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Abstract We investigate the macroscopic mechanical

influence of the local liquid–solid contact angle that gov-

erns the fluid distribution in granular soils under unsatu-

rated conditions. To this end, a discrete element method

(DEM)-based implementation that accommodates for any

contact angle is proposed and applied to an idealized

granular material in the pendular regime. The DEM model

includes resultant capillary forces as well as a compre-

hensive description of the capillary bridges (volume, sur-

face, orientation tensor) by solving the Laplace–Young

equation in a general case, instead of using any unneces-

sary phenomenological relation. Macroscale mechanical

simulations for different constant contact angle values

reveal that granular assemblies are less sensitive to unsat-

urated conditions for higher contact angles, which is in line

with the contact angle influence at the microscopic capil-

lary bridge scale. The contribution of the fluid mixture to

the total stresses of the wet soil, the so-called capillary

stresses, indeed decreases according to the contact angle.

Thus, the increase in apparent shear strength due to

unsaturated conditions is reduced for higher contact angles.

As such, the classical assumption of perfect wetting (zero

contact angle) appears to be non-conservative.

Keywords Contact (wetting) angle � Capillary (suction)

stresses � Capillary bridge � Discrete element method

(DEM) � Laplace–Young equation

1 Introduction

Granular soils encountered in geotechnical engineering

often encompass several immiscible fluids within their

pore network such as in situations related to oil and gas

production, non-aqueous pollutant transport in ground-

water, frozen soils, or simply, classical unsaturated soil

mechanics dealing with a mixture of air and water. The

presence of such fluid mixture is an important issue

since it greatly influences the soil’s mechanical beha-

viour, as illustrated by the classical example of sand-

castles that require wet sand to hold. Restricting

ourselves to ternary mixtures with one granular solid

phase and two-fluid phases, one key parameter that

controls the various fluid distributions is the contact (or

wetting) angle h describing the contact between the solid

phase and the wetting fluid phase along the so-called

contact lines where the three phases intersect. The con-

tact angle value is highly dependent on the particular

case of interest. For spherical particles, wet samples of

glass beads may show low contact angle values (6 10�)
[30, 32], while the contact angle between steel balls and

water is around 50� [34]. As far as real sandy soils are

concerned, contact angle values reaching 50� and more

have been reported in [2, 20]. Adding to complexity, the

contact angle is also dependent on the hydraulic loading

path; its value showing a hysteresis between extreme

limits that correspond to receding or advancing contact

lines. Such hysteresis has now been shown to affect the

fluid phase distribution [25].

Focusing on low degrees of saturation within the so-

called pendular regime, the fluid distribution is character-

ized by isolated capillary bridges, i.e. menisci, consisting

of the wetting fluid (considered from now on to be a liquid)

and that form between solid particles pairs. Several
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capillary bridge analyses have been proposed that accom-

modate for any contact angle value, giving the possibility

to investigate the contact angle influence at this micro-

scopic scale [17–19, 27, 34]. From these studies, the con-

tact angle is known to affect the liquid volume–capillary

pressure relationship and the capillary force magnitude, for

instance. Such microscopic effects necessarily also reflect

into the macroscopic behaviour of soil samples. However,

a proper macroscopic analysis of the contact angle influ-

ence seems to be at best limited in the literature.

Straightforward experiments are prevented by the major

difficulties measuring contact angle at a soil sample scale,

compared with the ideal case of droplets lying on a flat

surface [2, 9]. On the other hand, only few macroscopic

modelling approaches include a contact angle analysis such

as done in [8, 9, 25]. Among these studies, the focus is

mostly set on the description of two-phase pore flow within

a fixed packing [9, 25]. Finally, the assumption of a zero

contact angle is still routinely adopted in most macro-

scopic-scale numerical modelling of unsaturated soils in a

mechanical framework [13, 24, 31, 33, 35, 39]. As such,

the objective of the present paper is to assess through

careful modelling how contact angle influences the

mechanical behaviour of wet granular assemblies, in the

pendular regime.

We herein consider an idealized granular material with

solid particles being spherical in shape. Such assumption

eases the menisci computation from the Laplace–Young

equation. Both the solid and liquid phases show in the

pendular regime a discrete microstructure, with distinct

solid grains and liquid bridges. In connection with this

discrete microstructure, it is convenient to choose the dis-

crete element method (DEM) as a modelling approach, as

done in [13, 24, 31, 33, 35, 39]. The DEM describes any

internal force using interaction forces between the discrete

elements that correspond to spherical solid particles. As

such, the wetting and non-wetting (from now on, a gas)

fluids are indirectly incorporated in the model through the

resultant capillary forces that act on the particle pairs

bonded by a capillary bridge.

Because the capillary force depends on the liquid bridge

geometry, we begin with Sect. 2 that gives details of a

liquid bridge determination for various contact angles that

is inspired from previous works on monosized particles

pairs [17, 19]. Next, the results of Sect. 2 are implemented

in the open source DEM code Yade [36] in line with

Scholtès et al. [33] who restricted the computations to zero

contact angles. The DEM implementation leads to a

macroscopic analysis of the contact angle influence in

Sect. 3. Finally, Sect. 4 analyses in depth the results of

Sect. 3, focusing on the capillary stresses that encompass

the mechanical actions existing in a wet assembly due to

the fluid mixture.

