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Abstract A sample of soil is subjected to multidimen-

sional cyclic loading when two or three principal compo-

nents of the stress or strain tensor are simultaneously

controlled to perform a repetitive path. These paths are

very useful to evaluate the performance of models simu-

lating cyclic loading. In this article, an extension of an

existing constitutive model is proposed to capture the

behavior of the soil under this type of loading. The refer-

ence model is based on the intergranular strain anisotropy

concept and therefore incorporates an elastic locus in terms

of a strain amplitude. In order to evaluate the model per-

formance, a modified triaxial apparatus able to perform

multidimensional cyclic loading has been used to conduct

some experiments with a fine sand. Simulations of the

extended model with multidimensional loading paths are

carefully analyzed. Considering that many cycles are

simulated (N[ 30), some additional simulations have been

performed to quantify and analyze the artificial accumu-

lation generated by the (hypo-)elastic component of the

model. At the end, a simple boundary value problem with a

cyclic loading as boundary condition is simulated to ana-

lyze the model response.

Keywords Constitutive model � Hypoplasticity �
Intergranular strain � ISA-plasticity � Multidimensional

cyclic loading

1 Introduction

Structures subjected to cyclic loading experience irre-

versible displacements resulting from the accumulated

strains within the underlying soil. When the soil is fully

saturated and subjected to rapid loading cycles, the

resulting undrained condition is then accompanied with

the reduction in the effective stresses. This event would

compromise the overall stability of the structure, espe-

cially when a liquefaction zone is produced, e.g., by

vibrating machines founded on soils [20, 30, 47, 48, 56] or

seismic loading on structures [15, 36]. On the other hand,

‘‘slow’’ loading cycles under drained behavior cause

irreversible displacements which may affect the long-term

structure serviceability, e.g., by storage tanks [4, 13, 14] or

off-shore structures [1–3, 8]. It is therefore of high

importance the prediction of these undesirable events. A

large number of experimental works aimed to analyze the

soil behavior under cyclic loading have been performed to

reproduce this complicated behavior. Two types of cyclic

loading are mostly conducted on soil samples, namely

one-dimensional loading and multidimensional loading

[57]. The first concerns to those in which cycles are

generated with the variation of a single principal compo-

nent of the strain or the stress tensor, while other principal

components remain constant [57]. Examples of one-di-

mensional loading are cyclic oedometric unloading–

reloading test, cyclic undrained and drained triaxial test

and cyclic shear test. These experiments have been

extensively used to calibrate a vast number of constitutive
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models for cyclic loading, e.g., [11, 12, 35, 40, 43, 51]. On

the other hand, multidimensional loading cycles are those

in which two or several principal components of the strain

or stress tensor are simultaneously controlled to conduct a

repetitive path within the stress or strain space [57]. A

closed circular loop on the stress space being several times

repeated would be a particular example of this loading

type. These experiments are not commonly found in the

literature probably because they require more sophisti-

cated laboratory techniques and are time-consuming.

Consequently, their results are barely used to calibrate

constitutive models. From the engineering perspective,

this fact is very disappointing considering the three-di-

mensional nature of most cycles occurring in real life

[7, 23, 26, 27, 44–46], or even in some boundary value

problems simulating cyclic phenomena [37, 41].

Several constitutive models have been proposed in the

literature to capture the accumulated strains among a

number of cycles. Most of them are rate-type formulations,

whereby the (effective) stress rate tensor _r is interrelated

with the strain rate tensor _e, as, for example,

[11, 12, 17, 25, 33, 34, 40, 43, 50, 62] only to mention a

few. All these models have been carefully calibrated and

have shown to be very competent in many simulations.

Hence, users expect them to work well on boundary value

problems related to cyclic phenomena, whereby the num-

ber of cycles is still manageable under normal computa-

tional effort, e.g., N\100. This expectation is, however,

debatable if one consider some aspects: first of all, many of

these models have been calibrated with one-dimensional

cyclic loading tests. Hence, it is still not known whether

they perform well on the simulation of multidimensional

cyclic loading. Furthermore, most of their formulations do

not consider the dependence of the accumulation rate with

the number of consecutive cycles as shown by many

experiments. It is clear that the accumulation rate reduces

for increasing number of consecutive cycles when stress

loops are performed away from the critical state line [57].

Lastly, many of them exhibit artificial accumulation due to

(hypo-)elastic nature of their stiffness tensor under elastic

conditions. This last effect has not been properly quantified

when analyzing the simulative capabilities. To the authors

knowledge, a model for cyclic loading calibrated and

evaluated with monotonic and multidimensional cyclic

loading considering at the same time the influence of

consecutive cycles in the accumulation rate has not been

proposed in the literature. Furthermore, the artificial

accumulation on the simulations has not been properly

analyzed and quantified. It is clear that more investigation

in this direction is needed.

In this work, an existing constitutive model is extended

to simulate monotonic and multidimensional loading on

sands accounting the effect of consecutive cycles. The

reference model is based on the intergranular strain concept

proposed by Niemunis and Herle [40], but following the

recent formulation of Fuentes and Triantafyllidis [16, 17].

