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Abstract This paper proposes a new method using cen-

troid sliding pyramid (CSP) to identify the removability

and stability of fractured hard rock in tunnel and slope

engineering. The new method features two geometrical and

topological improvements over the original key block

method (KBM). Firstly, all the concave corners are con-

sidered as starting points of cutting process when a concave

block is divided into a set of convex blocks in the original

KBM. Only the concave corners formed by two joint

planes are used for partitioning a concave block in the

presented method and concave corners with free planes are

excluded. Secondly, joint pyramid for removability com-

putation in the original KBM is generated using all of the

joint planes, while CSP is calculated only from the joint

planes adjoining the free planes. The cone angle h of CSP

is the vectorial angle formed by the two candidate sliding

surfaces of this CSP. Removability analysis of a block is

transformed into calculating the cone angle of CSP. The

geometrical relationship is simplified, and data size for

removability computation is reduced compared with the

original KBM. The provided method is implemented in a

computer program and validated by examples of fractured

rock slopes and tunnels.

Keywords Block theory � Free domain � Removability �
Rock mass � Sliding pyramid � Stability analysis

List of symbols

CSP Centroid sliding pyramid

FD Free domain

VFD Virtual free domain

SE Sliding edge

*
SE

Sliding edge vector

O Barycenter of a block

JP Joint pyramid

g
* Gravity vector

u Friction angle of a sliding edge

fc Tangential cohesive force

K Slip-resistance safety coefficient

h Cone angle of a CSP

1 Introduction

Stability analysis for fractured rock mass is challenging not

only due to lack of information of the physical properties of

rock materials, but also due to complicated geometry of

rock discontinuities. Improvements of numerical methods

such as finite element method (FEM) [1, 57, 67–69, 71],

meshless method [5, 28, 30–37, 62–66, 70], discrete ele-

ment method [4, 20], discontinuous deformation method

(DDA) [6, 50], isogeometric analysis [13, 16, 24–26, 29],

and smoothed particle hydrodynamics (SPH) [8, 21, 27],
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extended finite element method [6, 46] and peridynamics

[7, 38, 39] have been made regarding the modeling of

discontinues rock mass [12, 17, 61] and stability analysis of

rock mass [59, 60]. When a large number of blocks are

included, it is time-consuming to model and analyze slopes

and tunnels with discontinuous rock mass using these

methods. To deal with geometric aspects for failure anal-

ysis, the block theory serves as a direct and efficient

method for blocky models.

At present, there are two classical methods in block

theory, namely the stereographic projection method

[18, 40] and the vector method [47, 49]. Based on the two

methods, great improvements and application have been

made in block theory and rock engineering. Young and

Hoerger [51] introduced a probabilistic approach for key

block analysis and applied this approach in tunnel analyses.

Shi and Goodman [43] presented a practical and intuitive

method for finding all unsafe areas on tunneling faces by

unrolling cylindrical surface of the tunnel and joint traces

onto a plane. Mauldon [22] developed a general model for

the size distribution and probability of occurrence of sim-

ple 2D key blocks for arbitrary distributions of disconti-

nuity size. Hatzor and Goodman [15] applied key block

theory to saturated rock slopes of a dam using parametric

addition of vectors of water pressures within the boundary

joints based on enhanced stereographic projection.

Wibowo [48] considered secondary blocks in key block

analysis using a non-repeated and repeated rock joint sys-

tem. Song et al. [44] developed a three-dimensional sta-

tistical joint modeling technique to analyze the stability of

rock blocks around a tunnel. The joint diameter distribution

was estimated by using the window sampling method.