2 Liquid bridge determination

Considering a polydispersed idealized granular material,

capillary bridges form in between two dissimilar spherical

particles of radii R1, R2 with radius ratio r ¼ R2=R1 > 1.

Three-dimensional axisymmetric conditions hold when

neglecting gravity g, i.e. for low Bond numbers B ¼
ðql � qgÞ gR2

2=c with ql, qg being, respectively, the liquid
and gas densities, g the gravity and c the liquid–gas surface
tension. It is thus convenient to use 3D cylindrical coor-

dinates ðq;/; zÞ with z as the axis of rotational symmetry

defined by angle /, such that a function fðzÞ defines the

liquid bridge surface fq ¼ fðzÞ;/ 2 ½0; 2p�; z 2 ½0; zf �g
where zf is the distance between the two three-phase con-

tact lines. Figure 1 illustrates such a liquid bridge between

two spherical particles: d1 and d2 refer to the half-filling

angles, and h is the contact (wetting) angle.

It is convenient to normalize all lengths through division

by the largest radius R2 which serves as a length scale so

that normalized quantities are z� ¼ z=R2, q� ¼ q=R2 and

f�ðz�Þ ¼ fðR2 z
�Þ=R2. Thus, the liquid bridge surface is

described in the dimensionless space as

fq� ¼ f�ðz�Þ;/ 2 ½0; 2p�; z� 2 ½0; z�f �g.
Generally speaking, liquid–gas interfaces always obey

the Laplace–Young equation given as:

ug � ul ¼ uc ¼ c div n ð1Þ

with the normal n oriented towards the liquid, ug and ul as

the gas and liquid pressure, respectively, and uc the cap-

illary pressure. Since adsorbed liquid layers are negligible

for granular soils, the capillary pressure uc also corresponds

to the matric suction.

The Laplace–Young equation serves as a partial differ-

ential equation describing the liquid bridge configuration.

In order to obtain the latter, Eq. (1) is classically rewritten

in the following dimensionless form accounting for the 3D

axisymmetric situation, and denoting f�0 and f�00 as the first
and second derivatives of f�ðz�Þ, i.e.
uc R2

c
¼ u�c ¼

f�00

1þ f�02
� �3=2 �

1

f� 1þ f�02
� �1=2 ð2Þ

which introduces a dimensionless capillary pressure u�c .

Fig. 1 Liquid bridge geometry
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Equation (2) might be approximately solved using a

toroidal expression for f� from two constant principal radii

with the meridian liquid profile being simply a circular arc

[11, 16]. However, this approximation leads to a non-

constant surface curvature locally as defined by div n,

which, strictly speaking, contradicts the Laplace–Young

equation (1) [17, 19].

2.1 Numerical procedure

Similar to [19] which dealt with only monosized spherical

particles, the current numerical procedure to solve Eq. (2)

considers a particular half-filling angle d1 on the smallest

particle and the dimensionless capillary pressure u�c .

Starting from the smaller particle on the left with boundary

condition f�0 ¼ sinðd1Þ=r, the liquid bridge profile f�ðz�Þ is
incrementally computed using a second-order Taylor series

expansion:

f�
�
z� ¼ ðiþ 1ÞDz�

�
¼ f�iþ1 ¼ f�i þ Dz� f�0i

þ 1

2
Dz�2 f�00i

ð3Þ

The first derivative f�0i is computed using a second-order

finite difference approximation, Eq. (4), that is suited to

describe the evolving profile slope, contrary to the always

positive expression presented in [19]. The initial value f�00
is a distinct case and is obtained from the wetting of the

smallest solid particle along the left contact line:

f�0i ¼

�1

tanðd1 þ hÞ for i ¼ 0

f�i � f�i�1

Dz�
þ 1

2
Dz� f�00i�1 else

8>><
>>:

ð4Þ

Appearing in Eqs. (3) and (4), the second derivative f�00

is expressed in terms of f� and f�0 from Laplace–Young

Eq. (2), i.e.

f�00i ¼ 1þ f�0i
2

f�i
þ u�c 1þ f�0i

2
� �3=2

ð5Þ

As such, the liquid bridge profile is obtained by applying

successively Eqs. (4), (5), and (3) until the right contact

line, defined by f�f ¼ sinðd2Þ, is reached for z� ¼ z�f . Prior

to that the filling angle d2 on the largest particle is deduced

by expressing Eq. (6) at both contact lines and solving

numerically for d2:

f�

1þ f�0
2

� �1=2 þ
u�c
2
f�2 ¼ C ¼ cst ð6Þ

The l.h.s. of Eq. (6) is the dimensionless expression of the

capillary force resulting from capillary pressure and sur-

face tension actions along any meniscus cross section, in

particular the left or right wetted particles surfaces.

Obtained from making a variable substitution in the

Laplace–Young equation as given in [19], Eq. (6) basically

expresses meniscus force equilibrium.

Also, an increment Dz� is chosen to be small enough

(2� 10�6 typically) so as not to have any influence on

the numerical results. In particular, this ensures both

stability and accuracy of the explicit scheme related to

Eqs. (3)–(5).