The novel interganular strain approach, also referred as

intergranular strain anisotropy (ISA), is now written in an

elastoplastic form to enable the description of a material

elastic locus in terms of a strain amplitude. Similar to the

original formulation of Niemunis and Herle [40], one can

show that its mathematical structure yields to a hypoplastic

equation (as in [28, 59]) when performing monotonic

loading. In order to evaluate the proposed model, an

experimental work has been conducted in which sand

samples are subjected to multidimensional cyclic loading.

Besides this, the artificial accumulation produced by the

proposed model will be carefully quantified and analyzed

to detect how large is its influence on the simulations. It

will be shown that this component should be carefully

considered under some simulations. At the end, some rel-

evant conclusions related to the development of models for

cyclic loading are given. This article is structured as fol-

lows: at the beginning, the material, the experimental

testing and results are described. Subsequently, some

simulations are performed and analyzed with the reference

model. Then, a simple extension is proposed to improve the

reference model for multidimensional loading. Finally, an

example of a simple boundary value problem involving a

cyclic load as boundary condition is considered to analyze

the proposed development.

The notation of this article is as follows. Scalar quantities

are denoted with italic fonts (e.g., a, b), second-rank tensors

with bold fonts (e.g.,A, r) and fourth-rank tensors with Sans

Serif type (e.g., E; L). Multiplication with two dummy

indices, also known as double contraction, is denoted with a

colon ‘‘ : ’’ (e.g.,A:B ¼ AijBij).When the symbol is omitted,

it is then interpreted as a dyadic product (e.g., AB ¼ AijBkl).

The deviatoric component of a tensor is symbolized with an

asterisk as superscript A�. The effective stress tensor is

denoted with r and the strain tensor with e. The Roscoe

invariants are defined as p ¼ �trr=3, q ¼
ffiffiffiffiffiffiffiffi

3=2
p

k r� k,
ev ¼ �tr� and es ¼

ffiffiffiffiffiffiffiffi

2=3
p

k �� k.

2 Tested material and experimental procedure

The experiments conducted in this work are aimed to

analyze the behavior under multidimensional cyclic load-

ing. The employed material corresponds to the Karlsruhe

fine sand with the following properties: the mean grain size

d50 and the uniformity coefficient Cu ¼ d60=d10 are equal

to d50 ¼ 0:14 mm and Cu ¼ 1:5, respectively. The grain

shape is subangular, and the minimum and maximum void

ratios are emin ¼ 0:677 and emax ¼ 1:054, respectively. A
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solid density equal to qs ¼ 2:65 g/cm3 has been deter-

mined. The grain size distribution curve of the Karlsruhe

fine sand is presented in Fig. 1.

The experimental procedure is described in the follow-

ing lines. A modified triaxial apparatus able to perform

multidimensional cyclic loading has been employed for all

experiments. The components of the device are depicted in

Fig. 2. The vertical force is applied through a vertical

propulsion system placed on the bottom which moves the

base plate of the sample. The applied vertical force is

measured above the top plate of the specimen. The con-

troller for the cell pressure is dynamic and able to apply

cyclic loading with frequencies up to 0.5 Hz. A special

software is responsible for the loading control and able to

perform monotonic, sinusoidal and customized cyclic

loading.

The samples show a diameter equal to 10 cm and a

height equal to 20 cm. They are pluviated out of a funnel

into the split mold under dry state. A thin film of grease is

applied on the end plates (Fig. 3a) to reduce the interface

friction and to achieve homogeneous distribution of the

applied stress. The employed sample membrane is thin

(thickness tM ¼ 0:3 mm) to reduce the membrane effect. It

was pulled over the specimen base plate and sealed on the

end plates with O-rings (Fig. 3c). Subsequently, the split

molds (Fig. 3d) are assembled and the dry sand is pluviated

into the molds. Once the sample is prepared, the membrane

is sealed to the top cap using O-rings and the specimen is

stabilized through vacuum (Fig. 3e). During this proce-

dure, the top cap is fixed with a special metallic device to

avoid loading the sample and causing inhomogeneities.

Then, the molds are removed and the geometry of the

sample is carefully measured. Once the sample is ready, the

triaxial cylinder is assembled and the cell is filled with

water. Lastly, the vacuum within the specimen is gradually

replaced with the cell pressure in order to keep the effec-

tive stress constant. Membrane penetration effects are

neglected due to the small size of the sand particles [58].

Samples were initially flushed with carbon dioxide

(CO2) and subsequently saturated with distilled water with

a backpressure of pw0 ¼ 500 kPa. A B-value greater than

B� 0:98 was always obtained after this procedure. Speci-

mens were then consolidated till the desired effective stress

r3 is achieved. Subsequently, the sample is loaded as under

conventional drained triaxial conditions till the start stress

point (r10, r30) of the loading path is reached. Finally, the

cyclic loading is applied through the control of the prin-

cipal stresses r1 and r3. The details of the applied loading

paths are provided within the following section.

