffiffi

2=3
p

kh�k,
where h� is the deviatoric intergranular strain; see Fig. 1b.

The outer (green) surface corresponds to the bounding

surface of the intergranular strain which will be explained

later on. The flow rule is normalized k N k¼ 1 and is

normal to the yield surface and therefore reads:

N ¼ ðh� cÞ! ð3Þ

where the operator t! ¼ t= k t k means normalization of

an arbitrary tensor t. The back-intergranular strain c bases

its evolution equation on a simple relation of bounding

surface plasticity [13], but within the intergranular strain

space. Its general formulation may be written as:

_c ¼ _k�c ð4Þ

whereby �c is the hardening function. The hardening rule for

c considers a bounding surface within the intergranular

strain space described with the bounding condition

FHb ¼ 0, whereby the function FHb is defined as:

FHb ¼k h k � R ð5Þ

Notice that the bounding condition is equivalent to the

constraint k c k �R=2, as depicted in Fig. 1b. Therefore,

the ISA-plasticity introduces an image tensor of c for the

bounding condition, denoted with cb and mapped as

follows:

cb ¼ ðR=2Þ _e
!

for FHb ¼ 0 ð6Þ

In order to force the bounding constraint _c ¼ 0 when

c ¼ cb, the following relation for the hardening function �c

has been proposed:

�c ¼ bhðcb � cÞ=R ð7Þ

whereby bh is a material parameter controlling the rate of c.

Increasing values of bh would simulate a brittle behavior

between the elastic and plastic state and vice-versa. The

(a) (b)

Fig. 1 Yield surface and bounding surface of the intergranular strain model. a 3D representation, b example of the bounding condition FHb ¼ 0
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evolution mechanism for the intergranular strain can be

understood with the following example: Consider we

would like to perform a monotonic loading by applying

constant strain rate or a proportional strain path in the sense

of Gudehus [21]. Consider also that at the beginning the

intergranular strain lies at the bounding surface as shown in

Fig. 2a. The strain path to apply is the one shown in

Fig. 2b. At the beginning, the intergranular strain goes

through the elastic locus and evolves identically to the

strains, i.e., from points A to B, one obtains Dh ¼ De.
Afterward, a plastic behavior is obtained and therefore the

intergranular strain starts to decelerate according to

Eq. (1). Finally, when the strain path is sufficiently large,

the intergranular strain h reaches its image at the bounding

surface h ¼ hb at Point C and stops evolving _h ¼ 0; see

Fig. 2a. One can show that this image tensor hb reads:

hb ¼ RN ð8Þ

This particular state is called ‘‘mobilized state’’ and rep-

resents a state at which the soil has recently experienced

medium or large deformations, of about k De k [ 10�3 or

even more. At this state, no small strain effects, such as

stiffness, increase due to reversal loading and reduction of

the plastic strain rate should be delivered by the mechan-

ical model which is explained in the following section.

The consistency parameter _kH is derived from the con-

sistency equation _FH ¼ 0 and reads [19] :

_kH ¼ hN : _ei

1� oFH

oc

� �

: �c
ð9Þ

The set of Eqs. (1)–(9) defines the intergranular strain

model. The main purpose of the information provided by

the intergranular strain is to improve the mechanical

constitutive model for cyclic loading. According to the

proposed theory, if the intergranular strain h is far away

from its image hb, probably the current strain amplitude is

of small or medium size (k De k \10�3), while a

mobilized state h ¼ hb is a sign of larger strain

amplitudes. Hence, as one may see, the current strain

amplitude may be related to the relative position of the

intergranular strain to its image khb � hk. This information

will be very useful to improve the mechanical model in the

next section and will be acquired through a suitable scalar

function q ranging between 0� q� 1 and defined as:

q ¼ 1� khb � hk
2R

ð10Þ

A value of q ¼ 1 implies mobilized states, while q � 0

suggests the consideration of small strain effects. Its

interpretation is very easy and therefore will be used for the

mechanical model formulation.

2.2 Formulation of mechanical model for viscous

soils

In this section, the general form of the constitutive equation

for the mechanical behavior is explained. In contrast to the

previous works, we extend the capabilities of the

mechanical model to consider the strain rate dependency

shown by some saturated clays. The extension is simple

because it only incorporates an additional strain rate

component, denoted with _evis, to simulate the viscous

effects of the material. The new constitutive equation

reads:

_r ¼ E : ð _e� _ep � _evisÞ ð11Þ

A A

B

C

B

C

d d

(a) (b)

Fig. 2 Schematic illustration of the evolution of the intergranular strain. a Path within the intergranular strain space, b path within the strain

space
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whereE is the elastic stiffness, _ep is the plastic strain rate, and