Determining the liquid bridge profile f�ðz�Þ; z� 2 ½0; z�f �,
following the above numerical procedure ultimately leads

to a comprehensive geometrical description of the liquid

bridge and other characteristics. For instance, the dimen-

sionless interparticle distance d� ¼ d=R2 and liquid volume

V� ¼ Vl=R2
3 are readily computed excluding the solid

volumes:

d� ¼ z�f �
1

r
ð1� cos d1Þ � ð1� cos d2Þ ð7Þ

and

V� ¼
Xf

i¼1

p f�i
2 Dz� � p

3 r3
ðcos3 d1 � 3 cos d1 þ 2Þ

� p
3
ðcos3 d2 � 3 cos d2 þ 2Þ

ð8Þ

Furthermore, the dimensionless capillary force is directly

obtained by satisfying Eq. (6) along either contact line of

the liquid bridge:

F� ¼ Fcap

2 p cR2

¼ C ð9Þ

Finally, the liquid bridge description is completed by the

calculation of the dimensionless meniscus orientation

tensor p�:

p� ¼ 1

R2
2

Z

Sm

n� n dS ð10Þ

that is obtained from the normal n, the local orientation

tensor n� n, and a numerical integration along the liquid

bridge external surface Sm, see Appendix 1. Such meniscus

orientation tensor enters into the description of the internal

surface tension forces within the liquid bridge surface

[6, 7, 15] and represents a pertinent tensorial quantity that

was not provided by previous analyses [19, 33]. In

particular, the inclusion of p� facilitates the stress

analysis in Sect. 4 without using any assumption on the

meniscus orientation. It is worth noting that the expression

of p� in the local (meniscus) basis ðeq; e/; ezÞ is diagonal

and axisymmetric with p�qq ¼ p�// 6¼ p�zz because of the

meniscus shape. Further insight is gained by considering

the trace of p� which turns out to be the dimensionless

meniscus surface S�m:
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trðp�Þ ¼ 2 p�qq þ p�zz ¼
1

R2
2

Z

Sm

jjnjj2 dS ¼ Sm

R2
2
¼ S�m

ð11Þ

In the end, the numerical procedures described in the above

lead to a schema in which, for given values of normalized

suction u�c , contact angle h, and radius ratio r, the complete

set of liquid bridge configurational parameters

fd�;V�;F�; d1; d2; p�qq; p
�
zzg is obtained by sweeping

through various filling angles d1 2 ½0�; 90� � h�. Values of
d1 greater than ð90� � hÞ are not considered since they

would correspond to concave liquid bridges (negative

suctions). Also, numerical computations may give config-

urations that present negative volume and/or particles dis-

tance. Such non-physical solutions correspond to

impossible liquid bridges and are thus disregarded.

2.2 Liquid bridge stability

When analysing granular assemblies, a key variable that

provides insights into the nature of the liquid bridge solution

is the inter-particle distance. As such, liquid bridge config-

urations obtained in the previous Sect. 2.1 are depicted

according to d� in Fig. 2, which shows two possible bridge

configurations for the same distance and same fr; h; u�cg
parameters. These two solutions both obey the force equi-

librium condition expressed by Laplace–Young equation

and correspond to stable or unstable distinct equilibrium

states [19, 22, 28]. Several free energy expressions have

been proposed to assess the stability of these different

configurations [5, 19]. However, these expressions rely on a

constant liquid volume assumption, whereas constant pres-

sure conditions prevail herein. As this disparity in state

description affects stability properties [22], we consider here

the following more suitable dimensionless free energy E�

whose derivation is given in Appendix 2:

E� ¼ E

cR2
2
¼ u�c V

� þ 2 p

"Xf

i¼1

f�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f�0i

2
q

Dz�

� cos h
1� cos d1

r2
þ 1� cos d2

� �# ð12Þ

The highlights of the dimensionless free energy expressed

in Eq. (12) include surface energies for liquid-gas as well

as liquid-solid and solid-gas interfaces, considering con-

stant solid surfaces for the particles. Specific volume fluid

energies are included, assuming that the global volume

ðVl þ Vg þ VsÞ is kept constant.
It is through the finding of the minimum values of E� for

a given distance, see Fig. 3, that we can retain among the

two solutions the configuration with the largest liquid

volume as the stable one, i.e. the ‘‘upper’’ branches of the

curves previously depicted in Fig. 2. As such, the unsta-

ble configurations showing the smallest liquid volumes are

from now on disregarded.

2.3 Contact angle influence at the liquid bridge scale

The determination of capillary bridge configurations for

different contact angles offers first micromechanical

0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

d* (−)

δ 1,δ
2 (d

eg
)

uc* = 20 (δ1)

uc* = 20 (δ2)

uc* = 80 (δ1)

uc* = 80 (δ2)

0

0.05

0.1

S
m

* 
(−

)

d* (−)
0 0.01 0.02 0.03 0.04 0.05

0

2

4
x 10−3

V
* 

(−
)

uc*=20: surface
uc*=80: surface
uc*=20: volume
uc*=80: volume

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

d* (−)

F*
 (−

)

uc* = 20

uc* = 80

(a)

(b)

(c)
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insights in the contact angle influence on wet granular

packings. At the microscopic scale, and for given dimen-

sionless suction, interparticle distance, and relative radii

parameters, an increasing contact angle decreases the

wetted surfaces, the meniscus volume and surface, and the

capillary force, see Fig. 4. Such decreases in liquid volume

and capillary forces with the contact angle have also been

described in [18, 27].

