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Abstract Coupled hydro-mechanical (HM) processes are

significant in geological engineering such as oil and gas

extraction, geothermal energy, nuclear waste disposal and

for the safety assessment of dam foundations and rock

slopes, where the geological media usually consist of

fractured rock masses. In this study, we developed a model

for the analysis of coupled hydro-mechanical processes in

porous rock containing dominant fractures, by using the

numerical manifold method (NMM). In the current model,

the fractures are regarded as different material domains

from surrounding rock, i.e., finite-thickness fracture zones

as porous media. Compared with the rock matrix, these

fractured porous media are characterized with nonlinear

behavior of hydraulic and mechanical properties, involving

not only direct (poroelastic) coupling but also indirect

(property change) coupling. By combining the potential

energy associated with mechanical responses, fluid flow

and solid–fluid interactions, a new formulation for direct

HM coupling in porous media is established. For indirect

coupling associated with fracture opening/closure, we

developed a new approach implicitly considering the

nonlinear properties by directly assembling the

corresponding strain energy. Compared with traditional

methods with approximation of the nonlinear constitutive

equations, this new formulation achieves a more accurate

representation of the nonlinear behavior. We implemented

the new model for coupled HM analysis in NMM, which

has fixed mathematical grid and accurate integration, and

developed a new computer code. We tested the code for

direct coupling on two classical poroelastic problems with

coarse mesh and compared the results with the analytical

solutions, achieving excellent agreement, respectively.

Finally, we tested for indirect coupling on models with a

single dominant fracture and obtained reasonable results.

The current poroelastic NNM model with a continuous

finite-thickness fracture zone will be further developed

considering thin fractures in a discontinuous approach for a

comprehensive model for HM analysis in fractured porous

rock masses.

Keywords Direct coupling � Finite-thickness
fracture zone � Fractured porous rock mass � Hydro-
mechanical processes � Indirect coupling � Numerical

manifold method

1 Introduction

Hydro-mechanical (HM) coupling refers to the interaction

between hydraulic and mechanical processes that may be

triggered by mechanical loading/unloading or fluid injec-

tion/extraction. This interaction is significant in geological

engineering, such as oil and gas extraction, geothermal

energy, nuclear waste disposal and for the safety assess-

ment of dam foundation and rock slopes where the geo-

logical media usually consist of fractured rock [26]. These

fractured rock masses may contain fractures with complex
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geometry and fillings and thus could be modeled as a

fractured porous media. Basically, the mechanisms of HM

coupling in fractured porous media may be categorized as

direct and indirect couplings [26]. Direct coupling is

associated with the instantaneous undrained (pore volume)

coupling between mechanical and hydraulic fields.

Specifically, the fluid pressure changes instantaneously

induce deformation, while the volume change instanta-

neously induces changes in fluid pressure. Indirect cou-

pling refers to interaction between mechanical and

hydraulic fields indirectly, through changes in material

properties. Specifically, the effective stress changes,

affected by fluid pressure changes, would change the

stiffness of fractures, while the deformation of fractures

changes their hydraulic conductivities [26, 35].

Since the early 1980s, a number of numerical models

have been developed for modeling coupled hydro-me-

chanical processes in fractured rock. In 1982, Noorishad

et al. [21] presented a finite element model for the coupled

HM processes in deformable fractured rock masses. In that

model, the constitutive relationships for the nonlinear

deformable fractures were formulated, which was compa-

rable to Biot’s equations [3] for porous media. After that,

increasing engineering demand has inspired development

of many computer codes capable of modeling HM behavior

of fractured rock at various levels of sophistication [29],

including ROCMAS [22]; THAMES [23, 24], MOTIF [9],

FRACON [19, 20], FEMH [4] applied in analysis of

nuclear waste disposal; FRIP [25], FRACture [15] and

GEOCRACK [33] applied in analysis of geothermal

energy; and models applied for HM analysis of slopes and

dam foundations (Wang et al. [34, 36, 37]). Most of the

aforementioned models were developed based on the finite

element method. With the development of discontinuous

methods, fractures could be explicitly represented as a

displacement discontinuity as they are modeled as inter-

faces of individual blocks. This includes both codes based

on the models based on the distinct element method,

including the commercially available UDEC [11] and

3DEC [12] codes, and models based on discontinuous

deformation analysis (DDA), which may include coupled

fluid flow and deformations in discrete fractures, but with

the blocks between fractures assumed impermeable

[13, 14]. Later, models based on the enriched finite element

method were developed, such as a model in literature [32],

in which simplified jump terms were constructed to realize

the mechanical displacement discontinuity and hydraulic

pressure continuity associated with fractures, whereas

indirect coupling was not considered.

In order to realize the fully coupled HM processes in

fractured porous media and to consider both direct and

indirect couplings involving high nonlinearity and discon-

tinuity, we explore and develop a model within the

framework of the numerical manifold method (NMM).

NMM is a numerical method based on the theory of

mathematical manifolds invented by Shi [30, 31] and has

been successfully applied to both continuous and discon-

tinuous media in rock mechanics [5, 17]. The numerical

meshes of NMM consist of two types of finite covers:

mathematical covers and physical covers. Mathematical

covers consist of finite overlapping covers that occupy the

entire material domain and define the approximation pre-

cision. Conventional meshes such as regular finite differ-

ence grids, finite elements or convergence regions of series

can be used as mathematical covers, whereas physical

covers are divided by boundaries or joints from mathe-

matical covers and define the integration domain. The

global function of an element is the weighted average of

the function on each physical cover overlapping an ele-

ment. Thus, the NMM is flexible and general enough to

include and combine well-developed analytical methods,

the widely used FEM and block-oriented DDA, all in a

unified form. Based on above definition, fluid flow models

using NMM were developed, such as for analysis of free-

surface flow [38] and flow in heterogeneous media [10].

For coupled HM problems in fractured rock, the following

features of the NMM can be highlighted: (1) For large

deformation, the NMM based on finite covers can model

large deformation using fixed mathematical meshes

[17, 30]; (2) for local small-scale fractures, the global

approximation field can be easily enhanced by increasing

the order of the physical cover functions from spatially

constant (as in the finite element method) to linear or even

defined by arbitrary user-defined functions [5]; (3) for

complex fracture geometries or compositions, the simplex

integration used in NMM [31] achieves exact analytical

solutions in polygons with complex shapes. NMM mod-

eling of coupled HM problems such as consolidation [16]

or consolidation under dynamic loading [40] in porous

media was developed, involving direct coupling.

In this study, we first provide a mathematical statement of

the problem in Sect. 2. Based on the energy-work model for

coupling mechanical and analysis, and considering finite-

thickness fractures as continuous porous media, we develop

a new formulation for considering both direct and indirect

couplings in fractured porous rock, in Sect. 3. With the new

formulation, we then establish a new model based on NMM

in Sect. 4. In Sect. 5, we demonstrate our model for both

direct and indirect couplings with several examples.