_evis is the viscous strain rate. We recall that Eq. (11) can be

considered as a general case and reduces to the case of non-

viscous soil when setting _evis ¼ 0, as in the former works

[19, 43]. The proposed formulation assumes that small strain

effects do not influence the viscous strain rate _evis, and
therefore is always active even under elastic conditions. We

present the following two arguments to support the latter

assumption: The first is to allow the simulation of creep

under elastic conditionsFH\0. In the opposite scenario, any

infinitesimal unloading path (elastic step) would result in the

elimination of any creep process. No experimental

observation has proved such effect, and actually they show

something different [40]. The second is the lack of

experimental studies trying to understand the influence of

the small strain effects on the strain rate dependency. We

therefore opt for simplicity and let this investigation for

further improvements. The magnitudes E and _ep are kept

with the same structure as in [19] and read:

E ¼ m �E ð12Þ

_ep ¼ yh _�e
p ð13Þ

where �E and _�ep are called ‘‘mobilized’’ stiffness and

‘‘mobilized’’ plastic strain rate, respectively, and the

factors m and yh are scalar functions, to increase the

stiffness and reduce the plastic strain rate upon reversal

loading, respectively. Their formulation reads:

yh ¼ qvhN : _e
!i ð14Þ

m ¼ mR þ ð1� mRÞyh ð15Þ

whereby v is an exponent controlling the shape of the

stiffness degradation curve and mR is the maximum stiff-

ness factor considered as a parameter. The factor qv in

Eq. (14) is aimed to reduce the plastic strain rate upon

cyclic loading, while the second hN : _e
!i guarantees the

continuity of the material response in the vicinity of the

neutral loading [19]. Notice that these variables range

between 1�m�mR and 0� yh � 1. Hence, while the

magnitudes �E and _�ep are adjusted to simulate the behavior

at mobilized states, or equivalently, at medium or large

strain amplitudes k De k [ 10�3, the factors m and yh are

responsible for the small strain effects.

Experiments on cyclic loading with a large number of

repetitions (N[ 30) have shown that the plastic accumu-

lation rate reduces for increasing number of consecutive

cycles when stress loops are performed away from the

critical state line [58]. Poblete et al. [43] showed that this

effect can be captured through the modification of the

exponent v (see Eq. 14). In order to do this, they introduced
an additional state variable to distinguish whether the soil

is performing a few or several consecutive cycles. The state

variable, denoted with ea, evolves according to the relation:

_ea ¼
Ca

R
ð1� yh � eaÞ k _e k ð16Þ

wherby Ca is a parameter controlling its rate. Hence, when

ea � 0 means that a few cycles or monotonic loading has

been recently performed, whereas ea ! 1 suggests that

several consecutive cycles have been experienced. This

information is accounted in the formulation of exponent v
which according to Poblete et al. [43] reads:

v ¼ v0 þ eaðvmax � v0Þ ð17Þ

whereby v0 and vmax are material parameters. The first

should be calibrated for a single cycle and the second after

performing a number of consecutive cycles. The transition

between these two states is controlled by parameter Ca.

Their calibration has been previously explained in [43] but

will be recapitulated in ‘‘Appendix.’’ Notice that one may

ignore this effect setting Ca ¼ 0 and v0 ¼ vmax.

Considering that the viscous strain rate _evis is always

active, an elastic step of the intergranular strain model, i.e.,

FH\0, produces a viscoelastic step on the mechanical

model, yh ¼ 0. Under mobilized states q ¼ 1, the scalar

functions yield to m ¼ 1 and yh ¼ 1 and the model (Eq. 11)

turns into (visco-)hypoplastic. Table 1 summarizes the

constitutive equation for the intergranular strain model and

mechanical model according to the strain amplitude. The

equations presented herein correspond to the general form of

the mechanical model. In order to simulate a particular

material, one should define themodel formobilized states. In

order to do this, the definition of the magnitudes �E, �ep and _evis

are required. They are explained in the following section.

3 Constitutive model for clays under mobilized
states

ISA-plasticity-based models require the definition of the

magnitudes �E, _�ep and _evis to simulate the soil behavior

under mobilized states q ¼ 1. As mentioned before, one

may choose relations of existing hypoplastic models for

Table 1 Summary of the model stages according to the current strain

amplitude

Name _h _r m yh

Elastica ¼ _e, ¼ mR
�E : ð _e� _evisÞ ¼ mR ¼ 0

Transition ¼ _e� _kN, ¼ m �E : ð _e� yh _�e
p � _evisÞ [ 1 \1

Mobilized state ¼ 0, ¼ �E : ð _e� _�ep � _evisÞ ¼ 1 ¼ 1

a More specifically, elastic for the intergranular strain model and

viscoelastic for the mechanical model
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clays for these magnitudes, e.g., [24, 34, 55]. For the

proposed model, some relations proposed by [17] to sim-

ulate clays are adopted, while other functions are herein

proposed. So far, an ISA model has never been formulated

with the consideration of viscous effects. Therefore, a

relation for the viscous strain rate _evis is also proposed and

evaluated. These relations are explained in the subsequent

lines.