Bafghi and Verdel [2, 3] proposed the key-group method

(KGM) grouping the rock blocks in an iterative and pro-

gressive analysis of the stability of discontinuous rock

slopes. The Sarma method is implemented to generate a

Sarma-based KGM. Zhang and Kulatilake [53] developed a

stereo-analytical method, which is a combination of the

stereographic method and analytical methods. It can be

applied to both convex and concave blocks. Menendez-

Diaz et al. [23] analyzed the mechanical behavior of non-

pyramidal key blocks with four discontinuity planes. A

modeler capable of predicting the existence of polyhedra

with unlimited facets and morphologies is developed based

on this study [9]. Tomas et al. [45] developed a graphical

method based on the stereographic representation of the

discontinuities to obtain the slope mass rating (SMR). Fu

and Ma [11] proposed an extended key block method

considering the force effect of key blocks in subsequent

batches after the first batch exposed. Zhang and Lei

[54, 56] presented an object-oriented computer model and a

morphological visualization method for three-dimensional

multi-block systems based on the object-oriented

programming (OOP) technique. Three-dimensional block

cutting analysis procedures based on optimization methods,

the oriented rule and the closed rule were described by

Fernandez-de Arriba [10] and Zhang [52]. Zheng et al. [58]

gave a formulation using mean orientation values and mean

friction angle values and developed a code to conduct

probabilistic block theory analysis.

The classic KBM generates joint pyramids with all joint

planes and divides a concave block using all the concave

corners. An improved method using free domain (FD) and

centroid sliding pyramid (CSP) is presented within the

concept of two-dimensional block theory in this paper. An

FD is a set of connected free surfaces of a block to simplify

the geometric complexity. Based on the concept of FD,

CSP calculated only from the joint planes adjoining the

free planes is used to describe the possible motion region of

the block centroid. The cone angle h of CSP is the vectorial

angle formed by the two candidate sliding surfaces of this

CSP. Removability analysis of a block is transformed into

calculating the cone angle of CSP. On the other hand, only

concave corners formed by two joint planes are used for

partitioning a concave block. Concave corners with free

planes are excluded in the cutting process. This CSP

method, fully utilizing the geometrical and topological

properties of rock block, is conducted by a 2D computer

program developed by the authors and validated by

examples of rock slopes and tunnels.

2 Free domain

Non-convex blocks are commonly seen in practical engi-

neering and regarded as a combination of convex blocks by

extending all the cutting faces to infinite planes in KBM

[41]. A non-convex block may contain one or more con-

cave corners, and each corner has two edges in two

dimensions or several faces in three dimensions. A concave

block can be divided into a set of convex blocks with the

infinite planes expanded by the edges or faces forming

concave corners. It has been found that if all of its convex

sub-blocks are removable for a finite non-convex block, the

non-convex block is removable. If one unmovable convex

sub-block exists, the non-convex block is also unmovable

[19]. Therefore, the removability of a non-convex block

can be obtained by analyzing the removability of each sub-

block.

As shown in Fig. 1a, the four blocks with the same joint

faces are all unmovable and the first three have concave

corners formed by free surfaces. The positions and angles

of these concave corners affect the shapes and removabil-

ities of the sub-blocks in the original KBM. After the

cutting process, each set of sub-blocks in Fig. 1b-1, b-2

contains an unmovable sub-block, while all the sub-blocks
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in Fig. 1b-3 are removable. This means the cutting method

using all the concave corner planes cannot be feasible in all

cases. To solve this problem, the concept of free domain is

introduced to simplify the geometric and topological

complexity of a block.

A free domain (FD) is defined as a set of connected free

surfaces in one block. It includes one or more finite free sur-

faces forming a set of line segments in two dimensions. A free

domain can be replaced by a single line segment named as

virtual free domain (VFD) connecting the starting point and

end point of this domainwithout changing the removability of

a block. For example, each set of red solid lines is anFDfor the

block inFig. 1a, respectively. Thefirst three blocks inFig. 1a-

1, a-2, a-3 are transferred to the fourth block in Fig. 1a-4 using

VFD. Thus, the removability of the three concave blocks can

be computed by the simplified geometric model of Fig. 1a-4.

As shown in Fig. 2, when a block has more than one free

domain, all the free domains can be replaced by the corre-

sponding line segments (VFDs). Therefore, by using free

domains, the geometric and topological complexity is reduced

without changing the removability of the blocky system.

