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Abstract The sparse polynomial chaos expansion is

employed to perform a probabilistic analysis of the tunnel

face stability in the spatially random soils. A shield tunnel

under compressed air is considered which implies that the

applied pressure is uniformly distributed on the tunnel face.

Two sets of failure mechanisms in the context of the limit

analysis theory with respect to the frictional and the purely

cohesive soils are used to calculate the required face

pressure. In the case of the frictional soils, the cohesion and

the friction angle are modeled as two anisotropic cross-

correlated lognormal random fields; for the purely cohesive

soils, the cohesion and the unit weight are modeled as two

anisotropic independent lognormal random fields. The

influences of the spatial variability and of the cross-corre-

lation between the cohesion and the friction angle on the

probability density function of the required face pressure,

on the sensitivity index and on the failure probability are

discussed. The obtained results show that the spatial vari-

ability has an important influence on the probability density

function as well as the failure probability, but it has a

negligible impact on the Sobol’s index.

Keywords Limit analysis � Probabilistic analysis �
Sensitivity analysis � Sparse polynomial chaos expansion �
Spatial variability � Tunnel face stability

1 Introduction

The assessment of the face stability is an important topic

for the tunnel engineering. Many papers have been devoted

to this topic in the last 20 years, aiming to develop cal-

culation models to predict the necessary face pressure

against failure. These deterministic models work well and

require relevant input parameters, e.g., the soil strength

properties, the unit weigh, the tunnel diameter

[8, 26, 28, 38]. In practice, most of these required input

parameters are generally not known exactly, subjected to

different levels of uncertainty. Therefore, it is interesting to

perform probabilistic analysis to account for the uncer-

tainties of input parameters.

The probabilistic analysis has gained increased attention

in the engineering design recently, as it is able to study the

influence of uncertainties of input parameters in a rational

way. Many attempts have been made to study the tunnel

face stability from the probabilistic framework. Mollon

et al. [23] performed a probabilistic analysis for a circular

tunnel face stability using the first-order reliability method

(FORM) based on the upper-bound limit analysis models,

while Mollon et al. [24] conducted a probabilistic analysis

on a face stability using the response surface method

(RSM) in which both the ultimate limit state and the ser-

viceability limit state were considered with the application

of numerical deterministic models. Mollon et al. [25, 27]

conducted a probabilistic analysis on the tunnel face sta-

bility using the collocation-based stochastic response sur-

face methodology by which more input random variables,

including the soil shear strength, the unit weight, the cover

depth and the applied face pressure were involved. Zeng

et al. [39] presented a reliability analysis on a rock tunnel

face by means of the FORM, RSM and important sampling

(IS). All these probabilistic studies provide more insight
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than deterministic analysis and show the effectiveness and

the necessity of the probabilistic analysis.

However, the aforementioned probabilistic analysis on

the tunnel face stability regarded the input parameters as

random variables, which failed to consider the inherent

spatial variability of soil properties. It is well known in the

geotechnical community that soils show obvious spatially

variable properties. For example, soil properties change in

both the vertical and the horizontal directions in situ. The

random field theory is widely used to model the spatially

variability of soil properties. Several methods such as the

spatial average method, the midpoint method and the shape

function method have been developed to discretize random

fields in the last three decades. The efficiency of these

approaches appears to be relatively low, as a large number

of random variables are required for a prescribed accuracy

[33]. The series expansion methods such as the Karhunen–

Loeve (K–L) expansion or the expansion optimal linear

estimation (EOLE) are more efficient approaches for ran-

dom field discretization. The K–L expansion [10, 16] and

EOLE [3] were adopted for the random field generation for

the study of a slope stability and of a foundation bearing

capacity. To the best of our knowledge, the existing

probabilistic studies on the tunnel face stability only con-

cern random variables; rare work has been done on tunnel

face stability considering the soil spatial variability. The

presented work aims to fill this gap; it is devoted to perform

a probabilistic analysis on a tunnel face driven in spatially

random soils.

Even though random fields could effectively model

spatially varying soil properties, it often results in numer-

ous variables in comparison with the simple random vari-

able method, e.g., more than 100–200 variables, arising

from the truncated terms of the expansion for a target

accuracy. This feature often makes it difficult to conduct a

probabilistic analysis with the random field model since

most widely used reliability approaches, such as the first-

order and second-order reliability method (FORM/SORM),

the response surface method (RSM), are not able to handle

too many random variables. Even though the classical

Monte Carlo method is independent of the dimension of the

input variables, it suffers from a quite low computational

efficiency. To bypass this problem, a metamodel-based

Monte Carlo method has been recently developed to per-

form probabilistic analysis. The procedure of this method is

to firstly construct an analytical metamodel with a limited

calls of the original model and secondly perform the Monte

Carlo simulation based on this metamodel. The polynomial

chaos expansion (PCE) is an efficient tool to build such an

analytical metamodel. The PCE-based MC simulation was

applied by many researchers to perform probabilistic

analysis [14, 18–20, 22, 25, 32, 37]. However, the PCE-

metamodel is unaffordable to build up for high-

dimensional problems, like a random field with a fifth PCE,

since the number of terms to be calculated rapidly increase

with the number of the input variables and with the PCE

order. In order to solve this problem, the sparse polynomial

chaos expansion (SPCE) was proposed by Blatman and

Sudret [5, 7] which results in a rather less PCE terms

compared with that of the full PCE. An application of the

SPCE to the bearing capacity of strip footings on spatially

random soils can be found in Al-Bittar and Soubra [2, 3].