The formulations of the magnitudes �E and _�ep are based

on two characteristic void ratios corresponding to the

maximum and critical state void ratio and denoted with

ei ¼ eiðpÞ and ec ¼ ecðpÞ, respectively. They follow from

Modified Cam Clay (MCC) relations [45] and read:

Maximum void ratio : ei ¼ ei0 � k logðp=prefÞ ð18Þ

Critical state void ratio : ec ¼ ei � k logð2Þ ð19Þ

with the parameters ei0 and k and the reference pressure of

pref ¼ 1 kPa. Figure 3a illustrates an example of the curves

describing ec and ei. Similarly, the model considers two

characteristic stress surfaces, namely the critical and

bounding state surface. The critical state surface presents

the same definition as in classical models [45] and is

described through the function Fc:

Critical state surface : Fc �k r k � k rc k¼ 0;

rc ¼
ffiffiffiffiffiffiffiffi

2=3
p

McgðhrÞ r! ð20Þ

where r ¼ r�=p is the stress ratio tensor, r� is the stress

deviator, p ¼ �trr=3 is the mean stress, Mc is the slope of

the critical state line CSL in the p� q space under triaxial

compression, and the scalar function g ¼ gðhrÞ is a scalar

function responsible for its shape in the deviator stress

plane, as depicted in Fig. 3b. The function g ¼ gðhrÞ
depends on the Lodes angle hr of the stress ratio r and

ranges between c� g� 1, whereby c ¼ Me=Mc ¼ 3=ð3þ
McÞ represents the ratio between the critical state slope for

triaxial extension Me and triaxial compression Mc

according to the Mohr–Coulomb relation. The scalar

function g ¼ gðhÞ is taken from Argyris et al.[2] and reads:

gðhÞ ¼ 2c

ð1þ cÞ � ð1� cÞ cosð3hÞ ð21Þ

The bounding surface describes the state in which the

plastic strain rate for mobilized states renders k _�ep k¼k _e k.
As explained in [19], the position of this surface is close

(but not equal) to the peak stress ratio obtained under

monotonic triaxial shearing. For its description, we adopt

the wedge-capped surface proposed by [19] described with

the function Fb ¼ 0. Figure 3c depicts the bounding

surface Fb ¼ 0 within the p� q space. Notice the

intersections in point A with the ec curve and in point

B with the ei curve. The function Fb reads:

Bounding surface : Fb �k r k � k rb k¼ 0

with rb ¼ rcfb

and fb ¼ fb0 1� e

ei

� �nF
� �1=2

ð22Þ

where fb0 [ 1 is a material parameter defining the

maximum norm k r k at the bounding surface and nF is

an exponent deduced to ensure the point at which the

surface intersects the critical state line [19]:

nF ¼
log f 2b0 � 1

� �

=f 2b0
� �

logðec=eiÞ
ð23Þ

The tensors rb and rc from Eqs. (22) and (20), respectively,

are images of the stress ratio r at the bounding and critical

state surface according to the mapping rule depicted in

Fig. 3b. Having the characteristic stress surfaces and void

ratios defined, it is proceeded with the definition of the

magnitudes �E, _�ep and _evis. The elastic stiffness at mobilized

states �E is adopted from [17] and reads:

�E ¼ 3 �K 1
!

1
!þ 2 �G I� 1

!
1
!� �

�
�K
ffiffiffi

2
p 1rþ r1ð Þ ð24Þ

whereby �K and �G are the bulk and shear modulus under

mobilized states, I is the fourth-rank unit tensor for

symmetric tensors Iijkl ¼ 1=2ðdikdjl þ dildjkÞ, 1
!¼ 1=

ffiffiffi

3
p

is the normalized Kronecker delta tensor, and r ¼ r�=p is

the stress ratio. The bulk modulus K ¼ m �K and shear

modulus G ¼ m �G are adjusted to the Modified Cam Clay

(MCC) relations as follows:

�K ¼ p

k
ð1þ eÞ
ð1� YimÞ

with Yim ¼ ðk� jÞ=ðkþ jÞ ð25Þ

�G ¼ ð1� 2mÞ
2ð1þ mÞK ð26Þ

where m is the Poisson ratio, and j is the swelling index.

The mobilized plastic strain rate tensor _�ep reads:

_�ep ¼ Ym k _e k ð27Þ

whereby Y is the degree of non-linearity [37] and m is the

flow rule adopted from [17]:

m ¼ �1=2ðk rc k � k r kÞ þ r

k rc k

	 
!
ð28Þ

The degree of non-linearity Y is proposed with a similar

interpolation function as in [37] and [35]:

Y ¼ Yi þ ð1� YiÞ
k r k
k rb k

� �nY

with Yi ¼ Yimðp=piÞ2

ð29Þ

372 Acta Geotechnica (2018) 13:367–386

123



where the function Yi ¼ Yimðp=piÞ2, previously defined and

analyzed in [18], has been adjusted to simulate the

behavior at isotropic states q ¼ 0, and pi ¼
exp ðei0 � eÞ=kð Þ is the Hvorslev mean stress representing

the projection of p in the ei curve for a given e. As

explained in [20], higher values of nY would reduce the

plastic strain rate for a given stress ratio r. A minimum

value of nY ¼ 2 is recommended to assure a smooth

response of the model around the isotropic stress axis

r ¼ 0. We propose an exponent which increases with

increasing number of consecutive cycles. Considering its

similarity with the exponent v, we propose the same

interpolation function as in Eq. (17) but bounding the

exponent between 2� nY � vmax:

nY ¼ 2þ eaðvmax � 2Þ ð30Þ

4 Viscous strain rate _evis

The present section proposes a formulation for the viscous

strain rate _evis and discusses some aspects of the simulation

of the strain rate dependency with the proposed relation.

For the viscous strain rate _evis, the classical power relation

widely used in several visco-plastic models

[38, 40, 41, 50, 53] is herein adopted:

_evis ¼ Iv

k
1

OCR3D

� �1=Iv

m ð31Þ

whereby Iv is the viscosity index and OCR3D is the

definition of overconsolidation ratio for 3D states. Detailed

analysis of this relation can be found in [37, 40, 53]. For

Iv ¼ 0 we set _evis ¼ 0 avoiding the exponent discontinuity.

Similar to Vermeer [53] and Niemunis [37], a three-

Fig. 3 Characteristic void ratios and stress surfaces. a Characteristic void ratios ei and ec. b Stress surfaces in the deviator plane. c Stress

surfaces in the p–q plane. d Stress surfaces in the principal stress space
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dimensional definition of the overconsolidation ratio is

required. This is usually formulated as a surface within the

stress space. Of course, a capped surface would be the most

appropriate for this purpose. For the sake of consistency,

the surface must intersect the isotropic stress axis at

OCR3D ¼ pi=p (for q ¼ 0). We propose a similar function

as the one used in the degree of non-linearity considering

its simplicity (see Eq. 29):

OCR3D ¼ pi

p
þ 1� pi

p

� �

k r k
k rb k

� �nocr

ð32Þ

where nocr is an additional parameter to control the shape of

the surface. Figure 4 shows the shape of the proposed

surface with the variation of OCR3D and the parameter nocr.

As one may note, under isotropic stress states the relation

OCR3D ¼ pi=p holds and one recovers the one-dimensional

definition of the overconsolidation ratio. For the condition

OCR3D ¼ 1, the surface coincides with the bounding sur-

face Fb ¼ 0; see Fig. 4a. Therefore, it intercepts the critical

state surface at p ¼ pi=2; see point A. For higher

OCR3D [ 1, the size of the surface reduces and its shape is

controlled by the parameter nocr; see Fig. 4b. Lower values

of nocr produce a narrower shape of the surface. This effect

will allow to calibrate the parameter nocr using undrained

triaxial tests as described in ‘‘Appendix.’’

Some illustrative simulations are given in Fig. 5 to

understand the model performance when dealing with

time-dependent effects. For instance, the simulations bor-

row the parameters of the Kaolin clay from Table 1. In

Fig. 5a the simulation of isotropic compression paths pre-

senting different strain rate is shown. These compression

paths are also known as isotachs, and their position

depends on the strain rate. The simulation shows that the

maximum void ratio curve e ¼ ei is only reachable under

infinite strain rate, similar as in other formulations

[6, 27, 61]. Under undrained triaxial shearing, slower strain

rates return a higher pore water pressure development; see

Fig. 5b.

All these relations define the proposed model. Notice

that one may simplify the constitutive model to different

formulations according to the problem of interest. For

example, for elastic problems, one may set Iv ¼ 0 and R !
1 which reduces the model to _r ¼ mR

�E : _e. For models

specializing on monotonic loading without viscous effects,

one may use the assumptions R ! 0 and Iv ¼ 0 which

reduces to the hypoplastic model _r ¼ �E : ð _e� _�epÞ. Under
the same assumptions, one may consider the strain rate

dependency with Iv [ 0 which results in the equation

_r ¼ �E : ð _e� _�ep � _evisÞ, and finally a model consistent with

a wide range of strain amplitudes and considering viscous

effects is _r ¼ m �E : ð _e� yh _�e
p � _evisÞ. Table 2 presents a

summary of the different forms which can be obtained

from the simplification of the proposed model given some

assumptions.

(a) (b)

Fig. 4 Shape of the OCR3d surface (Eq. 32) with Kaolin parameters. a Variation of the value of OCR3D. b Variation of parameter nOCR with

OCR3D ¼ 1:25
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5 Numerical implementation and parameters

The proposed model has been implemented with the pro-

gramming language FORTRAN, as a material subroutine from

the commercial finite element software ABAQUS standard.

The classic ‘‘elastic predictor’’ scheme has been followed

to perform the numerical implementation [48]. A sub-

stepping scheme with small strain increments has been

implemented to guarantee numerical convergence. All the

terms except the viscous strain rate were explicitly

implemented (evaluated at the beginning of the subincre-

ment). For the viscous strain rate, a semi-implicit

scheme has been implemented following a similar inte-

gration scheme as by Niemunis [37].