2 Mathematical statement of the problem

To describe the coupled HM behavior in porous deform-

able media, Biot established a general theory of 3D con-

solidation in 1941 [3], expressed as:
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r � rþ f ¼ 0 ð1Þ

r � vþ a
oev
ot

þ c
M

oh

ot
¼ 0 ð2Þ

where r is total stress tensor, f is body force vector, v is the

fluid velocity vector, a is the Biot–Willis coefficient

(usually ranges between 0 and 1), ev is the volumetric

strain of the porous media, M is Biot’s modulus, c is the

unit weight of the fluid, and h is the fluid hydraulic head, as

the sum of fluid pressure head p and the head associated

with elevation. Equation (1) represents the static

mechanical equilibrium, and Eq. (2) represents the mass

balance for fluid flow. These two equations are coupled

through fluid pressure head p and volumetric strain ev. The
Biot–Willis coefficient as a factor multiplied to fluid

pressure in Eq. (1) signifies a modification and

generalization of Terzaghi’s effective stress law to:

r ¼ r0�macp ð3Þ

where r0 is the effective stress tensor, mT = [1, 1, 1, 0, 0,

0] for 3D analysis or mT = [1, 1, 0] for 2D analysis. This

theory for describing coupled HM responses in porous

media was then widely used in its original form or in

extension formulations for the modeling of porous

deformable media, with linear or nonlinear properties.

For mechanical analysis of linear elastic porous media,

we have:

r0 ¼ Ee ð4Þ

where E is the elastic constitutive tensor and e is the strain
tensor, which could be expressed in terms of displacements

for small-deformation analysis as follows:

e ¼ Au ð5Þ

where A is the strain–displacement matrix

A ¼

o

x
0

0
o

y
o

y

o

x

0
BBBBB@

1
CCCCCA

ð6Þ

and u is the displacement vector. For fluid flow in porous

media, we assume that the fluid flow satisfies Darcy’s law:

v ¼ �KgradðhÞ ð7Þ

where K is the tensor of permeability coefficient.

For rock fractures, linear elasticity according to Eq. (4) is

not sufficient to describe the mechanical behavior, because it

may be nonlinear elastic depending on effective stress.

Goodman [7] described the normal closure (closing defor-

mation normal to the fracture) as being inversely propor-

tional to the effective normal stress. Then Bandis introduced

a constant to represent the zero-stress state of the fracture

[2]. Here following Rutqvist et al. [27, 28], we use a

reformulation of Bandis’ [2] equation in terms of a

mechanical aperture bm which then is inversely proportional

to the effective normal stress rn0, according to (Fig. 1):

r0n ¼
n
bm

þ r0n0 ð8Þ

where rn00 is related to a Bandis’ parameter, which is user-

defined, and n is a constant defined as:

n ¼ bmi r
0
ni � r0n0

� �
ð9Þ

where rni0 and bmi are the effective normal stress and

mechanical aperture at the initial or a reference state.

Moreover, in Fig. 1, bmr is a residual mechanical aperture

that can remain open (incompletely closed) even at very

high effective normal stress [27].

The relationship between shear displacement and shear

stress for a rock fracture as have been observed in shear

tests conducted under constant normal stress can according

to Goodman’s classical model [8] be characterized by

elastic, peak and plastic regions as depicted in Fig. 2a. The

peak shear stress rsp is equivalent to the peak shear

strength, while the minimum post-peak shear stress rsr is
the residual strength. In the elastic region, the shear stiff-

ness is constant and independent of the normal stress, but

both rsp and rsr increase with increasing normal stress, as

shown in Fig. 2b. The linear shear stress–displacement

relationship is expressed as:

Dr0s ¼ ksDus ð10Þ

In order to be consistent with the relationship for normal

closure behavior in Eq. (8), we introduce the following

Fig. 1 Mechanical constitutive model: relationship between normal

effective stress and aperture (Bandis et al. [2], Rutqvist et al. [28])

Acta Geotechnica (2017) 12:231–252 233

123



relationship to describe the behavior of fracture shear

displacement under shear stress:

r0s ¼
Dus

1þ wDus
ð11Þ

where f and W are constants. Equation (11) was originally

used to describe the nonlinear stress–strain behavior of soil

[6]. Examining Eq. (11) we find that when W = 0, the

linear behavior is also included. We shall implement this

equation for fracture shear behavior in our code for being

consistent with the model for fracture normal mechanical

behavior.

For fluid flow in fractures, the hydraulic conductivity kf
of a fracture depends on the size of interconnected voids

between the two fracture surfaces and is related to a

hydraulic fracture aperture bh that can be defined according

to Witherspoon et al. [39]:

kf ¼
b2hqfg
12lf

ð12Þ

where qf and lf are the fluid density and dynamic viscosity,

and g is the gravitational acceleration, respectively. As the

hydraulic and mechanical apertures could be very different

[27], in Eq. (12), the hydraulic aperture bh is assumed to

be:

bh ¼ bhr þ fbm ð13Þ

where bhr is the residual hydraulic aperture when the

fracture is mechanically closed and f is a factor that com-

pensates for the deviation of flow in a natural rough frac-

ture from the ideal parallel smooth fracture surfaces.

The boundary and initial conditions for the fractured

porous rock masses are:

u ¼ �u on Cu ð14Þ

as given displacement boundary condition,

r � n ¼ �t onCt ð15Þ

as given traction boundary condition,

p ¼ �p on Cp ð16Þ

as given pressure head boundary condition,

v � n ¼ �q on Cv ð17Þ

as given specific discharge condition and

uðx;0Þ ¼ u0ðxÞ in X ð18Þ
rðx;0Þ ¼ r0ðxÞ in X ð19Þ
pðx;0Þ ¼ p0ðxÞ in X ð20Þ

as initial conditions of displacement, stress and fluid

pressure head, respectively.

3 Development of a new model for coupled HM
analysis in fractured porous media

In this section, using an energy-work model for coupled

HM analysis, we first derive the equilibrium equations for

coupled behavior in porous media (Sect. 3.1). For fractured

porous media (e.g., fractured rock masses), where indirect

coupling is more significant, we then derive a new for-

mulation for considering the fracture stiffness change in an

accurate, implicit approach (Sect. 3.2).

3.1 An energy-work model for coupled HM analysis

in porous media

In Ref. [30], Shi established the total potential energy

associated with each component of dynamic/static

mechanical processes, under point/surface/body loadings,

possibly involving discontinuous and large deformation.

Fig. 2 Mechanical constitutive model: a relationship between shear stress and shear displacement. b Effect of normal stress r on the relationship

between shear stress and shear displacement (Goodman [8])
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In Ref. [38] for fluid flow analysis, Wang et al. devel-

oped an energy-work seepage model for fluid flow

analysis, considering all the work done by fluid flow in

porous media. Later in order to better model Dirichlet

boundary conditions and material interfaces for fluid

flow problems, Hu et al. [10] developed a Lagrange

multiplier method. Herein, the energy-work seepage

model [38] is extended to conduct coupled HM analysis,

linked by ‘‘work.’’ By combining the work associated

with mechanical responses, the work associated with

fluid flow and the work associated with solid–fluid

interactions, a new formulation for direct HM coupling

in porous media is established.

3.1.1 The work associated with mechanical responses

The work associated with mechanical responses in terms of

strain energy, initial stress, point loading, surface loading,

body loading and given displacement boundary condition

was derived by Shi [30]. They are as follows:

1. The strain energy Ge for elastic rock is expressed as:

Pe ¼
Z
X

Z e

0

r0TdedX ð21Þ

2. The work Wr associated with initial stress is expressed

as:

Wr ¼
Z
X
eTr00dX ð22Þ

3. The work done by point loading Wp is:

Wp ¼ uTF ð23Þ

4. The work done by surface loading Wt is:

Wt ¼
Z
Ct

uTFsdCt ð24Þ

5. The work done by body loading Wb is:

Wb ¼
Z
X
uTFbdX ð25Þ

6. The work associated with given displacement

boundary condition Wgd is expressed as

Wgd ¼ � 1

2
g0ðu� �uÞTðu� �uÞ ð26Þ

using the penalty method [30] and assuming the stiffness g0
of the penalty spring.