This work aims to perform a probabilistic analysis on

the tunnel face stability in spatially random soils. The

random field theory is used to model the spatial variability

of the soil properties. The SPCE in combination with a

global sensitivity analysis (GSA) is employed to imple-

ment the probabilistic analysis. The deterministic calcula-

tion of the required face pressure is based on the upper-

bound limit analysis theory, in which two sets of failure

mechanisms are, respectively, adopted to compute the face

pressure in the frictional soils and in the purely cohesive

soils. Finally, the probabilistic analysis is performed to

discuss the influence of the autocorrelation distances and of

the cross-correlation between c and u on the probability

density functions (PDF), on the sensitivity indices and on

the failure probability.

2 Deterministic models for a tunnel face
by the kinematic approach

In tunneling engineering, the shield machine can provide a

support to the tunnel face, which is idealized as the dis-

tributed pressures applied to the tunnel face [8, 38]. This

applied pressure is important to govern the tunnel face

stability. If the applied pressure is not enough, the soils are

about to move toward the tunnel face with ground surface

subsidence, termed as the active collapse mode; if the

applied pressure is overlarge, the soils will be heaved away

the tunnel face with ground surface uplift, which is called

as the passive blowout mode.

The issue of face stability has been widely investigated

by means of the kinematic approach of limit analysis, in

which the so-called failure mechanisms are developed to

estimate the magnitude of the necessary face pressures

against the tunnel face failures (collapse or blowout). The

failure mechanisms are constructed according to the

velocity field of soils ahead of the tunnel face at failure. For

different failure modes (collapse or blowout), it is neces-

sary to build different failure mechanisms because the soil

movement is different between the collapse mode and the

blowout mode. For different soils (the frictional soils and

the purely cohesive soils), it is also necessary to construct

different mechanisms even for the same failure mode

because the failure feature of the soils is different. For
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example, for the frictional soils there exists a thin shearing

band at the failure surface, while for the purely cohesive

soils, the soil deformation is continuous [28].

Many papers have been devoted to this topic in the last

20 years. The original work mainly lies in finding a more

rational failure mechanism according to experimental

investigations or numerical simulation. Two sets of original

3D failure mechanisms with respect to the frictional soils

and the purely cohesive soils were proposed by Mollon

et al. [26, 28]. Figure 1a shows a sketch of the rigid-block

collapse mechanism for the frictional soil. This failure

mechanism assumes a cylindrical rotational velocity field,

rotating around a horizontal axis with an angular velocity.

The velocity in the failure mechanism is equal to the

product of the angular velocity and the distance between

the rotating center and the point under consideration. The

geometry of the failure mechanism is determined by the

position of the rotation axis, leading to two parameters in

the optimal process for the best upper-bound solutions.

This classical collapse mechanism inspires a series of

subsequent contributions [9, 29–31, 35].

The ground deformation around the tunnel face at failure

in purely cohesive soils is different from that in the c–u
soils. The failure in purely cohesive soils involves a con-

tinuous deformation of the soil mass ahead of the tunnel

face. Based on this observation, Mollon et al. [28] proposed

two continuous velocity fields in terms of the collapse and

the blowout of a tunnel face, as shown in Fig. 1b. The

boundary of the mechanism resembles a torus, whose cross

section is not strictly circular. The normality which states

that any plastic deformation happens at constant volume in

the non-frictional soil is used to determine the velocity

field, which is equal to zero at the boundary (no velocity

jump).

Each set of failure mechanisms concerns two failure

modes, the active collapse mode (the applied face pressure

is too small) and the passive blowout mode (the applied

face pressure is too large) at the tunnel face. For the active
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Fig. 1 Sketch of a the rigid-block mechanism [26] and b the continuous velocity mechanism [28]
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collapse mode, the kinematic approach of limit analysis

gives a rigorous lower-bound solution to the required face

pressure; for the passive blowout mode, a rigorous upper-

bound solution can be derived. Therefore, by considering

both the collapse and the blowout modes, a range of the

necessary face pressures against both failures can be the-

oretically determined.

However, in the case of the frictional soil, only the

collapse failure mechanism gives good predictions com-

pared with other existing solutions as well as numerical

modeling results. The blowout failure mechanism leads to

very huge estimation (more than 1000 kPa) which is

unrealistic in the practical engineering [26, 27]. In the case

of the purely cohesive soil, both the collapse and blowout

mechanisms produce good estimations on the required face

pressure, and a reasonable and effective range can be

obtained [27, 28]. Thus, in this work, only the collapse

mode is concerned in the case of the frictional soil, and

both collapse and blowout modes are taken into account in

the case of the purely cohesive soil. Table 1 summaries the

failure modes and the failure mechanisms with respect to

the soil types adopted in this paper.