The proposed model requires the calibration of 14

parameters. They are subdivided into different groups

according to their role within the model, namely ‘‘Elas-

ticity’’ (m, j, k), ‘‘Plasticity’’ (ei0, Mc, fb0), ‘‘Viscosity’’ (Iv,

nocr) and ‘‘Intergranular strain’’ (mR, R, b, v0, vmax, Ca). All

parameters except for nocr have been already used in former

works, e.g., [17, 19, 40, 43] and detailed in [22], but their

calibration are once more explained in ‘‘Appendix.’’

6 Simulations with experiments

We evaluate the performance of the proposed model

through the simulation of the experimental results of

two different clays, namely the Kaolin Clay and the

Lower Rhine clay. Table 4 provides an overview of the

index properties of these clays, including the liquid

limit wL, plastic limit wP, plasticity index IP and grain

density qs [57]. The set of experiments includes

oedometric and triaxial tests under several conditions,

such as monotonic and cyclic loading and with the

variation of the strain velocity. In all simulations the

intergranular strain h and the back-intergranular strain

have been initialized with h ¼ �R 1
!

and c ¼ h=2

which corresponds to a fully mobilized state after

isotropic compression. This would represent the initial

isotropic consolidation of the sample before perform-

ing the test. The parameter calibration of both mate-

rials has been performed following the short guide

from Sect. 1. Table 3 lists the selected parameters for

these materials.

Summary of constitutive relations

Constitutive equation:

_r ¼ m �E : ð _e� yh _�e
p � _evisÞ

with the scalar functions according to ISA-plasticity:

m ¼ mR þ ð1� mRÞyh (Function to increase stiffness upon cycles)

yh ¼ qvhN : _e
!i (Function to reduce plastic strain rate upon cycles)

v ¼ v0 þ eaðvmax � v0Þ (Exponent of the intergranular strain effect)

Relations for mobilized states yh ¼ 1:

�E ¼ 3 �K 1
!

1
!þ 2 �G I� 1

!
1
!� �

�
�K
ffiffiffi

2
p 1rþ r1ð Þ (Eq. 25 for �K and Eq. (26) for �G)

_�ep ¼ Ym k _e k (Mobilized plastic strain rate)

Y ¼ Yi þ ð1� YiÞ
k r k
k rb k

� �nY

with Yi ¼ Yimðp=piÞ2
(Eq. 22 for rb and Eq. 30 for nY )

m ¼ �1=2ðk rc k � k r kÞ þ r

k rc k

	 
! (Flow rule, Eq. 20 for rc)

_evis ¼ Iv

k
1

OCR3D

� �1=Iv

m
(Viscous strain rate)

OCR3D ¼ pi

p
þ 1� pi

p

� �

k r k
k rb k

� �nocr ( 3D definition of overconsolidation ratio )

Yield surface

FH ¼k h� c k �R

2

(Yield surface of the model)

Intergranular strain model

_h ¼ _e� _kHN (Intergranular strain rate, with N ¼ ðh� cÞ!, Eq. 9 for _kH )

_c ¼ _kHbhðcb � cÞ=R (Back-Intergranular strain rate, with cb ¼ ðR=2Þ _e
!
)

_ea ¼
Ca

R
ð1� yh � eaÞ k _e k (Evolution of internal variable for cyclic history)
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6.1 Simulations with Kaolin clay

The Kaolin is a medium plasticity clay with a viscosity

index equal to Iv ¼ 0:015. Reconstituted samples of height

and diameter equal to 50 mm were used for this purpose.

Figure 6 shows the first experiment and corresponds to an

oedometer test showing time-dependent effects. The

experiment consists on several stages with different strain

rates and creep phases. It includes also some unloading-

reloading cycles showing hysteretic behavior. All these

(a) (b)

Fig. 5 Simulations with different strain rates (isotachs). a Isotropic compression. b Undrained triaxial test

Table 2 Simplification of the general constitutive model to some

particular forms

Name Assumptions Simplified equation

Elastic R ! 1, Iv ¼ 0 _r ¼ mR
�E : _e.

Viscoelastic R ! 1 _r ¼ mR
�E : ð _e� _evisÞ.