As shown in Fig. 3a, a complex block with two concave

corners is decomposed into at least 15 convex sub-blocks

according to the classic KBM. These sub-blocks are obtained

by cutting the original block with four expanded concave

corner planes. In CSP method, the concave corner planes in

free domains are excluded in the cutting process as shown in

(a-1) (a-2) (a-3) (a-4)

(a) 

(b-1)

(b-2)

(b-3)

(b)

Fig. 1 Decomposition of three non-convex blocks with concave corners: a four unmovable blocks, b sub-blocks of three unmovable blocks

Fig. 2 Blocks with more than one free domain: a original block with

two FDs, a-1 simplified block with two FDs, b original block with

three FDs, b-1 simplified block with three FDs
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Fig. 3b. In this case, only five sub-blocks in Fig. 3c are

obtained by cutting the concave corner formed by two joint

planes. Two of the sub-blocks have concave corners in their

free domains, which have no effect on the removabilities of

the sub-blocks and the original block. All the five sub-blocks

are removable and simplified to two-dimensional pyramids, so

the original concave block is also removable.

Thus, the removability of the original block can be

obtained by analyzing the combination cutting by concave

corner planes expanded only from joint faces. Cutting

planes are limited to edges of concave corners defined by

two joint faces. For a multiply connected block in two

dimensions, the cavities inside the block do not affect the

removability under the assumption of rigidity.

Fig. 3 Decomposition of a non-convex block with two concave corners: a division in original KBM, b division in the CSP method, c simplified

sub-blocks obtained in the CSP method
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3 Centroid sliding pyramid

3.1 Removability analysis based on CSP

An FD connects two joint faces at the start and end points,

respectively. These two joint planes are defined as the

candidate sliding edges (SE) in two dimensions and the

candidate sliding surfaces in three dimensions. A concave

corner in 2D is formed by two edges. A concave corner in

3D is formed by two faces or divided into more than one

simple concave corner formed by two faces. For a rock

block without any free surface, it has no FD according to

the definition. Thus, this block is unmovable and excluded

from stability analysis in the next stage. For a block with

free domains, each domain and its corresponding candidate

sliding edges can be found by sorting analysis with the

right-hand screw rule.

Centroid sliding pyramid (CSP) is an infinite taper area

which is the possible motion region of the centroid of a

block in limit equilibrium state. In other words, this infinite

taper area is the set of all possible initial motion trajectory

of the centroid. The infinite taper area is inside the cone

angle h formed by two sliding edges vectors as shown in

Fig. 4.

The removability of a block without concave corners

between joint faces is calculated using the following steps

as shown in Fig. 4b, c:

1. Find all the free domains of this block, and record the

start and end points of each sliding surface.

2. Calculate the two sliding edge vectors of each FD and

generate the corresponding CSP.

3. Calculate the cone angle h (anticlockwise vector

angle) of each sliding pyramid according to the

right-hand screw rule.

4. If at least one cone angle hi of this block satisfies

0� hi � p, then this block is removable; otherwise, it is

unmovable.

The centroid of original block is calculated using the

simplex integration [42]. However, it is unnecessary to find

the centroid of block for generating CSP because CSP is

essentially a relative taper area determined by relative

angle of two candidate sliding vectors. The cone apex O of

CSP can be arbitrary point.

Fig. 4 Steps for generating the sliding pyramid of a free domain: a original block, b free domain identification, c candidate sliding edge vectors,

d CSP generation
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According to the right-hand rule, the starting point of

free domain is the terminal point of the first sliding surface

vector and the end point of free domain is terminal point of

the second sliding surface vector. Thus, sequence of the

two vectors can be ascertained. As shown in Fig. 4d, the

cone angle h of the sliding pyramid generated by the two

sliding edge vectors is calculated as follows:

The coordinates of two vectors *
A6A1

, *
A5A4

are ðx1 �

x6; y1 � y6Þ and ðx4 � x5; y4 � y5Þ, respectively. The
range of cone angle h is defined between -p and p (in

radians).

sinh0 ¼ ðx1� x6Þðy4� y5Þ� ðx4� x5Þðy1� y6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1� x6Þ2þðy1� y6Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx4� x5Þ2þðy4� y5Þ2
q