3 The lognormal random field

The random field theory is used to model the spatial vari-

ability of soil properties, e.g., the cohesion c, the friction

angle u and the unit weight c. A lognormally distributed

random field Gi (i = c, u, c) is selected to represent positive
soil properties, with the mean value li, the standard devia-

tion ri and the autocorrelation distance hi. It is assumed that

the soil properties, like the cohesion and the friction angle,

have similar autocorrelation distances h in a soil stratum

[10, 11]. The lognormally distributed random field can be

obtained by transformation from its corresponding standard

normal random field (zero mean and unit variance). For

convenience, the following equations are for the random

field of cohesion c, and the random fields of u and c can be

dealt with the same formulas. The lognormally distributed

random field of cohesion c is given by,

GcðxÞ ¼ exp llnc þ rlnc G
ln
c ðxÞ

� �
ð1Þ

where x represents the spatial position, Gln
c is the standard

normal random field, llnc and rlnc are, respectively, given by,

rlnc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ r2c=l

2
c

� �q
ð2Þ

llnc ¼ ln lc � rlnc
� �2

=2 ð3Þ

The spatial variability is characterized by the standard

deviation and the autocorrelation distance. In natural

deposits, the relation of a certain property between two

positions decreases as the separation distance increases,

and the correlation in the vertical direction shows much

smaller autocorrelation distance than that in the horizontal

direction [4]. In the random field theory, a spatial

autocorrelation function is used to define the correlation

between two arbitrary points. The squared exponential

autocorrelation function in a 2D random field, which is the

most common one in geotechnical engineering, reads

[4, 33]

qc ¼ exp � x1 � x2j j
hh

� �2

þ y1 � y2j j
hv

� �2
" #( )

ð4Þ

where (x1, y1) and (x2, y2) defines the spatial coordinates of

two points; hh and hv, respectively, denote the horizontal

correlation distance and the vertical correlation distance. In

this work, 2D random fields were employed. For c–u soils,

this is due to the fact that the rigid-block mechanism uses a

2D rotational velocity field (see line LL0 in Fig. 1a). For

purely cohesive soils, the continuous velocity field (see line

LL0 in Fig. 1b) is symmetrical with respect to the vertical

symmetry (YOZ) plane of the tunnel.

The standard normally distributed random field Gln
c can

be approximately represented by a M-term K–L expansion:

Gln
c ðxÞ �

XM

j¼1

ffiffiffiffi
kj

p
njwjðxÞ ð5Þ

in which nj is a set of independent standard normal dis-

tribution variables; M is the truncation term of the expan-

sion; kj and wjðxÞ, respectively, denote the eigenvalues and
the eigenfunctions of the autocorrelation function in

Eq. (4). Please refer to Phoon and Ching [34] for analytical

solutions of eigenvalues and eigenfunctions for the auto-

correlation function in Eq. (4). The convergence and the

accuracy of a K–L expansion depend on the number of

terms M. The determination of M relates to the domain of

the random field and the autocorrelation distances. The

larger the random field domain and the smaller the

Table 1 Summary of failure modes and failure mechanisms used in this work

Ground conditions Failure mode Failure mechanism

Frictional soils Collapse mode Rotational collapse mechanism

Purely cohesive

soils

Collapse

mode

Blowout

mode

Continuous deformation collapse

mechanism

Continuous deformation blowout

mechanism
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autocorrelation distance, the more the terms required for a

given accuracy [13].

It is well recognized that a negative correlation exists

between c and u [10, 15]. A cross-correlation coefficient

qc;u between the cohesion c and the friction angle u is

considered in this work, and two cross-correlated random c

and u fields can be expressed [10]:

GcðxÞ � exp llnc þ rlnc G
ln
c ðxÞ

� �
ð6Þ

GuðxÞ

� exp llnu þ rlnu Gln
c ðxÞqlnc;u þ Gln

u ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� qlnc;u

	 
2
r" #( )

ð7Þ

where qlnc;u is the cross-correlation coefficient between ln c

and ln u. The relation between qlnc;u and qc;u is given by

Fenton and Griffiths [12]:

qlnc;u ¼
ln 1þ qc;uCOVðcÞCOVðuÞ
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ COV2ðcÞ
� �

ln 1þ COV2ðuÞ
� �q ð8Þ

where COV(c) = rc/lc and COV(u) = ru/lu, respec-

tively, represent the coefficients of variation of the cohe-

sion c and of the friction angle u.

4 The SPCE/GSA method

4.1 The polynomial chaos expansion

ThePCEmethod is an efficient approach to build an analytical

metamodel of the response of a complex mechanical system.

A detailed interpretation of the main principles and on how to

implement this method can be found in Mollon et al. [25]. In

this section, this approach is briefly described as follows.

Consider a computational model T whose input param-

eters are modeled by independent random variables gath-

ered in an input vector n = fn1; n2; . . .; nLg; L being the

number of the input parameters. The model response Y can

be represented by a PCE [36]:

Y ¼ TðnÞ ffi
XP

j¼1; a2A
kj waðnÞ ð9Þ

where waðnÞ are the multivariate polynomials and kj are the

unknown coefficients of the PCE. Themultivariate polynomial

is equal to the products of the univariate polynomials HaiðniÞ;

waðnÞ ¼
YL

i¼1

HaiðniÞ ð10Þ

where a 2 NL is a L-tuple (or multi-indices) that contains a

set of integers, a ¼ ða1; . . .; ai; . . .; aLÞ; ai 2 N, and ai is the

degree of the univariate polynomial; i indexes the ith

variable ni. The univariate polynomials of Eq. (10) are

related to the type of the distribution of the input random

variables, for instance, the Hermite polynomials for normal

(or Gaussian) random variables, Laguerre polynomials for

Gamma random variables [31]. The family of multivariate

Hermite PC expansions is widely used in geotechnical

problems [14–20, 25]. If the input variables are non-nor-

mally distributed, the isoprobabilistic transformation can

be used to transform them into standard norm variables

[36]; if the input variables are correlated, the Nataf trans-

formation or the Cholesky transformation can be used to

de-correlate them [18, 25].