2.4 Comparison with empirical relations

As an alternative to systematically solve Laplace–Young

equation, several empirical relations for the capillary force

have been proposed in the literature [7, 31, 41]. These are

now compared with the results of the presented numerical

procedure.

Pitois et al. [7] derived the following Eq. (13) for the

capillary force in the case of a monosized particle pair and

assuming a cylindrical (flat) liquid bridge profile. The

following relation has been experimentally verified for

h ¼ 10�, i.e.

F� ¼ cos h 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2V�

p d�2

r

0
BB@

1
CCA ð13Þ

For such a monosized particle pair, a fairly good agreement

is found between our solution and Eq. (13) for a wide range

of contact angles as illustrated in Fig. 5a, b. Consistent

with other experimental comparisons presented in [7], the

agreement between the solution of Laplace–Young equa-

tion and Eq. (13) is most satisfactory for small liquid

volumes (Fig. 5a) for which the flat profile assumption is

the most relevant. However, Fig. 5c illustrates the obvious

inadequacy of Eq. (13) in the polydisperse case for which

the flat profile assumption never holds.

In order to account for polydispersity, Richefeu et al.

[31] proposed Eq. (14) for macroscopic DEM simulations

purposes, i.e.

F� ¼ cos hffiffi
r

p exp � r

0:9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�ð1þ rÞ=2

p d�

 !
ð14Þ

0
2

4x 10−3
0

0.02
0.04

0.06
−0.1

−0.05

0

0.05

0.1

d* (−)V* (−)

E
* 

(−
)

uc*=20

uc*=80

Fig. 3 Free energy of the different liquid bridge configurations of

Fig. 2 (r ¼ 2; h ¼ 20� and different suctions)
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However, for the cases herein considered, the comparison

between Eq. (14) and our numerical solutions shows a

poorer agreement for the polydisperse cases than for the

monodisperse ones, see Fig. 6.

A last comparison is made with the relation proposed by

Willett et al. [41], detailed in Appendix 3 due to its com-

plexity, that has been used for DEM simulations in [24].

Among the cases here tested, there is a very good agree-

ment for only contacting particles, irrespective of the vol-

ume and radius ratio. Then, deviations increase according

to the interparticle distance, see Fig. 7.

In summary, this brief review and comparison exercise

discussed in the above are intended to show the difficulties

in obtaining empirical relations that are valid in any con-

figuration, and thus the need of an efficient numerical

solution of Laplace–Young equation. Moreover, it is noted

that the numerical solution not only gives the capillary

force, but also furnishes other pertinent liquid phase

information such as liquid bridge volume and surface,

filling angles and orientation tensor.

3 Contact angle influence at the macroscale

3.1 DEM model description

To pass from pairwise particle interaction to a network of

particles at the macroscale and appreciate the implications

of contact angle on the mechanical strength of a polydis-

persed assembly of wet granular material, DEM modelling

is pursued by invoking the liquid bridge computations

expounded in Sect. 2 within a numerical framework similar

to the one used in [33] for zero contact angles.

First, a comprehensive data set of liquid bridge config-

urations is built for a wide set of contact angles h, radius
ratios r, and dimensionless capillary pressures u�c values.

For a given numerical sample, eight r values are considered

between 1 and the Dmax=Dmin ratio. Regarding the capillary

pressure, values of u�c are chosen between 0 and an arbi-

trary maximum value u�cmax using 350 equal intervals. This

maximum suction value u�cmax is defined as the one leading

to a mean filling angle lower than 1� for contacting parti-

cles. Such suction cut-off disregards liquid bridges that

would show negligible liquid volume and capillary forces.

Thus, approximating unsaturated conditions beyond u�cmax

with dry conditions introduces a negligible error in the

DEM model.

Simulations of suction-controlled loading paths are

thereafter carried out by interpolating during the DEM

workflow from the above generated data set to determine all

possible liquid bridges between the individual particles

according to the ratio of their radius and separation distance,

given the constant suction and contact angle values. The

suction-controlled nature of the loading paths is consistent

with drained conditions, while the prescribed suction at the

macroscale translates into constant capillary pressure con-

ditions at the micro-scale where liquid bridges are computed
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Fig. 5 Comparison with Eq. 13, from [7]. a r ¼ 1;V� ¼ 10�4, b

r ¼ 1;V� ¼ 10�2, c r ¼ 3;V� ¼ 10�4

72 Acta Geotechnica (2017) 12:67–83

123



from Sect. 2. Thus, the corresponding liquid distribution

conforms with uniform capillary pressure conditions that are

specific to thermodynamic equilibrium and also considered

by [33, 39]. On the other hand, contrary to [13, 26], the

model does not include any pore flow computations. Thus,

some phenomena known to affect the fluid distribution in

unsaturated conditions, such as the ink-bottle effect, are not

included in the model. Also, the consideration of a constant

uniform contact angle value for each simulation disregards

the possibility for contact angle hysteresis that is also known
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to impact the fluid distribution [25]. However, the liquid

phase distribution that results from such numerical mod-

elling paradigm has been favourably compared with exper-

iments in terms of soil–water characteristic curves in a

previous paper [37]. Capillary bridges, with their associated

capillary forces, are thus defined for all contacting and

separated particles for which a solution of the Laplace–

Young equation can be found. As such, contrary to many

other DEM studies [24, 26, 31, 35], the capillary force is not

obtained from any phenomenological relations such as the

ones discussed in Sect. 2.4.