Hypoplastic R ! 0, Iv ¼ 0 _r ¼ �E : ð _e� _�epÞ
Visco-hypoplastic R ! 0 _r ¼ �E : ð _e� _�ep � _evisÞ
ISA-plasticity None _r ¼ mE : ð _e� yh _e

p � _evisÞ

Table 3 Material parameters of the proposed model

Description Units Approx. range Kaolin Lower Rhine clay

Elasticity

k Compression index [–] 10�6�1 0.13 0.26

j Swelling index [–] 10�6�1 0.05 0.04

m Poisson ratio [–] 0�0:5 0.33 0.2

Plasticity

ei0 Maximum void ratio at p ¼ pref [–] 0:5�2 1.76 2.47

Mc CS slope [–] 0:5�1:5 1.0 0.95

fb0 Bounding surface factor [–] 1�2 1.1 1.45

Viscosity

Iv Viscosity index [–] 1�2 0.015 0.025

nocr Viscous exponent [–] 0:4�2:0 0.4 0.5

Intergranular strain

mR Stiffness factor [–] 1�7 5 5

R IS yield surface radius [–] 10�5�10�4 2	 10�4 10�4

b IS hardening parameter [–] 0�1 0.076 0.2

v0 Minimum IS exponent [–] 1�10 7 7

vmax Maximum IS exponent [–] 20�50 40 7

Ca Accumulation rate factor [–] 0�0:1 0.005 0
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observations were captured by the proposed model which is

also shown in the same figure.

Figure 7 shows a set of undrained triaxial tests with the

Kaolin clay. All these experiments were conducted with a

constant axial strain rate equal to _e1 ¼ 10�8 1 / s, except

for the last experiment in Fig. 7e, f whereby a sequence of

different strain rates has been applied. Figure 7a, b shows

the results of three normal consolidated samples with dif-

ferent confining pressures p0 ¼ f100; 200; 300g kPa. The

simulations captured fairly well most of the observed

behavior with some discrepancies with respect to the peak

stress. Figure 7c, d shows the results with overconsolidated

samples. All samples were initially preloaded under iso-

tropic compression and subsequently unloaded till reaching

the desired stress and overconsolidation ratio (OCR). At

this stage, overconsolidation ratios equal to OCR ¼
f2; 4; 8g were reached by the different samples. Simula-

tions show also a similar pattern with the peak stress

(Fig. 7c) although the behavior on the p� q plane seems to

be in agreement (Fig. 7d). The last experiment shown in

Fig. 7e, f includes the variation of the vertical strain rate

according to the following sequence: _e ¼ 10�4 ! 10�5 !
10�6 ! 10�5 1 / s. Some strain rate ‘‘jumps’’ are of course

evidenced in the results, which are also captured by the

model. Simulation of this test gave satisfactory results.

The performance of the model on cyclic loading is

evaluated with the subsequent experiments. They corre-

spond to cyclic undrained triaxial tests having different

deviator stress amplitudes qamp. All cycles are symmetric

with respect to the isotropic stress axis. The experiments

present a deviator stress amplitude of qamp ¼ 70; 50 and 40

kPa and are shown in Figs. 8, 9 and 10, respectively. They

initiated with a confining pressure of p0 ¼ 200 kPa. Con-

sidering their different stress amplitudes qamp, they differed

on the number of cycles N to reach failure, with N � 6 for

qamp ¼ 70 kPa, N � 35 for qamp ¼ 50 kPa and N � 450 for

qamp ¼ 40 kPa. They all present a constant vertical strain

rate of e1 ¼ 8	 10�5 1 / s. Simulations were performed to

analyze the model performance. The simulations showed in

general an agreement with the observed behavior, espe-

cially with the amplitudes qamp ¼ 70 kPa and qamp ¼ 50

kPa. The accumulation of the pore water pressure pw was

fairly well reproduced.

6.2 Simulations Lower Rhine clay

The simulations with Lower Rhine Clay are within this

section presented. The experimental results are taken from

[57]. All samples are reconstituted and present a height and

diameter equal to 54 mm. The selected parameters for the

proposed model are given in Table 1. The extension by

Poblete et al. [43] is not considered on the present simu-

lations due to the lack of experiments with a large number

of repetitive cycles. Therefore, we set Ca ¼ 0 and

vmax ¼ v0.
An oedometer test presenting an unloading-reloading

cycle is satisfactorily simulated by the proposed model, as

shown in Fig. 11. In this particular test, no time-dependent

effects were considered, and instead, the whole tests were

conducted with a constant strain rate of _e1 ¼ 1:5	 10�6.

The next simulations correspond to undrained triaxial tests

and are shown in Fig. 12. Figure 12a, b shows the

undrained shearing of two normal consolidated samples

under different confining pressures po ¼ f200; 400g kPa,

while Fig. 12c, d shows an undrained test considering the

variation of the strain rate at different stages. The strain

rate for Test 1 (see Fig. 12c, d) follows the sequence _e1 ¼
10�6 ! 10�7 ! 10�6 ! 10�5 ! 10�6 ! 10�5 ! 10�6,

while the second follows 10�6 ! 10�7 ! 10�6 !
10�5 ! 5	 10�5. The simulations show a good agreement

with the observed time-dependent effects.