For practical application, the PCE is truncated according

to the common truncation scheme by which only those

multivariate polynomials of total degree less than p are

retained in Eq. (9). It leads to the corresponding truncation

set A = {a 2 NL: a1 ¼
PL

1 ai � p}, and the number of

terms in the truncated PCE is equal to

P ¼ cardA ¼ ðLþ pÞ!
L!p!

ð11Þ

The common truncation scheme is able to deal with

small dimension (\5 variables) problems, but it is not

practically applicable for high-dimensional ones, like 100–

200 random variables arising from the random field

discretization. For the purpose of tackling high-

dimensional problems, the low-rank truncation

scheme [5] and the hyperbolic truncation scheme [7]

were proposed. The hyperbolic truncation scheme defines a

so-called q-quasi-norm and requires that the q-quasi-norm

is not bigger than the order p of the PCE, where the q-

quasi-norm reads [7]

ak kq¼
XM

i¼1

aqi

 !1=q

ð0\q\1Þ ð12Þ

This hyperbolic truncation scheme leads to the truncate

set A = {a 2 NL: aq � p}. It can effectively reduce the

retained PCE terms compared to the common truncation

scheme by limiting the number of high-degree multivariate

polynomials. The smaller the value of q is, the less the PCE

terms are retained.

4.2 The calculation of the coefficients

by the regression approach

The unknown coefficients of the SPCE can be solved by

the regression method. Consider an experimental design

(ED) v with size N, v = [n(1), n(2),…, n(i), … n(N)]T,

n(i) = (nð1Þ1 ; nðiÞ2 ; . . .; nðiÞL ). The ED is selected randomly by

using the Latin Hypercube sampling. Denote by

Acta Geotechnica (2017) 12:1415–1429 1419

123



Ŷ = [Ŷ1; Ŷ2; . . .; ŶN]
T the model response corresponding to

each set of samples in the ED. Based on the least-square

minimization method, the solution to the unknown coeffi-

cients of the SPCE reads:

k̂ ¼ WTW
� ��1

WTŶ ð13Þ

where k̂ = [k̂1; k̂2; . . .; k̂P]
T represents the column vector of

the unknown coefficients of the SPCE and W is a space-

independent matrix of dimensions N � P computed from

the basis of the polynomial for each set in the ED. The size

N of the ED must ensure that the matrix WTW is well

conditioned. The accuracy of the SPCE can be estimated

by the empirical mean-square residual error estimation and

the leave-one-out error estimation.

4.3 The stepwise regression technique for a sparse

PCE

The sparse PCE is based on two reasons [5]: (a) the low-

order interaction terms dominate the model response

while the effect of some high-order terms often remains

negligible; (2) the input variables may have different

contribution to the model response. Thus, two iteration

algorithms, the stepwise regression technique [5] and the

least angle regression technique [7], were adopted to

identify significant PCE terms, further reducing the PCE

terms.

In this paper, the stepwise regression algorithm

combined with the hyperbolic truncation scheme is

employed to build a sparse representation. There are four

user-specified parameters in this algorithm, the target

accuracy Q2
tgt, the cutoff value ecut, the PCE order pmax,

the so-called norm q. For each PCE order p increasing

from 1 to pmax, the algorithm consists of two steps: the

forward step and the subsequent backward step. In the

forward step, it is aimed to select the significant candi-

date terms from the candidate PCE basis A if it leads to

a significant increase in the coefficient of determination

R2, i.e., greater than ecut. The candidate PCE basis A is

generated according to the hyperbolic truncation

scheme (under p and q). In the next backward step, the

algorithm discards the negligible terms from the retained

PCE basis at the end of the forward step if it leads to an

insignificant decrease in R2, i.e., less than ecut. The

iteration proceeds until the target accuracy is achieved or

the PCE order reaches p. For further details, the authors

should refer to Blatman and Sudret [5]. In this work, the

four parameters for the algorithm are initialized as: the

given accuracy Q2
tgt of 0.999, the cutoff value ecut of

5 9 10-5, the maximal order pmax of 5 and q = 0.7.

4.4 The global sensitivity analysis

The Sobol’s indices, widely used for the GSA, can provide

the respective effect of each random variable or a group of

random variables to the variance of the system response.

The Sobol’s indices can be analytically computed by using

the PCE coefficients [6, 33], and the Sobol’s index of a

single variable can be calculated by

SðniÞ ¼
P

a2Ai
ðkjÞ2E ðwaÞ

2
h i

P
a2AðkjÞ

2
E ðwaÞ

2
h i ð14Þ

in which kj is the PCE coefficients computed by Eq. (13); A

represents the obtained truncation set, and Ai, a subset of A,

is defined by

Ai ¼ a ¼ a1; . . .ai; . . .; aLð Þ 2 A : ai [ 0;f
aj ¼ 0; 1� j� L; j 6¼ i

� ð15Þ

and the expectation E½ðwaÞ
2� is computed by

E ðwaÞ
2

h i
¼

YL

i¼1;ai2A
ai! ð16Þ

The Sobol’s index of a group of variables can be

obtained in a similar manner by only changing the subset of

A in the numerator in Eq. (14).