The standard DEM calculations then carry on with

classical frictional contact forces being applied between

contacting particles in addition to the above-mentioned

capillary forces. In other words, along the normal direction,

repulsive contact forces evolve with a fictitious overlap

according to linear elasticity. It is to be understood that the

numerical overlap corresponds in reality to slight changes

in shape when the contact force increases between two

actual spherical particles. By design, such deformations in

DEM calculations are restricted to small values, and these

are thus not accounted for during capillary force determi-

nation in the contact regime. In addition to the normal

component of the contact force, a tangential component is

expressed from the tangential relative displacements using

a linear elastic–plastic relation. As usual, the contact law

only requires three parameters: Y and P that govern the

normal and tangential stiffnesses, and a contact friction

angle u. However, the particle size distribution of the

sample (Fig. 8) becomes another parameter in the model

since capillary force computations are size-dependent, and

hence a characteristic length scale is introduced. All

parameter values are given in Table 1, and we refer to a

previous work [37] for more details concerning Y, P, u.
The considered surface tension is the one developing

between air and water at ambient temperature. Note finally

that there are a total number of 20,000 particles making up

the numerical sample, which is high enough to have no

influence on the results.

3.2 Contact angle influence on SWCC

The computation of all liquid bridge volumes in the DEM

calculations provides the possibility of obtaining the mac-

roscale soil–water characteristic curves (SWCCs) for uni-

form suction conditions. Being dependent on the chosen

particle size distribution, the SWCCs are generated for

different contact angles under an isotropic stress of p ¼ 10

kPa—this value has little influence on the final result—and

imposing different suction values to the numerical sample.

For each contact angle, two distinct SWCCs are determined

by computing menisci either between contacting particles

only, or between both contacting and separated particles.

As water vapour condensates into liquid primarily over

contacting solid surfaces, the consideration of menisci at

contacts only may be related to a pseudo-primary wetting

path. On the other hand, considering menisci for admissible

particle distances, i.e. as long as a solution to the Laplace–

Young equation can be found, is presented as a pseudo-

primary drying path. However, it is reminded that there is

no simulation of the pore flow of the two fluids, which

leads the model to neglect some mechanisms such as the

ink-bottle effect that are responsible for hysteresis during

physical hydraulic paths. As such, a limited hysteresis is

obtained between the pseudo-wetting and pseudo-drying

SWCCs, see Fig. 9.

It is noted that the contact angle inevitably influences

the SWCC since it is directly connected to the volumetric-

suction V�ðu�cÞ relationship at the liquid bridge scale. As

seen in Fig. 9, there is a significant difference in SWCC for

contact angles greater than h ¼ 20�. Indeed, an increasing

contact angle reduces the suction for a given degree of

saturation with the two being interchangeable. This result

further suggests that soils are less sensitive to unsaturated

conditions for higher contact angles, as the next sections

will demonstrate in detail.

3.3 Contact angle influence on strength

The association between the contact angle value and the

mechanical consequences of unsaturated conditions is

10−2 10−1
0

20

40

60

80

100

Particle diameter (mm)

P
er

ce
nt

ag
e 

pa
ss

in
g 

by
 m

as
s 

(%
)

Fig. 8 Particle size distribution of the DEM sample

Table 1 Model parameters

Y (MPa) P (-) u
(�)

Dmax

Dmin

(-)
D50 (mm) c (N/m) h (�)

50 0.5 30 3 0.058 0.073 2 ½0; 60�
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investigated into more details considering the apparent

shear strength of wet samples. For each contact angle

value, and different applied suctions, two triaxial, i.e.

axisymmetric compressions, with 10 and 20 kPa confining

pressure, are carried out in order to determine the corre-

sponding apparent shear strength as interpreted using a

Mohr–Coulomb criterion. As has been observed experi-

mentally [29, 30], the macroscopic friction angle / is

unaffected by unsaturated conditions and corresponds to

the friction angle developed in dry conditions: all / values

are equal to 30:1	 0:3�. The correspondence between /
that has been measured for dry conditions in previous

works [10, 37], with the local friction angle between two

discrete elements, u, is purely coincidental. Disregarding

the constant friction angle, the shear strength is then

quantified through the apparent cohesion c (Fig. 10). We

recall first that the cohesion values depend on the chosen

particle size distribution: greater cohesions would be

obtained for another distribution involving smaller

particles.

Also, in line with the differences in the SWCCs previ-

ously shown in Fig. 9, the apparent cohesion of the

unsaturated samples significantly decreases with the con-

tact angle, independent of the suction or degree of satura-

tion as depicted in Fig. 10. Such a decrease in the apparent

cohesion is attributed to the lower attractive capillary for-

ces that were observed for higher contact angles back in

Sect. 2.3 (Fig. 4).