7 Closure

In the present work a constitutive model for the simulation

of saturated clays has been proposed. The model presents

some interesting capabilities, such as the simulation of the

strain rate dependency and the incorporation of small strain

Fig. 6 Oedometer test with loading, unloading-reloading and creep

steps
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Undrained triaxial tests. Kaolin clay
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effects. Its formulation has been carefully proposed for a

wide range of strain amplitudes without loosing generality

of the model formulation. Of course, the complexity of the

model formulation is high, but under some specific

assumptions, it reduces to different types of constitutive

formulations which are simpler to understand, such as

Elasticity, Visco-Elasticity, Hypoplasticity and Visco-hy-

poplasticity; see Table 2. From the point of the constitutive

(a) (b)

(c) (d)

Fig. 8 Cyclic undrained triaxial tests with qamp ¼ 70 kPa. Kaolin clay. a q versus e1 space, b p versus q space, c experiment in pw versus

N space, d experiment in pw versus t space
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Cyclic undrained triaxial tests with qamp ¼ 50 kPa. Kaolin clay. a Experiment in q versus e1 space, b simulation in q versus e1 space,

c experiment in p versus q space, d simulation in p versus q space, e experiment in pw versus N space, f experiment in pw versus t space
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Cyclic undrained triaxial tests with qamp ¼ 40 kPa. Kaolin clay. a experiment in q versus e1 space, b simulation in q versus e1 space,

c experiment in p versus q space, d simulation in p versus q space, e experiment in pw versus N space, f experiment in pw versus t space
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modeling, this is very interesting because it permits the

user to evaluate the influence of each effect on a simula-

tion, such as viscosity or small strain effects, without

changing the model and keeping the same set of material

parameters. The simulations with some viscous clays have

shown that the model is able to catch many aspects

observed in these reconstituted clays. Some others exper-

imental observations are left out for improvement in future

works, such as the inherent anisotropy, cementation and

partially saturation.Fig. 11 Oedometer test with loading, unloading–reloading and creep

steps. Lower Rhine clay

(a) (b)

(c) (d)

Fig. 12 Undrained triaxial tests on normal consolidated samples. Lower Rhine clay

Table 4 Index properties of Kaolin clay and the Lower Rhine clay

Material wL½%
 wP½%
 IP½%
 qs½g=cm3


Kaolin clay 47.2 35 12.2 2.675

Lower Rhine clay 56.1 22.0 34 2.59
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Appendix

Short guide for the material parameter
determination

The compression and swelling index, denoted with k and j,
respectively, are calibrated with isotropic or oedometric

compression tests. These parameters are computed in the e vs.

logðpÞ space. As shown in Fig. 13, a compression path with

constant strain rate is expected to approach asymptotically to a

line with slope equal to k. Hence, the measurement of this

slope enables us to compute parameter k. Parameter j is cal-

ibrated instead upon an unloading path. In contrast to classical

elastoplastic models, the proposedmodel delivers a hysteresis

when simulating an unloading-reloading cycle. This implies

that the slope during the cycle is not constant and is actually

influenced by small strain effects. At the beginning of the

unloading path, the simulation shows a slope equal to j=mR,

wherebymR is the factor responsible for the stiffness increase

due to reversal loading (see Table 1). Subsequently, the small

strain effects vanish and the simulation exhibits a slope similar

to j. Therefore, one may calibrate parameters j and mR with

an unloading-reloading cycle.

The reference void ratio ei0 corresponds to the maximum

void ratio at the reference pressure p ¼ 1 kPa. The inter-

pretation of ei0 is actually different as in other formulations

considering the fact that the strain rate is decomposed into

three components. According to the proposed model, the

maximum void ratio curve e ¼ eiðpÞ is only reached under

infinite strain rate k _e k¼ 1; see Fig. 3a. A sample com-

pressedwith infinite strain rate k _e k¼ 1 is not feasible from

the experimental point of view, and therefore, an alternative

calibration method must be followed. For this purpose, the

constitutive equation for an isotropic compression test under

mobilized states is examined: By performing the operation

_p ¼ �ð1 : _rÞ=3, the constitutive equation reduces under

mobilized states to (see Table 1):

_p ¼ �K _ev � Y0
1

OCR

� �2

j _ev j �Iv=k
1

OCR

� �1=Iv
ffiffiffi

3
p

 !

ð33Þ

whereby OCR ¼ pi=p corresponds to the overconsolidation

ratio for isotropic compression (q ¼ 0) and _ev ¼ �1 : _e is

the volumetric strain rate. On the other hand, an isotropic

compression path with slope equal to k can be also

described with the non-viscous version of the model by

setting OCR ¼ 1 and Iv ¼ 0:

_p ¼ �Kð1� Y0Þ _ev ð34Þ

It is desired to find a simplified relation for compression paths

under isotropic compression with the reference velocity

_ev ¼ Dr. The velocityDr can be arbitrarily selected tomatch a

particular experiment. Similar to Niemunis [37], this

particular compression path is termed ‘‘Reference isotach.’’

We recall that themaximumvoid ratio line ei ¼ eiðpÞ presents
an overconsolidation ratio of OCR ¼ 1, and a different value

is expected for the reference isotach. Let us denote the

overconsolidation ratio for the reference isotachwithOCRðriÞ.