For discontinuous analysis of fractures as strong dis-

continuities, Shi [30] developed the algorithms for contact

detection, open–closed iteration and contact enforcement

and derived the work associated with contact between

discontinuities. For dynamic analysis, the work associated

with inertia is also considered. In this study, fractures are

treated as porous media with nonlinear features under

steady mechanical states. Therefore, the work associated

with strong discontinuities and dynamic processes is

deactivated.

3.1.2 The work associated with fluid flow

Based on an energy-work seepage model [38] for fluid flow

analysis, the work associated with fluid flow in porous

media, including domain flow, fluid gravity, was derived.

Combined with a Lagrange multiplier method [10], the

Dirichlet and Neumann boundary conditions can be

imposed with unconstructed mesh and the associated work

was also derived. Therefore, we can represent all the

components of work associated with fluid flow in terms of

the domain flow, fluid gravity and boundary conditions as

follows.

1. The work associated with domain flow in porous

media is expressed as:

Ws ¼ c
Z
X
vTrhdXþ 2c

Z
X

oh

ot
r � vdXdt � c

Z
X
hdvdX

ð27Þ

where h is a choice vector (0, 1) denoting the gravity

direction. Substituting Eq. (2) into Eq. (27), we have:

Ws ¼ �c
Z
X
rpTKrpdX� 2c

Z
X
hKrpdX

� 2c
Z
X

op

ot
a
oev
ot

þ 1

M

op

ot

� �
dXdt � c

Z
X
hdvdX

ð28Þ

Regardless of the effect of solid deformation, for work

associated with fluid flow in porous media, we have:

Ws ¼ �c
Z
X
rpTKrpdX� 2c

Z
X
hKrpdX

� 2c
Z
X

op

ot

1

M

op

ot
dXdt � c

Z
X
hdvdX ð29Þ

2. The work done by fluid gravity is:

Wg ¼ c
Z
X
hdvdX ð30Þ

3. The work associated with Dirichlet boundary condition

is expressed as:

WD ¼ �c
Z
CD

nTK rpT þ hT
� �

ðp� �pÞdCD ð31Þ

using the Lagrange multiplier method developed in [10].

4. The work associated with Neumann boundary condi-

tion is:

WN ¼ c
Z
CN

�qTðpþ yÞdCN ð32Þ
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3.1.3 The work associated with the fluid–solid interactions

in porous media

Now we extend the energy-work seepage model [38] for

coupled HM analysis by deriving the work associated with

solid–fluid interactions. They are derived and explained as

follows.

1. The work done by the fluid flow on solid deformation

is obtained directly from the excess fluid pressure

compared to the initial fluid pressure:

Wfs ¼ c
Z
X
a p� p0ð ÞTmTedX ð33Þ

2. The work done by solid deformation on fluid flow is

obtained by considering how the solid deformation

influences the mass balance of fluid flow. From

Eq. (27) we can see that the work associated with

solid deformation on fluid flow could be expressed

as:

Wsf ¼ �2c
Z
X

op

ot
a
oev
ot

dXdt ð34Þ

Examining the expressions in this section, we see that all

the components of ‘‘work’’ together are consistent with

Biot’s equations and corresponding boundary and initial

conditions. The energy-work model provides a unique way

to transform differential equations to integral equations

with ‘‘work’’ as a bridge to link mechanical to fluid flow

analysis.

3.2 A new approach to consider the indirect

coupling in fractured porous media

In fractured rock masses, the main flow feature is seldom a

simple plane single fracture, but may be a complex geological

feature, consisting of multiple branching fractures intermin-

gled with mineral-filled sections and damaged host rocks

adjacent to fracture surfaces (Fig. 3a). The basic property of

such a flow feature is its ability to conduct water along open

and connected fracture parts, with a very sensitive relation-

ship between fracture aperture and hydraulic conductivity as

in Eq. (12). Another related key property is the nonlinear

relationship between stress and fracture aperture as illustrated

in Fig. 1. Moreover, such a flow feature is also associated

with a mechanical weakness that may allow for in-elastic

shear slip along its plane. One pragmatic approach to model

such a flow feature is to simplify it as a finite-thickness

equivalent porous deformable medium, which has strongly

nonlinear properties reflecting inherent fracture flow and

nonlinear fracture opening and/or shear behavior, with con-

sideration of effects of fracture filling. The thickness of this

equivalent porous media flow feature in the model may far

exceed the real fracture width including open fracture parts

and filling. It can include part of the host rock on each side of

the flow feature, still retaining the key features of potential

fracture flow and nonlinear deformation behavior. The model

for such a flow feature is depicted in Fig. 3b. It is a porous

medium of thickness Id which includes both a dominant

fracture flow path and other materials such as fracture filling

Fig. 3 Schematic of the simplified porous fractured rock model
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and part of the host rock. For the dominant fracture flow path

we consider its aperture for calculating the hydraulic con-

ductivity, whereas the deformation behavior is affected by the

nonlinear behavior of the fracture described in Eq. (8) as well

as by the solid fracture fillings and adjacent host rock

described to have linear elastic properties. As the fracture

zones are modeled as porous media with different nonlinear

properties from the surrounding rock, the boundaries of the

fracture zones are regarded as material interfaces. The dis-

placement continuity across these material interfaces are

realized by penalty method [30], and the continuity of

hydraulic head as well as the normal flux is realized by the

Lagrange multiplier method developed by the authors in [10].

In the following we loosely define such a flow feature as

a fracture zone. In this approach, we use an equivalent

concept to represent this material behavior as follows:

eðiiÞn ¼ gdr0ðiiÞn þ b
ðiiÞ
m � b

ðii�1Þ
m

I
ðii�1Þ
d

ð35Þ

Combining Eq. (8), Eq. (35) becomes:

eðiiÞn ¼ gdr0ðiiÞn þ

n

r0ðiiÞn � r0n0
� n

r0ðii�1Þ
n � r0n0

I
ðii�1Þ
d

ð36Þ

where g represents the compliance of fillings and adjacent

host rock within the fracture zone. Note that the nonlinear

behavior of the fracture could be very strong (see Fig. 1) so

that we use an incremental algorithm to express and solve

for displacement and stress.

Based on the above concept, in this model, we develop a

new formulation accounting for the nonlinear behavior of the

finite-thickness fracture zone. Specifically, the nonlinear

mechanical behavior of the fracture zone intrinsically influ-

ences the strain energy that could be stored in the material

under deformation. Therefore, we directly introduce those

nonlinear relationships to energy strain as described in the

following subsections for normal and shear deformation.