We notice that the strength as expressed in terms of the

apparent cohesion globally increases with the degree of

saturation, i.e. decreasing suction, for a given contact

angle. This trend is typical of granular materials with low

degrees of saturation, as has been observed experimentally

[29, 30]. The explanation resides in the underlying

microscopic mechanism where the capillary force associ-

ated with a liquid bridge decreases in the range of high

capillary pressures, see Fig. 11. This is equivalent to

increases in capillary forces with water content at the low

end of water contents within the pendular regime.

The case of a liquid bridge between two contacting

particles is nonetheless different, displaying a monotonic

increase in the capillary force with decreased liquid satu-

ration, i.e. an increase in suction. It turns out that this

difference in mechanical behaviour confers a significant

role to liquid bridges between distant particles that have

been previously argued to not contribute to the stress

transmission inside an unsaturated granular soil [30], and

thereafter neglected in DEM models similar to the one here

considered [38].

In the present paper, it is chosen to simulate

mechanical loadings from an initial state including

menisci at contacts only, and thereafter consider menisci

even if contact is lost, but ensuring Laplace–Young

equation can be solved. This includes the instance when
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initially contacting spheres start separating, while new

menisci also form at new contacts. For the purpose of

emphasizing the role of stretched menisci between sep-

arated particles, apparent cohesions are also measured

with a simplified version of the model that discards

menisci and capillary forces as soon as initially con-

tacting spheres separate. As expected, lower cohesions

are measured with the simplified model due to a lower

number of liquid bridges and attractive forces inside the

sample, see Fig. 12. More importantly, the cohesion

trends with water content are also affected with the

simplified model showing a monotonic decrease with

water content that contradicts experimental evidence

[29, 30] or other numerical models [26]. Figure 12

considers the case of h ¼ 0�, but the exact same trends

have been measured for other contact angle values. It is

for the above reason that we conclude stretched menisci

should not be disregarded in the DEM modelling as long

as they are admissible, i.e. a solution of Laplace–Young

equation.

3.4 Contact angle influence on constitutive

behaviour

Finally, we examine the constitutive behaviour during

suction-controlled triaxial loading paths under 20 kPa

confining pressure and 20 or 300 kPa suction, for different

contact angles. Table 2 gives the corresponding initial

degrees of saturation.

Apart from the previously discussed strength changes,

the contact angle has negligible influence on the overall

constitutive behaviour, see Figs. 13 and 14. It is clear that

virtually the same residual states and strain behaviour are

observed for a given suction, irrespective of the contact

angle. Initial stiffnesses are also found to be unaffected.

4 Micromechanical interpretation from capillary
stresses

In order to get further insights in the role played by the

contact angle in wet conditions, e.g. on the apparent shear

strength, attention is now focused on the nature of the stress

state of an unsaturated soil.

4.1 Stress state of wet soils

As a starting point, the various stress contributions to the

total stress r in an unsaturated soil are briefly presented.

Alluding to the various internal forces that exist within a

wet granular material, these contributions necessarily

implicate contact forces between solid particles as well as

fluid pressures and surface tension forces.

The contact stress tensor rcont accounting for the contact

forces is given by the celebrated Love–Weber formula

[21, 40]:
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Fig. 12 Apparent cohesion for h ¼ 0� accounting for menisci

between distant particles (‘‘cont. ? dist.’’ data set), or not (‘‘cont.

only’’ data set)

Table 2 Initial degree of saturation (%) of considered triaxial load-

ings (with 20 kPa confining pressure)

Contact angle h

0� 20� 40� 60�

uc 20 3.76 3.03 1.59 0.44

(kPa) 300 0.046 0.040 0.025 0.009
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rcont ¼ 1

V

X
c: 1;2

f2 � l12 ð15Þ

Eq. (15) considers all contacting particles pairs 1-2 in

the REV V, with f2 the contact force as sustained by 2,

and l12 the branch vector connecting the centre of 1 to

that of 2.

Whereas the contact stress tensor equals to the total net

stresses in dry conditions, a capillary stress tensor rcap

arises in unsaturated conditions, accounting for the stress

contributions from the fluid phases and the existing inter-

actions between the various phases:

rcap ¼ r� ug d� rcont ð16Þ

Note that the capillary stress terminology, used also by

Scholtès et al. [33], corresponds to the suction stress as

coined by Lu & Likos [23]. From micromechanics, and

under quasi-static conditions, the expression for rcap is

obtained from the different mechanical actions related to

fluid pressures and surface tension forces [6, 7]:

rcap ¼ �uc v� c n

v ¼ 1

V
Vl dþ

X
p

Rp

Z

Slp

n� n dS

 !

n ¼ 1

V

Z

Slg

ðd� n� nÞ dSþ
X
p

Rp

Z

Cp

e� n dl

 !

ð17Þ

Figure 15 shows the various characteristics of a liquid

bridge between two particles that appear in the capillary

stress expression (17). The latter encompasses all internal

forces within the fluid volumes in terms of an isotropic

capillary pressure term �uc Vl=V d, as well as the internal

forces within the so-called contractile skin [12] formed of

all liquid-gas interfaces Slg ¼
P

Sm in terms of surface

tension forces oriented along the surface projection tensor

ðd� n� nÞ [6, 7, 15]. Eq. (17) also includes interactions

terms between the different phases: first, the non-isotropic

fluids action on the solid through the capillary pressure uc

acting along the wetted surfaces Slp of the solid particles p
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showing radii Rp; and second, surface tension forces c e dl
as sustained by solid particles along the contact lines Cp

from the contractile skin. The vector n is the outward

external normal to the solid particles in the last term of

(17).