By combining Eqs. (33) and (34) and setting _ev ¼ Dr and

OCR ¼ OCRðriÞ yields to:

ð1� Y0ÞDðriÞ ¼ DðriÞ � Y0
1

OCRðriÞ

� �2

DðriÞ

� Iv=k
1

OCR (ri)

� �1=Iv
ffiffiffi

3
p

ð35Þ

(a) (b)

Fig. 13 Calibration of parameters. a Isotropic test. b Undrained triaxial test
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which can be numerically solved for OCRðriÞ. After solving

this equation, one may compute ei0 from the relation:

ei0 ¼ eðriÞ � k logðOCRðriÞÞ ð36Þ

whereby eðriÞ is the void ratio at p ¼ 1 kPa at the reference

isotach, which must be extrapolated from the experimental

curve; see Fig. 13a. When only oedometric compression

tests are performed, we suggest to use the same relations as

an approximation taking advantage that the behavior is

similar. The Poisson ratio m can be determined by mea-

suring the shear modulus G for small strain amplitudes. An

undrained triaxial test or a resonant column is useful for

this purpose. If the shear modulus G ¼ Gðp; eÞ for a given

mean stress p and void ratio e is known, one can compute

the bulk modulus K ¼ mR
�K according to Eq. (25) and

solve for m from r ¼ G=K ¼ 3 ð1� 2 mÞ=ð2 ð1þ mÞÞ.
Notice that its determination depends on parameter mR,

which must be previously determined.

The slope of the critical state Mc is adjusted to the

critical state line CSL. It corresponds to the slope within

the p� q space under triaxial compression. Points lying

with vertical deformation of about e1 [ 20% are recom-

mended for its calibration. The parameter fb0 controls

approximately the maximum stress ratio for triaxial com-

pression fb0 ¼ gmax=Mc. It can be adjusted to highly over-

consolidated samples OCR[ 2. When data are scarce, a

recommended value of fb0 ¼ 1:3 may be carefully used

according to our experience with some clays. Of course,

some simulations would help to check this

recommendation.

The viscosity index Iv controls the intensity of the strain

rate dependency. In this sense, an increasing value of Iv
would return a larger creep deformation or increase the

distance between the isotachs. The power relation used for

the formulation of the viscous strain rate _evis, see Eq. (31),

has been actually examined by many authors in former

works [37, 53, 61]. In particular, Niemunis [37] showed

that the viscosity index Iv of this formulation can be

adjusted with compression curves of different strain rates

(isotachs) with the following method: Consider two dif-

ferent isotachs with strain rate equal to k_eak and k_ebk and

overconsolidation ratio of OCRa and OCRb, respectively.

Niemunis showed that for Eq. (31), the following relation,

previously proposed by Leinenkugel [31], also holds:

Iv ¼ ln
OCRb

OCRa

� �

= ln
k_eak
k_ebk

� �

ð37Þ

Parameter nocr controls the shape of the OCR3D surface

(see Fig. 4b) and therefore the viscous effects under stress

states different than the isotropic q 6¼ 0. As shown in

Fig. 13b, an increasing value of nocr delivers a lower excess

of pore water pressure pw upon undrained shearing, espe-

cially when approaching to the critical state line. We rec-

ommend to calibrate this parameter by trial and error given

some undrained tests.

The parameter R corresponds to the amplitude of the

threshold strain which encloses the elastic locus of the

material. It can be determined from a secant shear modulus

degradation curve. When this test is not available, a value

R ¼ 10�4 is recommended to describe the elastic behavior

of clays. This value has proved to provide numerical sta-

bility in finite element implementations [16]. The param-

eter bh controls the strain amplitude required to reach the

mobilized states. A relation for b was provided in [16] and

reads:

b ¼
ffiffiffi

6
p

R logð4Þ � 2 logð1� rhÞð Þ
6Des �

ffiffiffi

6
p

R 3þ rhð Þ
ð38Þ
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Fig. 14 Calibration of parameters vmax and Ca using a cyclic undrained triaxial test with Kaolin
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where Des is the deviatoric strain amplitude and rh � 0:99

is a factor which defines how close tensor c is to its

bounding condition rh ¼ kck=kcbk . The parameters v0 and
vmax control the degradation curve shape of the secant

shear modulus Gsec. According to Poblete et al. [43],

parameter v0 should be calibrated on a single or a few

cycles (N\3). Details of the determination of v0 were

given in [19]. When the number of consecutive cycles

under cyclic undrained triaxial test increases, the usage of

curves showing the water pore pressure pw against the

number of cycles N is recommended in order to determine

parameters vmax and Ca. Figure 14 shows the influence of

these parameters in a curve fitting the Kaolin. While

parameter vmax governs the accumulation rate for a large

number of consecutive cycles, Ca controls how fast the

accumulation is produced during the first cycles. A trial-

and-error procedure is herein recommended to calibrate

simultaneously these two parameters.
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