3.2.1 An implicit approach to consider the normal stiffness

change with effective stress

The normal constitutive model expressed in Eq. (36) could

be rewritten as:

r0ðiiÞn ¼
g r0ðii�1Þ

n þ r0n0

� �
þ x

h i

2g

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g r0ðii�1Þ

n � r0n0

� �
þ x

h i2
�4 n

I
ðii�1Þ
d

g

r

2g

ð37Þ

where ii represents the iith time step; n denotes the local

normal direction and

x ¼ eðiiÞn þ n

r0ðii�1Þ
n0 � r0n0

h i
I
ðii�1Þ
d

ð38Þ

Detailed derivation of the above equations can be found in

‘‘Appendix.’’ The strain energy in the porous medium

representing a fracture zone is expressed as:

Pefn ¼
Z
X

Z eðiiÞn

0

r0ðiiÞn deðiiÞn dX ð39Þ

Combined with Eq. (37), Eq. (39) becomes:

Pefn ¼
Z
X

Z g r0ðii�1Þ
n þ r0n0

� �
þ x

h i

2g
dxdX

�
Z
X

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g r0ðii�1Þ

n � r0n0

� �
þ x

h i2
�4 n

I
ðii�1Þ
d

g

r

2g
dxdX

ð40Þ

By integration with Taylor expansion, and projected into

a local Cartesian fracture-zone coordinate system, Eq. (40)

is expressed as:

Pefn ¼
1

2g

ZZ
1

2
X

ðiiÞ
2 eðiiÞn

� �2
þX

ðiiÞ
1 eðiiÞn

	 

dsdn ð41Þ

where the X1
(ii) and X2

(ii) are:

X
ðiiÞ
1 ¼ vðii�1Þ

I
ðii�1Þ
d

þ g r0ðii�1Þ
n þ r0n0

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g r0ðii�1Þ

n � r0n0

� �
þ vðii�1Þ

I
ðii�1Þ
d

" #2
�4g

n

I
ðii�1Þ
d

vuut

X
ðiiÞ
2 ¼ 1þ

� g r0ðii�1Þ
n � r0n0

� �
þ vðii�1Þ

I
ðii�1Þ
d

	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g r0ðii�1Þ

n � r0n0

� �
þ vðii�1Þ

I
ðii�1Þ
d

	 
2
�4g n

I
ðii�1Þ
d

s

vðii�1Þ ¼ n

r0ðii�1Þ
n � r0n0

ð42Þ

According to coordinate transformation from global x–y

to local s–n coordinate system, we have:

eðiiÞn ¼ CTeðiiÞ ð43Þ

dsdn ¼

os

ox

os

oy

on

ox

on

oy

��������

��������
dxdy ¼ Jdxdy ð44Þ

where CT = (sin2h, cos2h, -sinhcosh). Then we finally

obtain:
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Pefn ¼
1

2g

ZZ
X

ðiiÞ
1 CTeþ 1

2
X

ðiiÞ
2 eTCCTe

	 

Jdxdy ð45Þ

3.2.2 An implicit approach to consider the fracture

mechanical behavior in the shear direction

The shear constitutive model expressed by Eq. (11) could

be further expressed as:

r0s ¼
e
ðiiÞ
s

1
.
b
ðii�1Þ
m þ weðiiÞs

ð46Þ

where es = Dus
(ii)/bm

(ii-1).

Similar to the approach for fracture normal mechanical

behavior, we directly express the associated strain energy

as:

Pefs ¼
Z
X

Z e
ðiiÞ
s

0

r0ðiiÞs deðiiÞs dX ð47Þ

Combined with Eq. (46), Eq. (47) becomes:

Pefs ¼
Z
X

Z e
ðiiÞ
s

0

e
ðiiÞ
s

1
.
b
ðii�1Þ
m þ weðiiÞs

deðiiÞs dX ð48Þ

By integration, Eq. (48) becomes:

Pefs ¼
Z
X

1

w
eðiiÞs �

1
.
b
ðii�1Þ
m

w2
ln 1

.
bðii�1Þ
m þ weðiiÞs

� �2
4

3
5dX

ð49Þ

By Taylor expansion, we have:

ln 1
.
bðii�1Þ
m þ weðiiÞs

� �
¼ wbðii�1Þ

m

.
1eðiiÞs

� 1

2
wbðii�1Þ

m

.
1

h i2
ðeðiiÞs Þ2

þ oðeðiiÞs Þ þ ln 1
.
bðii�1Þ
m

� �
ð50Þ

Substituting Eqs. (50)–(49), and projecting into the local

Cartesian fracture-zone coordinate system, we have:

Pefs ¼
1

2
bðii�1Þ
m

.
1
ZZ

eðiiÞs

� �2
dsdn ð51Þ

According to coordinate from global x–y to local s–n

coordinate system, we have:

eðiiÞs ¼ C0TB0uðiiÞ ð52Þ

dsdn ¼

os

ox

os

oy

on

ox

on

oy

��������

��������
dxdy ¼ Jdxdy ð53Þ

where C0T = (-sinhcosh, sinhcosh, cos2h, -sin2h) and

B0 ¼

o

x
0

o

y
0

0
o

y
0

o

x

0
BB@

1
CCA

T

. Then we finally obtain:

Pefs ¼
1

2
bðii�1Þ
m

.
1
ZZ

uB0TC0TC0B0uJdxdy ð54Þ

3.2.3 Fluid flow in deformable porous fracture zones

The tensor of permeability coefficient H of the deformable

porous fracture zones in local 2D coordinate system is

expressed as:

H ¼ kf 0

0 kfn

� �
ð55Þ

where kfn denotes the hydraulic conductivity in the normal

direction. The work done by domain flow in the fractures is

expressed as:

Wfs ¼ �c
Z
X
rpTHrpdX� 2c

Z
X
hHrpdX

� 2c
Z
X

op

ot

1

M

op

ot
dXdt � c

Z
X
hdvdX

ð56Þ

After transforming from the local fracture-zone coordinate

system to global Cartesian coordinate system, we have:

Wfs ¼ �c
Z

rpTFTHFrpJdxdy� 2c
Z

hHFrpJdxdy

� 2c
Z

op

ot

1

M

op

ot
Jdxdydt � c

Z
X
hdvdX

ð57Þ

where F ¼ cos h sinh
�sinh cos h

� �
.

The other terms of work could be expressed in the same

way as for porous media, under coordinate transformation

from fractures-zone local coordinates to the global Carte-

sian coordinate system.

4 Coupled HM NMM analysis of fractured porous
rock masses

4.1 Fundamentals of NMM

Here we briefly describe the fundamentals of NMM for both

mechanical and fluid flow analysis, including mathematical

covers, physical covers, elements, cover functions and weight

functions. In this study, we use triangles to form mathematical

covers, because of their proven good numerical performance
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[1]. As shown in Fig. 4, all the triangles sharing a certain

node (or ‘star’) form a mathematical cover (i.e., a hexagon

such as P1, P2 and P3, distinguished by different colors). The

corresponding physical covers (P1
1 and P1

2, P2
1 and P2

2 and P3
1

and P3
2) are divided from the mathematical covers by

boundaries, including material interfaces if they are regarded

as discontinuities. The overlapping areas of physical covers

are defined as elements (such as elements P1
1P2

1P3
1 and

P1
2P2

2P3
2, distinguished in Fig. 4 by different fill patterns).

In NMM, the approximations of field variables (in-

cluding displacements for mechanical analysis and pres-

sure head for fluid flow analysis) within an element are the

weighted average of functions on all physical covers

overlapping this element. They are expressed as:

u ¼ wT
uupc ð58Þ

p ¼ wT
pppc ð59Þ

where u and p are the variables on a certain element, upc and

ppc are the vectors of physical cover functions of displacement

and pressure head, and wu and wp are the vectors of weight

functions of physical cover functions upc and ppc on this

element. For an individual physical cover i, we have

wi
uðx; yÞ[ 0; wi

pðx; yÞ[ 0 ðx; yÞ 2 Ui

wi
uðx; yÞ ¼ 0; wi

pðx; yÞ ¼ 0 ðx; yÞ 62 Ui

(
ð60Þ

where Ui is the geometric range of physical cover i.