Previous DEM modelling approaches customarily use

an alternate expression for rcap that is based on resultant

capillary forces only [30, 33, 35, 39]. Interestingly, the

comprehensive description of the solid and fluid

microstructure by the DEM model enables one to com-

pute the capillary stresses from Eq. (17) as well. Because

the internal forces within an actual wet granular material

differ in nature from point forces, the choice is made here

to only consider Eq. (17) that reflects the distributed

nature of, e.g. liquid pressure, instead of relying on

resultant point forces. The discussion here is not trivial

because internal stresses and resultant forces are not

interchangeable, as any medium sustaining stresses, while

in equilibrium—under zero resultant force—illustrates it.

However, this issue is outside the scope of this paper and

other publications by the authors present further details

and explanations [37].

From the capillary stresses expression (17), it is note-

worthy that the capillary stresses systematically include in

the general case a deviatoric part depending on the distri-

bution of fluids implicating Slp, Slg, Cp and interface ori-

entations, which extends the classical Bishop’s theory [4].

Such deviatoric stress contribution from the fluids has

previously been investigated for a zero contact angle, e.g.

by the authors using a slightly different expression for rcap

[10, 37, 38]. Because the contact angle governs the whole

fluid distribution—for instance the contact line orientation

and the
R
Cp
e� n dl term—it is natural to expect that the

contact angle affects the capillary stresses.

4.2 Capillary stresses during hydraulic loading

Capillary stresses are first measured along a pseudo-pri-

mary drying path simulated under constant isotropic (total)

stresses p ¼ 10 kPa. At this stage, the sample is isotropic,

and the liquid distribution including menisci between

contacting and separated particles is also isotropic. As

such, rcap is spherical and is completely characterized by

its mean pressure pcap. We have namely:

pcap ¼
trðrcapÞ

3
¼ pv þ pc

pv ¼� uc

3V
3Vl þ

X
p

Rp S
l
p

 !

pc ¼� c
3V

2 Slg þ
X
p

Rp Cp sin h

 !
ð18Þ

Irrespective of the degree of saturation, an increasing

contact angle leads to a decrease (in absolute value) of the

capillary stress pcap due to the two-fluid mixture, see

Fig. 16. The decline in pcap with h follows a decreasing (in

absolute value) pv that is not counterbalanced by an

increasing pc. As for pv, higher contact angles induce lower

suctions for a given water content (Fig. 9), then lower pv.

As for pc, its direct dependence on the contact angle with

sin h appearing Eq. (18) leads pc to increase with h.
For a given contact angle, changing the degree of sat-

uration, i.e. suction, has a minor influence on the capillary

stress pcap because of the opposite trends of pvðSrÞ and

pcðSrÞ. Note finally that apart from very low water con-

tents, with negligible interface surfaces and wetted con-

tours, a significant amount of the capillary stresses is due to

pc that accounts for surface tension forces.

4.3 Capillary stresses during mechanical loading

Capillary stresses are next computed during the triaxial

loading paths presented back in Sect. 3.4 (Table 2). Con-

trary to the previous isotropic example, induced anisotropy

here takes place in the initially isotropic sample upon the

deviatoric mechanical loading. As menisci form along new

contacts following induced anisotropy in the granular

packing, an anisotropic liquid bridge distribution develops

which gives way to deviatoric capillary stresses qcap
[10, 37, 38].

Turning to the influence of contact angle, it is found that

higher values of h decrease the intensity of capillary

stresses with regards to both pcap and qcap for all suction

values, see Figs. 17 and 18. Also, the deviatoric nature of

rcap—as measured by gcap ¼ jqcap=pcapj—slightly increases

with the contact angle for low suctions, Fig. 17c. On the

other hand, for high suction, the deviatoric nature of rcap

Fig. 15 Liquid bridge characteristics associated with Eq. (17)
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does not depend anymore on the contact angle, as evi-

denced in Fig. 18c. Such high suction prevents menisci to

exist between separated particles, and there is in this case

equivalence between the liquid bridge and the contact

distributions, hence between the deviatoric nature of rcap

and the contact anisotropy. Contrary to the stress state, the

straining of the packing can be considered as insensitive to

the contact angle, as suggested previously in Figs. 13 and

14. This explains why gcap does not depend on the contact

angle for uc ¼ 300 kPa. Note that the apparent ultimate

value for gcap is related to an existing critical state for the

contact anisotropy [3, 42].

4.4 Failure description from capillary stresses

The distinct limit stress states as a function on wettability

that we alluded to back in Sect. 3.3 are directly related to

the corresponding capillary stresses observed in Sect. 4.3.

However, a unified failure description is still possible,

irrespective of the contact angle values. Such unified fail-

ure description is only obtained when the stress limit states

(maxima of g ¼ q=p) are expressed in terms of the contact

stress tensor rcont ¼ r� rcap (neglecting ug), instead of the

total stresses r that are necessarily affected by the fluid

mixture and the contact angle. Shear strength data from

triaxial compressions under 10 and 20 kPa confining

pressures and several degrees of saturation in ½0:01%; 10%�
illustrate clearly that the consideration of rcont leads to a

unique plastic limit criterion, for all contact angles and

degrees of saturation, see Fig. 19.