ð1Þ

cosh0 ¼ ðx1� x6Þðy4� y5Þþ ðx4� x5Þðy1� y6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1� x6Þ2þðy1� y6Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx4� x5Þ2þðy4� y5Þ2
q

ð2Þ

sin h0 � 0 0� h� p h ¼ arccos cos h0ð Þ ð3Þ

sin h0\0 � p\h\0 h ¼ �arccos cos h0ð Þ ð4Þ

The cone angle hi in Fig. 4d is between 0 andp. So the sliding
pyramid is a positive region for motion of the centroidO and

all the possible motion trail of O is inside this CSP. There-

fore, the block is removable and the motion trend vector in

the state of limit equilibrium is inside the CSP.

As shown in Fig. 5a, the value of cone angle h from *
A4A1

to *
A1A4

is p. This block has no concave corner between joint

faces, and thus, the CSP is a two-dimensional half space.

The value of cone angle h in Fig. 5b is 0 because vector *
B1B2

and *
B6B5

have the same starting point O and direction. The

possible trajectory of block centroid is a ray having the same

direction with the two vectors out from this centroid. In

Fig. 5c, the value of cone angle h is between -p and 0

according to Eqs. (1–4). In this case, h
0
is a concave angle

from *
C1C2

to *
C5C4

in counterclockwise direction. As the cone

angle h of the CSP is defined between-p and p (in radians),

the value of h is �p=6 (h ¼ h
0 � 2p). The sliding pyramid

in Fig. 5c is a negative region for the motion of centroid

O. That means there is no possible trajectory for the centroid

O to move with these boundary conditions and the block is

unmovable. The relations between cone angle h and the

removability of the free domain are given in Table 1.

For the blocks in Figs. 4 and 5, each of them only has one

free domain. The removability of a block with one free

domain can be obtained from the cone angle of the corre-

sponding CSP directly. However, a block without concave

corners formed by joint planes may contain more than one

free domain. These free domains can be simplified according

to the virtual free domain (VFD) theory and transferred to a

set of CSPs. If one of these free domains corresponds with a

positive sliding pyramid, this block is removable. On the

contrary, if all of these free domains are corresponded to

negative sliding pyramid, the block is unmovable.

For a block with concave corners between joint faces,

these joint planes are used to divide to a set of sub-blocks.

Each sub-block ki may have j (j C 0) free domains FDi1,

FDi2,…, FDij. Every free domain has a corresponding cone

angle hij. The cone angle hi of each sub-block i is the union

of all positive cone angles corresponding to the free

domains belonging to this sub-block ki. However, the cone

angle hk of the original block k is the intersection of all

cone angles of the sub-blocks as described in Eqs. (5, 6).

hi ¼ union hi1; hi2; . . .; hij
� �

ð5Þ

Fig. 5 Sliding pyramids of three types of blocks: a cone angle h = p; b cone angle h = 0, c cone angle -p\ h\ 0

Table 1 Relations between cone angle h and removability of the free

domain

The cone angle h
of sliding pyramid

The removability of

centroid O for this

sliding pyramid

The removability

of the free domain

�p\h\0 Negative Unmovable

h ¼ 0 Positive Removable

0\h\p Positive Removable

h ¼ p or h ¼ �p Positive Removable
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hk ¼ intersection h1; h2; . . .; hif g ð6Þ

3.2 Stability analysis based on CSP

After removability analysis, only removable blocks are

candidates for unstable blocks. Goodman and Shi [14]

introduced the computational theory for motion pattern and

stability of rock blocks. The edges of CSP are possible

sliding traces of centroid O in the CSP method. The sliding

edge vectors and gravity projection vectors are used to

compute the motion patterns and stability of blocks.

By definition of sliding pyramid, the motion patterns can

be distinguished as follows (only gravity, friction force and

tangential cohesive force are considered):

1. Lifting: The gravity vector starting at centroid O is

inside the sliding pyramid region.

2. Sliding:

(1) The gravity vector starting at centroid O is

outside the sliding pyramid region.

(2) The sliding edge vector and the gravity projection

on the sliding edge are in the same direction.

3. Resting:

(1) The gravity vector starting at centroid O is

outside the sliding pyramid region.