The cover functions upc and ppc can be a series of any

order:

upc ¼ fTD ð61Þ

ppc ¼ sTP ð62Þ

where f and s are the vectors of the coefficients of the degrees

of freedom (DOFs) D and P to be solved in mechanical and

fluid flow fields, respectively. Specifically, D represents

DOFs in terms of displacements and P represents DOFs in

terms of pressure head. For 2D analysis, f and s are the

subsets of vector (1, x, y, x2, y2, xy, …)T. For example in

standard finite element analysis with constant cover functions

(called nodal values in FEM), f and s are the vectors (1)T and

the number of DOFs m associated with a physical cover is 3

(2 for displacements and 1 for pressure head). For linear

approximation of displacement, f could be written as (1, x, y)T

and the associated DOFs of a physical cover in the

mechanical field become 6. Substituting Eqs. (61) and (62)

back to Eqs. (58) and (59), the contribution of each physical

cover to all corresponding elements is summed to form the

global approximation over the entire domain.

In this paper, we use linear weight functions and constant

physical cover functions for both mechanical and fluid flow

analysis with a triangular mesh. Note that even though

Zienkiewicz et al. [41] indicated that T3/C3 elements failed

in a patch test, we should note that Eq. (2) in [41] and the

boundary conditions in the test are very different from the

coupled HM problem in this work. Besides, the work pre-

sented in [42] showed that the correct assembling of the

equilibrium equations for this problem could successfully

overcome the restrictions of a mixed formulation.

4.2 NMM global equilibrium equations for coupled

HM analysis

According to the energy-work theorem,

Wu þPu ¼ 0 ð63Þ

we can derive the potential energy associated with each

component associated with coupled HM processes in

fractured rock masses. We further combine with NMM

approximations expressed by Eqs. (49)–(53) and project

the integration into a 2D Cartesian coordinate system and

derive the potential energy for the solid as follows:

1. the strain energy for elastic porous rock is:

Pe ¼
Z
X
DTBTEBDdxdy ð64Þ

where B = Awu
TfT.

Fig. 4 Mathematical covers, physical covers and elements defined in NMM with uniform triangles as mathematical mesh
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2. the potential energy associated with initial stress is:

Pr ¼ �
Z
X
DTBTr00dxdy ð65Þ

3. the potential energy associated with point loading is:

Pp ¼ �DTTTF ð66Þ

where T = wu
TfT.

4. the potential energy associated with surface loading is:

Pt ¼ �
Z
Cs

DTTTFsdCt ð67Þ

5. the potential energy associated with body loading is:

Pb ¼ �
Z

DTTTFbdxdy ð68Þ

6. the potential energy associated with a given

displacement boundary condition is:

Pgd ¼
1

2
g0 DTTT � �uT
� �

ðTD� �uÞ ð69Þ

7. the potential energy associated with the work done by

fluid flow on the solid is:

Pfs ¼ �ca
Z
X

PTOTmTBD� p0m
TBD

� �
dX ð70Þ

here O = wp
TsT.

Also, we can derive the following potential energy for

fluid flow:

1. The potential energy associated with domain flow in

porous media is:

Ps ¼ c
Z

PTGTKGPþ 2hKGP
�

þ 2

MD
PTOTOP� PTOT ~P
� �


dxdyþ c
Z
X
hdvdX

ð71Þ

where G = (q/qx, q/qy)TO, ~P is the time-iteration choice

for P, and D is the time step, respectively.

2. The potential energy associated with fluid gravity is:

Pg ¼ �c
Z
X
hdvdX ð72Þ

3. The potential energy associated with Dirichlet

boundary condition is:

PD ¼ c
Z
CD

nTK PTGTOPþ hTOP� PTGT �p� hT �p
� �

dCD

ð73Þ

4. The potential energy associated with Neumann

boundary condition is:

PN ¼ �c
Z
CN

�qTOPþ �qTy
� �

dCN ð74Þ

5. The potential energy associated with deformation

effects on fluid flow is:

Psf ¼
2ac
D

Z
DTBTmTOP� ~D

T
BTmTOP

� �
dxdy ð75Þ

where ~D is the time-iteration choice for D.

For fracture zones modeled as deformable porous media

where indirect coupling is manifested by changes in

material properties with effective stress or deformation, we

derive the following expressions:

1. The strain energy:

Pef ¼
Z Z

1

2g
X

ðiiÞ
1 CTBDþ1

2
X

ðiiÞ
2 DTBTCCTBD

	 


þ1

2
bðii�1Þ
m

.
1DTTTbTD

�
Jdxdy

ð76Þ

where b ¼ B0TC0TC0B0

2. The potential energy associated with work done by

domain flow

Pfs ¼ c
Z

PTGTFTHFGPþ 2hHFGP
�

þ 2

MD
PTOTOP� PTOT ~P
� �


Jdxdy� c
Z
X
hdvdX

ð77Þ

The other expressions are similar to the expressions as for

porous media after coordinate transformation from frac-

ture-zone local to global coordinates.

Adding the potential energy component expressed by

Eqs. (64)–(70) and Eqs. (71)–(75), we have the total

potential energy Gm for mechanical analysis and total

potential energy Gf for fluid flow analysis. The equilibrium

equations are derived by minimization of the total potential

energy for mechanics and fluid flow. Specifically, equation

qGm/qdi = 0 represents the mechanical equilibrium on the

ith physical cover and qGf/qpi = 0 represents the equilib-

rium of flux on the ith physical cover. The final equilibrium

equation is expressed as:

N � S

ST

D
C

0
@

1
A D

P

 !
¼

L

Q

 !
ð78Þ

where Nij is the element of matrix N, representing the

mechanical contribution of physical cover j on physical

cover i, derived by:

Nij ¼
o2Pm

odiodj
ð79Þ

Sij is the element of matrix S, representing the contribution

of fluid flow of physical cover j on deformation of physical

cover i, derived by:
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Sij ¼
o2Pm

odiopj
ð80Þ

Cij is the element of matrix C, representing the fluid flow

contribution of physical cover j on deformation of physical

cover i, derived by:

Cij ¼
o2Pf

opiopj
ð81Þ

Lj is the element of matrix L, representing loading term and

derived by:

Lj ¼ � oPm

odj
ð82Þ

and flux term Qj as the element of matrix Q, derived by:

Qj ¼ � oPf

opj
ð83Þ

In the matrices N, L and C, Q, time step and previous time-

step displacements and pressure heads may be included

representing inertial and compression of the fluid–solid

system, respectively. In the equilibrium Eq. (78), all the

terms are calculated by simplex integration. Simplex inte-

gration, proposed by Shi [31], achieves analytical solution

for polynomials over elements of arbitrary shape.

4.3 Time iteration

Following the original NMM for mechanical analysis by

Shi [30], we use the implicit scheme. The reason is that the

nonlinear behavior may be very strong, especially for the

porous fractures, and thereby the changes between different

time steps may be very large. So it is desirable to use

implicit scheme for high accuracy. In each time step, the

displacement increments and fluid pressure are calculated.

After each time step, the displacements and initial stress

are updated as follows:

Dðiiþ1Þ ¼ DðiiÞ þ dDðiiþ1Þ ð84Þ

The stress is calculated by Eq. (37).

For this nonlinear problem, we use a direct solver to

solve the global equilibrium equations for faster conver-

gence rate.