4.5 The SPCE/GSA procedure

The PCE/GSA was firstly proposed by Sudret [36] in the

GSA. This author suggested a two-step strategy: first

finding the most important variables using a low-order PCE

(say, second order); then constructing a higher-order PCE

(say, fifth order) with the reduced dimension. This proce-

dure was extended by Al-Bittar and Soubra [3] for the

probabilistic analysis of computationally expensive mod-

els, named as SPCE/GSA.

Even though SPCE is capable to handle high-dimen-

sional problems, the computational time could still be

huge, especially for a probabilistic analysis related to a

random field. Since different input parameters often have

different levels of influence on the model response, the

main idea of SPCE/GSA is to identify significant input

variables using GSA at first. The GSA is performed by

using a second-order PCE to calculate the Sobol’s indices

of the input variables. It should be noted that the PCE order

has almost no influence on the Sobol’s indices, so a PCE

with order 2 is sufficient to provide the contribution of each

input variable to the system response. This GSA makes it

possible to reduce the dimension. Al-Bittar and Soubra [3]

discarded those input variables with very small Sobol’s
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indices (a negligible weight in the system response) and

suggested that the value of 2% of the Sobol’s index of the

first most significant input variable is regarded as a

threshold, by which only those input variables with Sobol’s

indices bigger than this threshold are kept, referred to as

the ‘effective dimension.’ In this work, those less important

input variables whose Sobol’s indices are smaller than this

threshold are set to be deterministic at their mean values

instead of dropping them, as suggested by Sudret [36].

After reducing the dimension, the second step is to con-

struct the SPCE based on the ‘effective dimension.’ Fig-

ure 2 shows the flowchart for the SPCE/GSA procedure.

4.6 Probabilistic analysis based on the SPCE-

metamodel

Once the SPCE coefficients are determined, an analytical

metamodel that uses the truncated SPCE to represent the

original system response is built. Then, this analytical

metamodel can be used to obtain the probabilistic density

function (PDF) of the system response with the application

of the Monte Carlo simulation (MCS) [25].

In order to assess the failure probability against the

tunnel face failure at a given face pressure rT, a perfor-

mance function with respect to the collapse is defined as:

G1 ¼ rT � rt ð17Þ

A performance function in terms of the blowout is

defined as:

G2 ¼ rt � rT ð18Þ

where rT is the applied face pressure and rt is the required
face pressure calculated by the obtained metamodel,

G1\ 0 (or G2\ 0) corresponding to the failure domain.

In the subsequent calculations, the applied face pressure rT

is modeled as a random variable which follows the

lognormal distribution with a coefficient of variation

equal to 15%. The failure probability can be evaluated by

using the MCS:

Pf ¼
1

J

XJ

i¼1

IðGjÞ j ¼ 1; 2 ð19Þ

where J is the number of samples for MCS; IðGjÞ is equal
to 1 for G1\ 0 (or G2\ 0), otherwise IðG1Þ ¼ 0 [or

IðG2Þ ¼ 0]. Please note that the probabilistic computations

based on the metamodel almost cost no time, even if the

size of the MCS population is large. In this work, enough

MCS samples using the Latin Hypercube sampling tech-

nique are taken to get highly accurate results in all MCSs.

5 The probabilistic analysis for the frictional soil

5.1 The problem statement

This section is devoted to apply the SPCE/GSA method to

analyze a tunnel face driven in frictional soils in which

shear strength parameters are modeled by two random

fields. The rotational collapse mechanism proposed by

Mollon et al. [26] is effective to compute the required face

pressure in this type of soils. Pan and Dias [29] extended

this failure mechanism to accommodate the heterogeneous

soil, which is used in this work.

Figure 3 presents the longitudinal section of the 3D

rotational collapse mechanism for a tunnel face with a

diameter D and a buried depth C. Two cross-correlated 2D

lognormal random fields are used to model the spatial

variability in the horizontal and vertical directions in terms

of cohesion c and friction angle u, bounded by a domain X
around the tunnel face whose horizontal length and vertical

length are, respectively, denoted by lh and lv, as shown in

Fig. 3. For the realization of the random field, the domain

X is discretized into rectangular elements, separated by a

distance of d in both the horizontal and vertical directions.

The magnitude of the cohesion (or the friction angle) at

each grid point on the element can be determined by the K–

L expansion. Then, the corresponding value in the center of

the element is taken as the average value of those of its four

nodes.

The random field in this work is assumed to be aniso-

tropic, since in reality the horizontal correlation distance hh
is greater than the vertical one hv for typical soil stratum

[10]. Jiang et al. [15] summarized several previously

published articles and recommended that the horizontal

correlation distance hh ranges between 10 and 40 m, and

the vertical correlation distance hv between 0.5 and 3.0 m.

These recommended ranges are adopted in this work.