This interesting result illustrates the validity of the

single effective stress concept to describe the failure of

granular materials in both dry and unsaturated conditions

as discussed, e.g. by Alonso et al. [1]. However, we do

not address here the more complex issue of a compre-

hensive stress-strain behaviour. Also, this study confirms

previous numerical results pertaining to the pendular

regime with h ¼ 0� [10, 33, 37], as well as experimental

works [1, 23].

5 Conclusion

The contact angle h affects the mixture of fluids in multi-

phasic granular soils, which, in turn, impacts on the

mechanical behaviour of the soil. In order to assess this

contact angle mechanical influence, we proposed a DEM

model allowing a macroscopic mechanical analysis for any

h value. The DEM model relies on a systematic numerical

solution of Laplace–Young equation, so that capillary

bridges are precisely described in terms of capillary force,

volume, surface, and orientation tensor.

In line with the microscopic contact angle influence at

the capillary bridge scale, macroscale mechanical simula-

tions performed with the DEM model show that the stress
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state of macroscopic soil samples is less sensitive to

unsaturated conditions for higher contact angles. As a

matter of fact, higher h values reduce the suction, i.e.

capillary pressure as well as the apparent shear strength

increase classically associated with unsaturated conditions.

Such contact angle influence arises from a decrease in the

capillary stresses according to h. As such, the classical zero
contact angle assumption is shown to be non-conservative

for the mechanical analysis of wet granular soils.
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Appendix 1: Liquid bridge orientation tensor

Considering a meniscus-related orientation basis

ðeq; e/; ezÞ (Fig. 1), the liquid bridge external normal n and

the local orientation tensor n� n are:

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f�0

2
q

1

0

�f�0

0
B@

1
CA ð19Þ

n� n ¼ 1

1þ f�0
2

1 0 � f�0

0 0 0

�f�0 0 f�02

0
B@

1
CA ð20Þ

From the discrete description of the liquid bride profile

ðz�i ; f
�
i Þ and a numerical integration along the profile—

z�i 2 ½0; z�f �—the dimensionless meniscus orientation tensor

p� is obtained as:

p� ¼
Z

S�m

n� n dS� ¼ pDz�
Xf

i¼1

f�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f�0i

2
q

1 0 0

0 1 0

0 0 2 f�0i
2

0
B@

1
CA

ð21Þ

Appendix 2: Free energy of liquid bridge
configurations

The capillary bridge depicted in Fig. 1 includes free energy

of different types:

• surface free energy Eint is present along the interfaces

between liquid and gas, liquid and solid, and solid and

gas [5, 28]. We denote A, Als and Asg the respective

areas; and c, cls and csg the respective surface tensions.

Using Young’s equation c cos h ¼ csg � cls, and the

area decomposition As ¼ Als þ Asg, it transpires

directly that:

Eint ¼ cAþ cls Als þ csg Asg

¼ c ðA� Als cos hÞ þ csg As

ð22Þ

The wetted area Als is:

Als ¼ 2 p R1
2 ð1� cos d1Þ þ R2

2 ð1� cos d2Þ
� �

ð23Þ

Through classical differential geometry, the profile f�ðz�Þ
gives the axisymmetric meniscus area:

A ¼ 2 pR2
2

Zz�f

0

f�ðz�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f�0ðz�Þ2

q
dz�


 2 pR2
2
Xf

i¼1

f�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f�0i

2
q

Dz�

ð24Þ

• liquid and gaseous fluid volumes include the free

energy Ef ¼ �uf Vf (f ¼ l; g). We consider the

capillary bridge forming in a constant surrounding

volume V ¼ Vs þ Vl þ Vg, such that:

Ef ¼ �ug Vg � ul Vl ¼ �ug ðV � VsÞ þ uc Vl ð25Þ

• no energy is associated with the rigid spheres. The

same assumption leads to consider As as constant in

Eq. (22).

Omitting the constant terms csg As and ug ðV � VsÞ, the

expression of Eint þ Ef in a dimensionless form—

E� ¼ ðEint þ Ef Þ=ðcR2
2Þ—gives Eq. (12).
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Fig. 19 Failure description during triaxial compressions. a Using

total stresses r. b Using contact stresses rcont ¼ r� rcap
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Appendix 3: Comparison with Willett’s model

With respect to our notations, the capillary force expression

proposed by Willett [41] applies to a dimensionless force

equal to F� ð1þ rÞ=2. In [41], the relation is expressed

according to a dimensionless distance Sþ that corresponds,

here, to d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðV�ð1þ rÞÞ

p
. Namely, the equation pro-

posed by Willett finally reads:

F� ¼ 2

1þ r
exp f1 � f2 exp f3 ln S

þ þ f4 ln
2 Sþ

� �� �
ð26Þ

The coefficients fi depend on the contact angle and a

dimensionless volume that corresponds here, with respect

to our notations, to V�ð1þ rÞ3=8. Their exact expressions
can be found in the Appendices of [41] or [14].

References

1. Alonso E, Pereira JM, Vaunat J, Olivella S (2010) A

microstructurally based effective stress for unsaturated soils.
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