5 Demonstration examples

On the basis of the above formulation for coupled HM

behavior in fractured rock masses, we developed a new

computer code. To demonstrate the accuracy and compu-

tational efficiency of the NMM model and computer code,

we employed four example problems: (1) a porous elastic

column, (2) a porous elastic infinite-long layer, (3) a rock

domain containing a dominant fracture and (4) a rock

domain containing a fracture zone subject to constant

pressure fluid injection. In the first two examples, we

compare our modeling results with analytical solutions and

present the results in terms of accuracy and convergence

efficiency.

5.1 Example 1: modeling of direct HM coupling

in a poroelastic column supporting vertical

loading on the top

In order to demonstrate the efficiency and accuracy of the

new NMM code for modeling coupled HM behavior of

porous deformable media, we simulate the common veri-

fication example of a poroelastic column supporting ver-

tical loading on the top boundary. We choose the same

model geometry, boundary conditions and properties as in

[16]. The model geometry and boundary conditions are

shown in Fig. 5. The column is 80 m high and 20 m wide.

The Young’s modulus is 3.7 9 106 Pa, and the Poisson’s

ratio is 0.35. The permeability coefficient is 2 9 10-8 m/s.

The loading is evenly applied on the top boundary of the

column with a boundary stress of 200 kPa. First, we set an

infinite Biot’s modulus and use the developed NMM code

with fixed mesh of different sizes when kv = 2, kv = 4,

kv = 8 and kv = 16 to simulate this problem, where kv

represents the half number of mesh layers. The mesh

geometry of different mesh sizes is as shown in Fig. 6, and

Fig. 5 Model geometry and boundary conditions
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the computation parameters are listed in Table 1. As we

can see the deviation of the calculated settlement from the

analytical solution is no more than 0.02 %, herein the

larger deviation with denser mesh may be due to small

elements along the vertical boundaries, on which the given

displacement boundary condition is realized by penalty

method with large penalty spring stiffness.

The analytical solution of the settlement and the fluid

pressure evolution for this problem was derived by Biot

[3], expressed as:

wsðtÞ ¼
8

p2
ahcF0

X1
n¼0

1

2nþ 1ð Þ2
1� e � ð2nþ1Þp

2hc
ð Þ2ct

� � �

ð85Þ

pðy; tÞ ¼ 4

ap
F0
X1
n¼0

1

2nþ 1ð Þ e
� ð2nþ1Þp

2hc
ð Þ2ct

� �
sin

2nþ 1ð Þpy
2hc

ð86Þ

where hc is the height of the column and a and c are the

final compressibility and consolidation constants defined

by Biot [3].

We compare the calculated results of the settlement

evolution for different mesh sizes to the analytical solution

in Eqs. (85) and (86). The time step we used for the sim-

ulation is 100 days, and the simulated time span is as long

as 20,000 days. From Fig. 7a we see that even with the

coarsest mesh using 4 layers and 12 elements, we could

achieve excellent results. We further choose a point A

located at (10, 40 m) and calculate the fluid pressure

evolution and compare with the analytical solution

according to Eq. (86). We find good agreement in Fig. 7b

between the numerical results and the analytical solution,

with slight deviation for the coarsest mesh involving only

12 elements (kv = 2). Furthermore, we study the sensi-

tivity of the calculation with different choices of Biot’s

modulus. Figure 8 shows the evolution of settlement and

fluid pressure with different values of Biot’s modulus.

Good agreement between analytical and numerical solu-

tions, for example when the Biot’s modulus is 6 MPa,

verifies the accuracy for the transient problems involving

Biot’s modulus. As we can see, Biot’s modulus may play

an important role in this transient processes, slowing down

Fig. 6 Mesh geometry with different sizes

Table 1 Comparison of computation parameters of different mesh

sizes

Number of

element

Number of physical

covers

Settlement

(m)

kv = 2 12 13 -2.69362

kv = 4 40 31 -2.69352

kv = 8 144 93 -2.69348

kv = 16 642 367 -2.69339

Analytical

solution [3]

– – -2.693841

kv is the half number of mesh layers
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the settlement and pressure dissipation process. With an

increase of Biot’s modulus, its influence on the coupled

HM process is reduced. Specifically, if Biot’s modulus is

20 MPa, its effect on this problem can be ignored. How-

ever, in order to eliminate the transient effect by Biot’s

modulus and focus on the fluid–solid interaction as a

transient term, we set infinite values in other examples.

From this example, we show that our new NMM model

for coupled HM modeling in porous media is accurate even

when using a rather coarse mesh.

5.2 Example 2: modeling of direct coupled processes

in an infinite poroelastic layer subjected

to loading on the top face

Figure 9 shows a semi-infinite poroelastic media subjected

to a 6-m-long strip loading with a stress magnitude of

20 kPa on the top face.

We first choose the 100 m 9 100 m numerical model

with drained top boundary and impermeable bottom

boundary (Fig. 10a). The Young’s modulus is 4 MPa, and

the Poisson’s ratio is 0. The permeability coefficient is

2.5 9 10-8 m/s. By symmetry we extract the right half of

the model from the line passing through AC to simulate the

Fig. 7 Comparison of the calculated a settlement (m) and b fluid pressure (Pa) evolution with NMM using different sizes of mesh and the

analytical solution by Biot [3]

Fig. 8 Sensitivity of a settlement (m) and b fluid pressure (Pa) with the different choices of the Biot’s modulus

Fig. 9 Model geometry and boundary conditions
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coupled HM behavior. Points A and B located at (0, 100)

and (3, 100) are points used for comparison of numerical

and analytical results. McNamee and Gibson [18] provided

the analytical solution for this problem when the Poisson

ratio is 0. We calculate the evolution of vertical displace-

ments at points A and B using a coarse mesh (Fig. 10a) and

compare with the analytical solution as shown in Fig. 10b,

c. We see that our model result agrees very well with the

analytical solution for this case.

Then we change the model dimension to 30 m wide

and 12 m high with Poisson’s ratio 0.3. We first calculate

the evolution of vertical displacement at the three points

A (0, 6), B (0, 12), C (3, 12), as shown in Fig. 11. Note

that the points A, B and C are different from the ones

shown in Fig. 9; therefore, the vertical displacement at

point B is the largest. Furthermore, we output the fluid

pressure distribution at different stages calculated by our

NMM code, as shown in Fig. 12. From Fig. 12 we can

clearly see the process of fluid pressure dissipation at

different times.

5.3 Example 3: NMM modeling of direct

and indirect coupled HM processes

under vertical loading and fluid injection

In order to demonstrate the formulation for considering

both direct and indirect coupled hydro-mechanical pro-

cesses in rock with fractures, we simulate a rectangular

rock domain containing a fracture zone subjected to

instantaneous vertical loading and a constant pressure fluid

injection. The model geometry, boundary conditions and

the mesh are as shown in Fig. 13a, b, respectively. The

material parameters are listed in Table 2. In this case, the

initial thickness of the fracture zone is 0.1 m, whereas the

mechanical fracture aperture for the assumed dominant

fracture flow path is 1 9 10-4 m (0.1 mm) and with an

equivalent hydraulic aperture of 5 9 10-5 m (50 lm).

This is at an initial effective vertical stress of -8 MPa (a

negative stress values signifies compressive stress)

involving an initial total vertical stress of -8 MPa and a

zero initial fluid pressure. Note that the given displacement

boundary conditions and material interfaces for mechanical

analysis are realized by the penalty method and the stiff-

ness of the penalty spring g0 is determined as suggested by

Shi [30].