(2) The sliding edge vector and the gravity projection

on the sliding edge are in opposite direction.

The relation of gravity vector and sliding pyramid is

calculated using gravity projection on normal of sliding

edge. As shown in Fig. 6, if both of the sliding edges of

CSP satisfy Inequality (7), the motion pattern of this

Fig. 6 Motion pattern analysis using sliding pyramids: a lifting; b sliding; c resting
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sliding pyramid is lifting. If one of the sliding edges

satisfies Inequality (8) or (9), the motion pattern of this

sliding pyramid is sliding and the potential sliding

direction is along the sliding edge. For the cone angle h of

a sliding pyramid is between 0 and p, it is impossible for a

sliding pyramid to have two edges satisfy Inequalities (8)

and (9), simultaneously. Otherwise, if both of the sliding

edges satisfy Inequality (10), the motion pattern of this

sliding pyramid is resting and the block is stable under the

gravity.

g
* � v*1 � 0 && g

* � v*2 � 0 ð7Þ

g
* � v*1\0 && g

* � SE1

*
� 0 ð8Þ

g
* � v*2\0 && g

* � SE2

*
� 0 ð9Þ

g
* � SE1

*

\0 && g
* � SE2

*

\0 ð10Þ

Thus, the sliding force can be calculated as follows:

F ¼ g � sin a� g � cos a � tanu� fc ð11Þ

In original block theory [41], a block is considered as a

rigid body and the contact forces between blocks are

ignored. Based on the assumption of block theory, the

Fig. 7 Free domains and combinations of a complex rock block: a original block, b block simplified by free domains, c block cutting by

expanded concave corner planes

Fig. 8 Sub-blocks divided by expanded concave corner planes and their sliding pyramids

Fig. 9 Sliding pyramid of the original block
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simplified slip-resistance safety coefficient K for a movable

block with one sliding surface is defined as

K ¼ g � cos a � tanuþ fc

g � sin a ð12Þ

where a, u and fc are dip angle, friction angle and tan-

gential cohesive force of potential sliding surface, respec-

tively. K describes the relative relation between sliding

force and slip-resistance force. A block would slide if K is

below 1.0 under ideal conditions. In practice, larger value

of K means less risk for sliding failure.

Zheng and Tham [56] developed a method using the

approximation to the total normal pressure along the slip

surface to compute the factor of safety for slip surfaces of

all shapes. For a group of blocks with more than one sliding

surface, the rigorous limit equilibrium method [56] is

adopted to calculate the slip-resistance safety coefficient of

the whole slide body.

4 Validation examples

Complex rock blocks are common in practice projects.

Figure 7(a) shows a complex block with eight vertices,

four joint faces and four free surfaces. According to the

definition of free domain, the four free surfaces are divided

into two free domains. Thus, the original block can be

simplified to the block shown in Fig. 7b. The simplified

block only contains one concave corner \A2A3A4. Then,

the concave corner edges A2A3 and A3A4 are expanded to

the line segments A2A
0
6 and A4A

0
8, respectively. Therefore,

five sub-blocks and their sliding pyramids as shown in

Fig. 8 are obtained after the cutting process. The sub-

blocks in Figs. 8a, b have two free domains, respectively,

so each of them contains two sliding pyramids. But only

one sliding pyramid is positive for each sub-block.

The intersection of the five positive sliding pyramids of

the sub-blocks is shown in Fig. 9. The two candidate

KB

KB

KB

JB

JB

JB
JB

(a) (b)

(c) (d)

Fig. 10 Comparison with classic KBM. a A case presented by Goodman and Shi [14], b analysis result of the first iteration, c analysis result of
the second iteration, d key blocks computed by CSP method
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sliding edges of the original block are A6A7

*

and A4A3

*

. For

stability analysis, A4A3

*
satisfies Eq. (8), while A6A7

*
does

not. Thus, the motion pattern is sliding and sliding direc-

tion is along A4A3

*

.

The CSP method is conducted in a computational pro-

gram (CSP 2D) developed by the authors. The two-

dimensional CSP code was used in stability analysis of

tunnels and slopes with blocky hard rock.