STOP

First Step
• Construct a 2nd order PCE
• Calculate 
• Select important variables (“effective

dimension”)

Second Step
• Initialize , εcut, pmax, q

• Construct the SPCE with respect to
“effective   dimension”

Sobol’s Indices

Fig. 2 Flowchart for the SPCE/GSA procedure
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Table 2 presents the input parameters used in this work.

The tunnel diameter D, the buried depth C, and the soil unit

weight c are taken to be deterministic. With respect to the

cross-correlation between c and u, a negative correlation

exists between them. The element size d is set to 0.5 m,

which is fine enough for good results; the horizontal length

lh and vertical length lv are, respectively, taken as 1.5D and

C ? D, as shown in Fig. 3.

5.2 Selection of the truncated order M in a K–L

expansion

The K–L expansion always underrepresents the real vari-

ance of the random field, and the accuracy of a K–L

expansion is correlated with the number of terms M. There

are two approaches available for the error estimation on a

K–L expansion. The first error estimate based on the

variance of the truncated error for a K–L expansion with M

terms is given by Phoon and Ching [34]:

e1 ¼
1

X

Z

X

1�
XM

j¼1

kj w
2
j ðxÞ

" #

dX ð20Þ

where X is the domain of the random field. This error

estimation was used by Ahmed [1] to determine the num-

ber of eigenmodes.

As the total variance of Gln
c ðxÞ is decomposed into each

term in proportion to eigenvalues kj, the approximation is

to truncate the K–L expansion up to a desired accuracy

using the M largest eigenvalues, see Eq. (5). The ratio of

the sum of the M largest eigenvalues to the total sum of all

eigenvalues can be taken as a measure of the accuracy of

the K–L expansion. Thus, the second error estimation for a

K–L expansion is defined as [21]:

e2 ¼ 1�
PM

j¼1 kjPMT

j¼1 kj
ð21Þ

where MT denotes the total number of grid points in the

discretized random field, see Figs. 3 and 11 for the dis-

cretization of the random fields. This second error esti-

mation was employed by Jiang et al. [13, 14] to determine

the value of M.

Figure 4 presents comparisons between these two error

estimates e1 and e2 in the 2D random field for the case of

hh = 40 m and hv = 3 m. It is seen that the error estimate

decays quickly with the number of K–L terms. Slight dis-

crepancies in the values of error estimate between e1 and e2
are observed, but it should point out that the error estimate

e1 is relatively conservative. Therefore, the first error

estimate is used in this paper to determine the number of

K–L expansion terms (Fig. 4).

Table 3 lists the K–L terms M for different set of

autocorrelation distances considered in this work for a

prescribed error of 9–10%. The number of K–L terms

increases with the decrease in the autocorrelation distances.

Please note that the total number of random variables is

equal to 2M in the construction of a SPCE, since two

random fields are involved.

5.3 The influence of the spatial variability

In this work, the values of the COV of the cohesion and of

the friction angle are set as constants, so the spatial vari-

ability of the random field is only related to the autocor-

relation distances. In order to study the effect of the spatial

variability on the PDF of the required face pressure, on the

Sobol’s index and on the failure probability, the horizontal

autocorrelation distance hh is set to vary from 10 to 40 m,

hv from 1.5 to 3.0 m, as listed in Table 3. The cross-cor-

relation coefficient is taken to be zero in all calculations.

5.3.1 The influence on the probability density functions

Figure 5 shows the PDFs of the normalized face pressure

corresponding to different autocorrelation distances

Fig. 3 Sketch of a rigid-block mechanism and the domain of the

random field around a tunnel face

Table 2 Input parameters used in this work

Input variables Mean value (l) COV (%)

c (kPa) 7 20

u (�) 17 10

c (kN/m3) 18 –

C (m) 15 –

D (m) 10 –

rT (kPa) – 15
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together with the case of random variable. The case of

random variable means that the cohesion and the friction

angle are considered as random variables. The results are

obtained for hh ranging between 10 and 40 m with hv being
1.5 m in Fig. 5a, and hv changing between 1.5 and 3.0 m

with hh = 40 m for Fig. 5b.

It is seen that a decrease in the autocorrelation distances

gives a taller and narrower PDF curve, suggesting that the

variability of the required face pressure decreases with the

soil spatial heterogeneity (smaller autocorrelation distances

generate more severe non-homogeneous soil). A compar-

ison between these two plots shows that the PDF of the

required face pressure is more sensitive to the change in the

vertical autocorrelation distance.

Besides, it is of high interest to find that the case of

random variables produces the most spread-out distribu-

tion. This phenomenon was also observed by Fenton and

Griffiths [10] and Al-Bittar and Soubra [2] in the study of

the bearing capacity of a foundation resting on a spatially

random c–u soil. An interpretation on this phenomenon is

as follows. When the autocorrelation distance h ? 1
(case of random variables), the soil shear strength tends to

be spatially constant in one realization of the random field,

but still changes from one realization to another. On the

contrary, when the autocorrelation distance h ? 0, the soil

shear strength property field becomes seriously ‘rough’ in

one realization, each discretized element having very dif-

ferent shear strength, but the global average shear strength

of the random field changes less than the one of the former

case between two realizations. This subsequently leads to

smaller variability of the required face pressure.