Since the developed nonlinear finite-thickness fracture-

zone model is new and there is no available closed-form

solution or numerical results for comparison of the tran-

sient HM response for this case, we run this simulation

step-by-step to confirm that the results are reasonable. As

the model development for fluid flow analysis was pre-

sented and verified previously [10] and the direct coupling

was verified in Examples 1 and 2, here we focus on veri-

fication of the indirect coupling algorithms. First we

applied the instantaneous vertical loading with magnitude

of 10 MPa on the top of the model and conducted a

mechanical analysis without fluid injection. This results in

an instantaneous closure of the fracture considering its

Fig. 10 a NMM mesh and comparison of the evolution of calculated vertical displacements at b point A and c point B with the analytical

solution by McNamee and Gibson [18]

Fig. 11 Evolution of vertical displacement of points A, B and C
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nonlinear normal closure behavior with changing normal

stiffness. We get the final results with a mechanical frac-

ture aperture of 6 9 10-5 m (60 lm) at the final steady

state, which is accurate according to Eq. (8) (because the

initial stress is -8 MPa, rn00 = -5 MPa, and the initial

mechanical aperture is 1 9 10-4 m, while the final stress is

-10 MPa. Therefore, according to Eq. (8), the final

mechanical aperture should be: (-8 9 106 ? 5 9 106) 9

1 9 10-4/(-10 9 106 ? 5 9 106) = 6 9 10-5 m). Then

we conducted a simulation considering only indirect cou-

pling, i.e., we deactivate the fluid–solid interaction terms

for direct coupling associated with Eqs. (33) and (34). In

this case, the coupling occurs only one way, i.e.,

mechanical deformation affects permeability, but there are

no influences of fluid pressure on mechanical field. The

mechanical and hydraulic property changes of the fracture

under loading and injection with constant pressure of

8 MPa at the left end of the fracture zone and the pressure

at the right end of the fracture zone are fixed at zero.

Lastly, we run our full package considering both direct and

indirect couplings. We output some of the results in

Figs. 14 and 15.

We compare the distribution of fluid pressure in cases

without considering coupling, only considering indirect

Fig. 12 Simulated fluid pressure (Pa) distribution at different times

Fig. 13 Schematic of a the numerical model, the boundary condi-

tions and b the mesh
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coupling and considering both direct and indirect coupling,

respectively, as shown in Fig. 14. The difference of fluid

pressure distribution between Fig. 14a, b is not obvious,

indicating that a steady state is reached for only considering

indirect coupling after 30-day injection. However, in

Fig. 14c, a steady state has not reached and fluid continues to

dissipate from the left to right. This difference could be

explained by that in figure b with only indirect coupling, a

steady state is reached when mechanical deformation no

longer occurs, whereas in case for Fig. 14c, the final steady

state will be reached till a balance is reached between the

interaction of mechanical and fluid flow fields. Overall, the

effects of pressure on solid deformation are not obvious.

Further, we compare the aperture change with time at the

injection point under these two conditions, shown in Fig. 15.

Ignoring the no more than 1.7 % oscillations due to penalty

method for material interface conditions in mechanical

analysis, we see that the aperture at the final stage reduces to

6 9 10-5 m (60 lm) when only considering indirect cou-

pling. This value is the same as the one in the case of pure

mechanical analysis, proving its verification. However,

when considering both direct and indirect couplings, the

aperture remains steady at 6.5 9 10-5 m (65 lm) under the

effect of fluid pressure on the solid skeleton.

5.4 Example 4: NMM analysis of coupled HM

processes under constant injection in rock mass

with a single dominant fracture

Using the similar material properties as in Example 3 listed

in Table 3, we enlarge the model dimension to

10 m 9 10 m with the 0.1 m fracture zone in the middle

(Fig. 16). The model is initially balanced with 10 MPa

initial stress, and we inject fluid at the left end of the

fracture zone with a constant pressure of 1 MPa. The right

end pressure is set as 0. We conduct this modeling for

studying the changing processes of fluid flow pressure and

deformation in fracture zone and surrounding rock.

Figure 17 shows the fluid pressure distribution in the

whole domain at different times after the start of the

injection. We find that the pressure distribution is not

symmetric from the left to right during the transient phase

just after injection while becomes symmetric after 20 days

of injection, indicating that a steady state has been reached.

We further choose points A, B, C located within the frac-

ture zone at (1, 5), (2, 5) and (5, 5), respectively, to see the

pressure evolution (Fig. 18). We observe an increase of

pressure due to injection for each point and then reach

steady after 10 days of injection.

In order to study the local hydro-mechanical behavior in

the fracture, we extract a profile located at y = 5.01 m of

the fluid pressure distribution at different times, as shown

in Fig. 19. We see that from the beginning till 7 days after

injection, the pressure tends to distribute linearly along the

fracture, indicating that a steady state is reached.

The vertical displacements relative to the mechanical

fixed bottom boundary are shown in Fig. 20. The vertical

displacement responds to vertical strain caused by the

pressure changes that are first progressing along the frac-

ture from the left to the right and also by fluid pressure

diffusion into the surround rock that causes deformations

both within the fracture and in the surrounding rock

(Fig. 17). Because of that, we see uplift in the entire

domain under effects of fluid diffusion and expand the

porous system with mechanically fixed bottom and free

upper boundaries. The final total uplift at the top boundary

is 6 cm, and most of this uplift is caused by the vertical

expansion taking place within the rock surrounding the

fracture zone. Nevertheless, this example demonstrates the

ability of the model to simulate transient HM processes in a

fractured rock mass during fluid injection into a dominant

flow feature.

Corresponding to Fig. 20, we show the evolution of

vertical displacement at profile x = 1.0 m in Fig. 21. We

obviously see that the vertical displacement increases due

to expansion under increasing fluid pressure and reaches

steady state after 7 days.

Table 2 Computation parameters for coupled modeling of the con-

stant pressure injection in rock domain with a fracture zone in Fig. 13

Material Parameter Value

Fluid Mass density (qf) 1000 kg/m3

Dynamic viscosity (lf) 1 9 10-3 Ns/m2

Rock matrix Young’s modulus 4 GPa

Poisson’s ratio 0.2

Permeability coefficient 5 9 10-9 m/s

Biot–Willis coefficient (a) 1

Biot’s modulus (M) ?

Initial vertical effective stress -8 MPa

Fracture

zone

Mass density 2300 kg/m3

Initial normal effective stress -8 MPa

Bandis’ parameter (rn00) -5 MPa

Initial thickness of fracture zone 0.1 m

Initial mechanical aperture of

fracture

0.1 mm

Shear constant (f) 10-11 Pa-1

Shear constant (W) 0

Factor (f) 0.5

Residual hydraulic aperture (bhr) 0

Biot–Willis coefficient (a) 1

Biot’s modulus (M) ?

Penalty

spring

Stiffness 1.6 9 1011 N/m
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6 Conclusions and Perspectives

In this study, we developed a new NMM model for coupled

hydro-mechanical processes in porous rock containing

dominant fractures. We used an approach to model frac-

tures as finite-thickness flow features, or fracture zones,

considered as porous media that possesses similar behavior

to that of the surrounding rock under direct coupling.

However, fracture zones are distinguished from the sur-

rounding rock because of their nonlinear behavior of

hydraulic and mechanical properties, as they are very

sensitive to deformation. This new model includes:

• A new formulation for analyzing direct HM coupling in

porous media. Based on an energy-work model, we

stringently established all components of the work

related to fluid flow and mechanical processes in a

unified form and their interaction appeared as a direct

coupling and these work components are consistent

with Biot’s equations together with initial and boundary

conditions.