Figure 10a shows an example using classic KBM. There

are seven blocks in a blocky system, and the three blocks

near surface are key blocks. In CSP method, the same

result is computed after two iterations. In the first iteration

shown in Fig. 10b, slip-resisting coefficients of the two

unstable blocks are both 0.74 without friction force and

(a) (b)

(c) (d)

Fig. 11 Stability analysis for a tunnel section with two sets of joints. a model of the tunnel and surrounding rock, b initial analysis result with

CSP, c key blocks of this tunnel section, d possible unstable region

(a) (b)

(c) (d)

Fig. 12 Stability analysis for a tunnel section with three sets of joints. a Model of the tunnel and surrounding rock, b initial analysis result with

CSP, c key blocks of this tunnel section, d possible unstable region
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tangential cohesive force. In the second iteration, the key

blocks calculated in previous step are removed as shown in

Fig. 10c.

Figure 11 shows a highway tunnel with two sets of

joints in its surrounding rock. To test the code and simulate

actual conditions, a set of fracture surfaces in Figs. 11 and

12 are not parallel strictly. The included angle between two

fracture surfaces which are parallel approximately is 0

degree to 3.2�. The accuracy of computation is set to

0.001�. There are 58 joints and 380 blocks in this model as

shown in Fig. 11a. The friction angle u and assumptive

slip-resisting safety coefficient K0 are 25� and 1.5�,

(a-1) (a-2)

(b)

(c)

(d) 

Fig. 13 Stability analysis for a slope with different friction angles and slip-resisting safety coefficients. a-1 Model of a slope, a-2 model of rock

blocks, b key blocks and possible unstable region (u ¼ 10� K0 ¼ 1:5), c key blocks and possible unstable region (u ¼ 10� K0 ¼ 2:0), d key

blocks and possible unstable region (u ¼ 20� K0 ¼ 1:5), e key blocks and possible unstable region (u ¼ 20� K0 ¼ 2:0), f key blocks and

possible unstable region (u ¼ 30� K0 ¼ 1:5), g key blocks and possible unstable region (u ¼ 30� K0 ¼ 2:0), h key blocks and possible

unstable region (u ¼ 40� K0 ¼ 1:5), i key blocks and possible unstable region (u ¼ 40� K0 ¼ 2:0)
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respectively. A block with value of K that is less than K0 is

considered to be unstable. A total of 105 blocks in Fig. 11b

are infinite and marked in purple. After initial analysis with

CSP, two key blocks are found as shown in Fig. 11c.

Motion patterns of the red block on the top of tunnel and

the orange block on the right side are lifting and sliding,

respectively. After iterative computations using the CSP

method, the possible unstable region is shown in Fig. 11d.

Figure 12 shows another highway tunnel with three sets

of joints in the surrounding rock mass. There are 81 joints

and 1058 blocks in this model as shown in Fig. 12a. The

friction angle u and assumptive slip-resisting safety

(f) 

(g)

(h)

(e) 

Fig. 13 continued
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coefficient K0 are 25� and 1.5�, respectively. A total of 132

blocks in Fig. 12b are infinite and marked in purple. After

initial analysis with CSP, four key blocks as shown in

Fig. 12c are found. Motion patterns of the red block on top

of the tunnel and the orange blocks are lifting and sliding,

respectively. After iterative computations, the possible

unstable region is shown in Fig. 12d.

A rock slope is shown in Fig. 13a-1. There are 16 joints

and 144 blocks in this model as shown in Fig. 13a-2.

Figure 13b–i shows the analysis results in the cases with

different friction angles and assumptive slip-resisting

safety coefficients. Twenty-nine blocks in the model are

infinite and marked in purple. Motion patterns of all key

blocks are sliding. The slip-resisting coefficients Ki of the

orange blocks are below 1.0, and slip-resisting coefficients

Ki of the yellow blocks are between 1.0 and K0. The key

blocks and possible unstable region are affected by u and

K.

The two-dimensional CSP program was also used for

stability analysis of a 7-km highway tunnel with complex

geology in mountainous area of central China. Two sec-

tions of the most dangerous part in this tunnel are chosen as

analysis targets.