5.3.2 The influence on the Sobol’s index

Figure 6 presents the Sobol’s indices of the cohesion c and

of the friction angle u for different autocorrelation dis-

tances. It is interesting to see that the autocorrelation

Fig. 4 Comparisons between two error estimates

Table 3 K–L terms for different cases of autocorrelation distances

hv (m) hh (m) M

1.5 10 260

20 150

30 120

40 100

2.0 75

2.5 60

3.0 50

(b)

(a)

Fig. 5 Influence of spatial variability on the probability density

functions
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distance hardly influences the Sobol’s indices. The Sobol’s

index of the friction angle u (around 0.73) is bigger than

the one of the cohesion c (around 0.27), which indicates

that the friction angle has a more important influence on

the required face pressure than the cohesion. This is con-

sistent with the results reported by Mollon et al. [23] in the

case of random variables.

5.3.3 The influence on the failure probability

The failure probability as a function of the mean value of

applied face pressure is given in Fig. 7 for different auto-

correlation distances and for the random variable case. As

mentioned above, the applied face pressure rT is modeled

as a random variable which follows the lognormal distri-

bution with a coefficient of variation equal to 15%.

It is not surprising to find that the failure probabilities

are greatly influenced by the applied face pressure, small

applied face pressure resulting in very high failure proba-

bility. Besides, it can be seen that the increase in the

autocorrelation distance leads to an increase in the failure

probability, for both the horizontal and vertical autocorre-

lation distances. For example, the failure probability

increases from 3.94 9 10-4 to 7.29 9 10-4 as hv increases
from 1.5 to 3 m when hh = 40 m and lrT/cD = 0.4. In

other words, an overestimation of the autocorrelation dis-

tance (or an underestimation of the spatial variation) leads

to conservative results in the engineering design. It is also

noticed that the vertical autocorrelation distance impacts

the failure probability more than the horizontal autocorre-

lation distance. These conclusions agree with those repor-

ted by Jiang et al. [15] who computed the failure
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Fig. 6 Influence of spatial variability on the Sobol’s indices

Fig. 7 Failure probability versus the applied face pressure for

different soil spatial variabilities
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probability of a slope in spatially variable soils. What is

more interesting is the observation that the random vari-

ables model leads to a much greater failure probability than

the case of the random field model in all cases. For

instance, the failure probability is equal to 4.3 9 10-3

(lrT/cD = 0.4) for the random variables model. This

implies that neglecting the soil spatial variability and using

the random variables model would lead to a much safer but

very uneconomic design in the considered cases.

5.4 The influence of the cross-correlation

coefficients

In order to discuss the influence of the cross-correlation

coefficients, four cases of correlation coefficients ranging

from -0.6 to 0.0 are considered. The autocorrelation dis-

tances are set to hv = 3.0 m and hh = 40 m for all the

cases. The obtained results of PDFs are given in Fig. 8.

This figure shows that the negative cross-correlation qc;u
leads to a taller and narrower PDF (less variability of the

required face pressure). With respect to the random vari-

ables case, similar results are observed.

Figure 9 shows the failure probability as a function of

the mean value of the applied face pressure for four dif-

ferent correlation coefficients. One can observe that the

cross-correlation qc;u greatly influences the failure proba-

bility. The failure probability decreases with the negative

cross-correlation getting stronger. For instance, the failure

probability increases from 3.41 9 10-4 to 7.29 9 10-4 as

qc;u changes from -0.6 to 0.0 at lrT/cD = 0.4 in the ran-

dom field results, rising from 1.06 9 10-3 to 4.30 9 10-3

in the random variable results. It can be concluded that

neglecting the negative cross-correlation between c and u

leads to a conservative design. A same conclusion was

reported by Mollon et al. [23] and Jiang et al. [15]. In

addition, the observation that the random variable model

gives much more conservative results compared with the

random field model is found again.

Figure 10 presents the influence of the cross-correlation

coefficients on the Sobol’s indices. One can see that the

Sobol’s index is greatly influenced by the cross-correlation

coefficient; the Sobol’s index of u decreases as the cross-

correlation becomes weak, while the Sobol’s index of

c shows an opposite trend. However, the total Sobol’s index

of c and u keeps unchanged and is close to 1 in all cases.

6 Probabilistic analysis of purely cohesive soils

6.1 The problem statement

This section aims to analyze a tunnel face driven in purely

cohesive soils in which the undrained shear strength cu and

the soil unit weight c are modeled by two random fields.

The collapse and blowout face pressure obtained by these

two continuous velocity fields agree well with those pro-

vided by numerical calculations, but with higher compu-

tation efficiency. These two continuous deformation

mechanisms are extended in this work to consider the

influence of the spatial variability of the cohesion and of

the unit weight.

Figure 11 presents the longitudinal section of the con-

tinuous deformation mechanism for a tunnel face with a

diameter D and a buried depth C. Two independent 2D

lognormal random fields are adopted to model the spatial

variability in the horizontal and vertical directions in terms
Fig. 8 Influence of correlation coefficients on the probability density

functions

Fig. 9 Failure probability versus applied face pressure under differ-

ent correlation coefficients
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of the cohesion c and the unit weight c. The domain of the

random field is denoted by X ahead of the tunnel face, as

shown in Fig. 11. A similar scheme as the frictional soil

case is used to discretize the random field.