• A finite-thickness fracture-zone model with an accurate

implicit technique to account for indirect coupling

associated with changes in the nonlinear hydraulic and

mechanical properties of the fractures. We proposed a

new model denoted finite-thickness fracture zone rep-

resenting the composite effect of a dominant fracture,

mineral fillings and part of adjacent rock matrix, with

both linear and nonlinear constitutive features. We

derived an implicit formulation by directly assembling

the corresponding strain energy to consider the

Fig. 14 Distribution of fluid pressure head (m) for a flow analysis without considering coupled effects, 30 days after injection, b only

considering indirection coupling and c considering both direct and indirect coupling

Fig. 15 Aperture change with time at the injection point in simulation a only considering indirect coupling and b considering both direct and

indirect coupling
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nonlinear properties of the fracture zones. Compared

with traditional approximations of the nonlinear consti-

tutive equations, this new formulation achieves more

accurate representation of the nonlinear behavior.

• Implementation in NMM with unconstructed mathe-

matical mesh, cover-based approximation and simplex

integration. We implemented this new formulation in

NMM. With unconstructed mathematical mesh in

NMM, meshing efficiency could be dramatically

reduced. With the cover-based approximation, instead

of nodal-based approximation, the approximation order

could be flexibly increased for intense changes around

fractures. With simplex integration, high accuracy

could be achieved on arbitrarily shaped polygons.

• An implicit time-marching algorithm and an incremen-

tal formulation to solve the displacements and initial

stress for this strongly nonlinear problem. We used the

incremental formulation for solving the displacements

and initial stress in different time steps and implicit

time-marching algorithm for better accuracy of this

nonlinear problem. With the new model, we developed

a new computer code in our NMM package.

We first simulated a classical poroelastic problem of a

column under loading and compared the results with the

analytical solution derived by Biot. We found excellent

agreement of our NMM solution with very coarse mesh

with Biot’s analytical solution, showing the accuracy and

efficiency of our formulation for direct coupling. Then we

modeled a poroelastic problem of an infinite layer under

loading and showed the processes of displacement changes

and fluid pressure dissipation with exact agreement to an

analytical solution. We tested the new model on a model

with a single dominant fracture. As the direct coupling was

verified in the two first examples, we compared the results

of a case considering the fracture with only indirect cou-

pling and the results of a case considering the fracture as

nonlinear porous media with both direct and indirect cou-

plings. We found reasonable results from these compar-

isons and showed the importance of full consideration of

both direct and indirect couplings in coupled HM analysis

involving dominant flow features.

The approach established in this analysis for the model-

ing of finite-thickness dominant flow features is a continuous

equivalent porous media with strongly nonlinear properties.

The flow features can be conveniently discretized explicitly

within the fixed mathematical mesh, and the boundary

Table 3 Computation parameters for coupled modeling of the con-

stant pressure injection in rock domain with a fracture zone in Fig. 16

Material Parameter Value

Fluid Mass density (qf) 1000 kg/m3

Dynamic viscosity (lf) 1 9 10-3 Ns/m2

Rock matrix Young’s modulus 100 MPa

Poisson’s ratio 0.2

Permeability coefficient 5 9 10-9 m/s

Biot–Willis coefficient (a) 1

Biot’s modulus (M) ?

Initial vertical effective stress -10 MPa

Fracture

zone

Mass density 2300 kg/m3

Initial normal effective stress -10 MPa

Bandis’ parameter (rn00) -2 MPa

Initial thickness of fracture zone 0.1 m

Initial mechanical aperture of

fracture

0.1 mm

Shear constant (f) 10-8 Pa-1

Shear constant (W) 0

Factor (f) 0.5

Residual hydraulic aperture (bhr) 0

Biot–Willis coefficient (a) 1

Biot’s modulus (M) ?

Penalty

spring

Stiffness 4.0 9 1010 N/m

Fig. 16 Schematic of a the numerical model, the boundary conditions and b the mesh
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conditions are realized by penalty method and Lagrange

multiplier method for mechanical and fluid flow analysis,

respectively. This method is suitable for modeling dominant

flow features in a fracture rock mass, including major

fractures, and minor faults as well as major faults. In the

case of faults, the cross-fault permeability can be

Fig. 17 Simulated fluid pressure head (m) distribution at different times

Fig. 18 Evolution of fluid pressure at points A, B and C Fig. 19 Evolution of fluid pressure distribution of profile y = 5.01 m
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substantially different from the along-fault permeability,

including the effects of a permeable damage zone and an

impermeable fault core. Such difference in cross-fault versus

along-fault mechanical and hydraulic properties could be

readily modeled using the finite-thickness continuous mod-

eling approach. However, for modeling small-scale, thin

unfilled fractures, an alternative discontinuous approach

may be preferable. In that case, the fluid flow will be con-

ducted mainly in the direction along the fractures and

interaction between fractures and surrounding rock is by

fluid pressure and continuity of displacements on the sur-

faces of fractures. Together with further development for

thin fractures, the new model presented in this study can

provide a comprehensive model applicable for coupled HM

analysis fractured rock masses, including a wide range of

flow features.

Fig. 20 Contour of vertical displacement at different times

Fig. 21 Evolution of vertical displacement at profile x = 1.0 m
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7 Appendix: Derivation of the effective normal
stress in the nonlinear finite-thickness fracture
zone

The finite-thickness fracture zone contains the linear and

nonlinear part, and the strain in normal direction can be

expressed as:

eðiiÞn ¼ gdr0ðiiÞn þ b
ðiiÞ
m � b

ðii�1Þ

m

I
ðii�1Þ
d

ð87Þ

Combining Eqs. (8), (87) becomes

eðiiÞn ¼ gdr0ðiiÞn þ
n

r0ðiiÞn �r0
n0

� n

r0ðii�1Þ
n �r0

n0

I
ðii�1Þ
d

ð88Þ

Denoting x ¼ eðiiÞn þ n

r0ðii�1Þ
n �r0

n0½ �Iðii�1Þ
d

, Eq. (88) becomes

x ¼ g r0ðiiÞn � r0ðiiÞ�1
n

h i
þ n

r0ðiiÞn � r0n0

h i
I
ðii�1Þ
d

ð89Þ

Equation (89) further becomes a quadratic equation:

g r0ðiiÞn

h i2
� gr0ðii�1Þ

n þ gr0n0 þ x
h i

r0ðiiÞn

þ gr0ðii�1Þ
n r0n0 þ xr0n0 þ

n

I
ðii�1Þ
d

" #
¼ 0

ð90Þ

The solution of Eq. (90) is

r0ðiiÞn ¼ ½gðr0ðii�1Þ
n þ r0n0Þ þ x�

2g

� 1

2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½gðr0ðii�1Þ

n þ r0n0Þ þ x�2

�4g½gr0ðii�1Þ
n r0n0 þ xr0n0�

�4g
n

I
ðii�1Þ
d

vuuuuuuut

ð91Þ

And it is further expressed as:

r0ðiiÞn ¼
g r0ðii�1Þ

n þ r0n0

� �
þ x

h i

2g

�
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� �
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I
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d

g

r

2g

ð92Þ

When g ¼ 0, only nonlinear feature of the fractures is

considered.When n ¼ 0, only linear feature of the fractures

is considered. Therefore, we have:

r0ðiiÞn ¼
g r0ðii�1Þ

n þ r0n0

� �
þ x

h i

2g

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g r0ðii�1Þ

n � r0n0

� �
þ x

h i2
�4 n

I
ðii�1Þ
d

g

r

2g

ð93Þ
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