The first section (ZK21 ? 687.2) shown in Fig. 14a

contains three sets of obvious joints as shown in Fig. 14b.

These joints are extended in surrounding rocks for analysis

of the most disadvantage distribution. There are 126 blocks

in this model as shown in Fig. 14c. The friction angle u is

20�. Figure 14d–f presents the analysis results with dif-

ferent assumptive slip-resisting safety coefficients K0 (1.0,

2.0, 3.0), respectively. These results show that the key

blocks are mainly distributed on the top and right (north)

side of the tunnel section.

The second cross section (ZK21 ? 694.5) shown in

Fig. 15a also contains three main sets of joints as shown in

Fig. 15b. These joints are extended in surrounding rocks to

analyze the most disadvantage distribution. There are 104

blocks in this model as shown in Fig. 15c. The friction angle

u is 20�. Figure 15d–f presents the analysis results with

different assumptive slip-resisting safety coefficients K0

(1.0, 2.0, 3.0), respectively. These results also show that the

key blocks are mainly distributed on the top and right side of

the tunnel section. Thus, for these two sections, the top and

right sides are the regions with higher probability of failure.

There are three measure points for stress acquisition

located on the top, left and right sides of each section,

respectively. The stresses on the primary lining of each

section are shown in Fig. 16, respectively. For the effort of

tunnel lining and cohesion of the joints, no visual failure

occurred during construction near these sections. Data of

field monitoring show that the stresses on the top and right

parts of lining are larger than that on the left part for each

section, which is in good agreement with results of CSP

analysis.

5 Conclusions

The classic KBM generates joint pyramids (JP) with all

joint planes and partitions a concave block using all the

concave corners. The CSP method in this paper presents

two advantages over the original key KBM. Firstly, all the

concave corners are considered as starting points of cutting

process when a concave block is divided into a set of

convex blocks in the original key KBM. But only concave

corners formed by two joint planes are used for partitioning

a concave block in the CSP method and concave corners

with free planes are excluded in the cutting process. Sec-

ondly, JP for removability computation in the original

KBM is generated using all of the joint planes, while CSP

is calculated only from the joint planes adjoining the free

planes. Furthermore, removability analysis of a block is

transformed into calculating the cone angle of CSP. When

the cone angle h is between 0 and p, the sliding pyramid is

a positive region for motion of the centroid O and all the

possible motion trail of O is inside this CSP. But when the

cone angle h is between -p and 0, the sliding pyramid is a

negative region for motion of the centroid O and no

(i) 

Fig. 13 continued
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(a) 

(b)

(c) (d)

(e) (f)

Fig. 14 Stability analysis for the section (ZK21 ? 687.2) of a highway tunnel with different safety coefficients. a Photographs of section

(ZK21 ? 687.2) and joint lines on the surface, b joints and tunnel profile of section (ZK21 ? 687.2), c numerical model of this section, d
analysis result (K0 ¼ 1:0), e analysis result (K0 ¼ 2:0), f analysis result (K0 ¼ 3:0)

640 Acta Geotechnica (2017) 12:627–644

123



(a)

(b)

(c) (d)

(e) (f)

Fig. 15 Stability analysis for the section (ZK21 ? 694.5) of a highway tunnel with different safety coefficients. a Photographs of section

(ZK21 ? 694.5) and joint lines on the surface, b joints and tunnel profile of section (ZK21 ? 694.5), c numerical model of this section, d
analysis result (K0 ¼ 1:0), e analysis result (K0 ¼ 2:0), f analysis result (K0 ¼ 3:0)
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possible motion trail of O is inside this CSP. The gravity,

friction force and tangential cohesive force are considered

in stability analysis using vector projection. The slip-re-

sistance safety coefficient K is used to evaluate the possi-

bility of sliding failure.

The geometrical relationship is simplified, and data size

for removability computation is reduced compared with the

original KBM. The CSP method is implemented in a 2D

computer program developed by the authors. Examples of

rock slopes and tunnels have been analyzed with this code,

which validate the validity of the CSP method.
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