Table 4 presents values of input parameters used in this

work. The tunnel diameter D and the buried depth C are

taken to be deterministic. No cross-correlation between c

and c is considered. Only two cases of autocorrelation

distances are taken as hv = 1.5 m, hh = 20 m and

hv = 3.0 m, hh = 40 m in this section, which, respec-

tively, corresponds to 270 and 70 terms to be retained in a

K–L expansion for a target error of 9–10%.

6.2 Influence on the probability density functions

Figure 12 shows the PDFs of the normalized face pressure

corresponding to the collapse mode and to the blowout

mode. Two cases of autocorrelation distances are consid-

ered. The left curves refer to the collapse mode, and the

right hand to the blowout mode. It is observed that the

blowout curves correspond to larger face pressures than

those of collapse curves. Similarly to the case of frictional

soils, the high autocorrelation distance leads to shorter and

wider PDF curves.

6.3 Influence on the Sobol’s indices

Figure 13 presents the corresponding Sobol’s indices for

the collapse mode and blowout mode. It can be again

observed that the autocorrelation distance has a negligible

influence on the Sobol’s index. In the studied case, the

cohesion c contributes more to the model response than the

unit weight c in terms of both the collapse and the blowout

modes. Except for the influence of the computational

model, the fact that the COV(c) is four times the magnitude

of the COV(c) may be one reason for this.

6.4 Influence on the failure probability

Figure 14 shows the failure probability versus the mean

values of applied face pressure lrT. The results of two

cases of autocorrelation distances together with the random

variable model are provided in terms of the collapse failure
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Fig. 10 Influence of correlation coefficients on the Sobol’s indices

C

D
lv

lh=2C+D

δ
δ

μc=20kPa
μγ=15kN/m3

D=10m
C/D=1.0

Collapse

Blow-out

Ω

Fig. 11 Continuous deformation mechanism and domain of the

random field around a tunnel face

Table 4 Input parameters used in this work

Input variables Mean value (l) COV (%)

c (kPa) 20 20

c (kN/m3) 15 5

C (m) 10 –

D (m) 10 –

rT (kPa) – 15

Fig. 12 Probability density functions for the collapse and the

blowout modes
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and blowout failure. The curves at the left-hand side cor-

respond to the collapse mode, and at the right-hand side to

the blowout mode.

It is to be expected that the failure probabilities are

largely influenced by the applied face pressure. Take the

case of hv = 1.5 m and hh = 20 m as an example, when

lrT is small the failure probability of collapse is very high.

As the applied face pressure increases (before 1.1cD), the
collapse failure probability decreases. In this range, the

blowout probability is negligible (smaller than 10-4) and

the collapse failure is dominant. When it reaches 1.5cD, the
failure probability of blowout becomes more and more

significant and the collapse failure probability is negligible

(smaller than 10-4). Then, blowout dominates the tunnel

face failure.

In the center of the figure, there exists a range of the

applied face pressure (1.1–1.5cD) among which the failure

probabilities (with respect to the collapse and blowout) are

lower than 10-4 for the random field model. Such a special

range is practically useful for the practical engineering

design since it permits to give safe face pressures against

both the collapse and blowout considering a target failure

probability of 10-4. It is interesting to see that the width of

this safe range reduces with the increase in the autocorre-

lation distance. The random variable assumption fails to

give such a safe range, due to the fact that the collapse

probability and the blowout probability curves encounter

each other before reaching the value of 10-4. The failure

probability curve for random variable plotted in Fig. 14 is

the sum of the failure probabilities of the two failure

modes. This no-safe-range phenomenon is probably

because that the random variable model gives conservative

results.

7 Conclusions

A probabilistic analysis is performed on a tunnel face by

considering the spatial soil variability. Two sets of 3D

failure mechanisms are used to calculate the required face

pressure with respect to a frictional soil and a purely

cohesive soil in the context of the upper-bound limit

analysis. The SPCE-based MCS method is employed to

carry out the probabilistic analysis. In the case of frictional

soils, the cohesion and the friction angle are modeled as

two anisotropic cross-correlated lognormal random fields;

with respect to the purely cohesive soil, the cohesion and

unit weight are modeled as two independent lognormal

random fields. The different levels of the spatial variability

and the cross-correlation (in the case of the frictional soils)

are considered to study their influence on the probability

density function, on the sensitivity index and on the failure

probability.

In the case of frictional soils, only the collapse mode is

considered. It is shown that the spatial variability has a

significant influence on the probability density function as

well as on the failure probability, but its effect on the

sensitivity index is rather limited. The results indicate that

the variability of the required face pressure decreases with

the soil spatial heterogeneity, and the failure probability

increases with the increase in the autocorrelation distances

and with the decrease in the negative correlation between

the cohesion and the friction angle. The sensitivity analysis

shows that the friction angle is more important than the

cohesion.
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Fig. 13 Sobol’s indices for the collapse and blowout failure modes

Fig. 14 Failure probability versus applied face pressure
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In the case of the purely cohesive soils, both the collapse

and blowout are involved. The influence of spatial vari-

ability gives similar results as the frictional soil case. The

sensitivity analysis shows that the cohesion is more

important than the unit weight. A useful range of the face

pressure among which the failure probabilities with respect

to both the collapse and the blowout failure modes are

lower than a target safety level of 10-4 is obtained in this

case.
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