3 Description of the conducted loading paths

The tested loading paths are closed stress loops, having

elliptical or flower-shaped form within the space of the

invariants P ¼
ffiffiffi

3
p

p versus Q ¼
ffiffiffiffiffiffiffiffi

2=3
p

q. The stress loops

are performed under triaxial conditions by controlling the

two principal components of the stress tensor (r1 and

r2 ¼ r3). An example of multidimensional cyclic loading

under triaxial conditions is depicted in Fig. 4.

Fig. 1 Grain size distribution of the Karlruhe fine sand

Fig. 2 Components of the modified triaxial apparatus for multidi-

mensional loading
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For this work, three different loading cases have been

conducted and are shown in Fig. 5. The names of the

loading cases follow from their shape in the P versus

Q space and correspond to ‘‘small circle,’’ ‘‘big circle’’ and

‘‘flower’’ test. Their description is as follows:

Small circle stress closed path with circular shape in the

P versus Q space, with center P ¼ 200
ffiffiffi

3
p

and Q ¼
100

ffiffiffiffiffiffiffiffi

2=3
p

kPa (or p ¼ 200 kPa and q ¼ 100 kPa) and

radius equal to 20 kPa. The loop is performed clockwise

(see Fig. 5a).

Big circle similar to the small circle but with radius

equal to 40 kPa. The loop is performed counterclock-

wise (see Fig. 5a).

Flower a flower-shaped loop with center P ¼ 200
ffiffiffi

3
p

and Q ¼ 100
ffiffiffiffiffiffiffiffi

2=3
p

kPa (or p ¼ 200 kPa and

q ¼ 100 kPa). While the size of the petals is comparable

to the small circle, the size of the circle formed by points

at the center of each petal is comparable to the big circle.

The petals are performed clockwise, and the flower is

performed counterclockwise (see Fig. 5b; Table 1).

For the description of the loading cases, a parametric

representation of the desired curve is defined through the

invariants Q and P as functions of time t with the following

general form:

FðtÞ ¼ F0 þ A1 sin
2p
T

N1t þ h1

� �

þ A2 sin
2p
T

N2t þ h2

� �

ð1Þ

whereby F is the stress invariant of interest (¼ Q or P), t is

the time, F0 represents the magnitude of F at a reference

time, A1 and A2 control the amplitudes, N1 and N2 control

the frequencies, h1 and h2 are the phases and T is the time

Fig. 3 Preparation of a specimen for a cyclic triaxial test a latex membrane at the end plates, b latex membrane (thickness tM ¼ 0:3 mm) sealed

with O-rings, c, d split molds, e stabilized specimen by vacuum of 30 kPa, f Plexiglas cylinder, g and h specimen top cap

Fig. 4 Example of multidimensional loading under triaxial condi-

tions: axial and radial effective stresses. They are simultaneously

controlled to perform a multidimensional loading
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of a cycle (period). Particularly, the small circle is

described through the parametric functions:

PðtÞ ¼ 200
ffiffiffi

3
p

þ 20 sin
2p
200

t þ p=2

� �

QðtÞ ¼ 100
ffiffiffiffiffiffiffiffi

2=3
p

þ 20 sin
2p
200

t

� � ð2Þ

Notice that a circular shape is achieved through the use of a

single term in Eq. 1, i.e., A2 ¼ 0. Similarly, for the big

circle test the following parametric representation is used:

PðtÞ ¼ 200
ffiffiffi

3
p

þ 40 sin
2p
200

10t

� �

QðtÞ ¼ 100
ffiffiffiffiffiffiffiffi

2=3
p

þ 40 sin
2p
200

10t þ p=2

� � ð3Þ

Finally, the parametric representation of the flower test

reads:

PðtÞ ¼ 200
ffiffiffi

3
p

þ 40 sin
2p
200

t þ p=2

� �

þ 20 sin
2p
200

10t

� �

QðtÞ ¼ 100
ffiffiffiffiffiffiffiffi

2=3
p

þ 40 sin
2p
200

t

� �

þ 20 sin
2p
200

10t þ p=2

� �

ð4Þ

In cyclic behavior, it is convenient to analyze the trend

of a variable among the number cycles N. For this

purpose, some plots show only the points at the end of

each cycle. An arbitrary variable [ evaluated with this

method is denoted with the superindex [acc and referred

as ‘‘accumulated [,’’ e.g., eacc1 represents the accumu-

lated vertical strain, see the example in Fig. 6. The

resulting curve is often called ‘‘average curve’’ or ‘‘ac-

cumulated curve.’’

All the conducted stress loops, namely the small circle,

big circle and flower test, present a center at p ¼ 200 kPa

and g ¼ q=p ¼ 0:5. The experimental results for the tree

different loading cases are given in Fig. 7.

Table 1 Description of the loading cases

Loading case Center (kPa) Radius (P vs. Q, kPa) Direction

Small circle P ¼ 200
ffiffiffi

3
p

, Q ¼ 100
ffiffiffiffiffiffiffiffi

2=3
p

20 CW

Big circle P ¼ 200
ffiffiffi

3
p

, Q ¼ 100
ffiffiffiffiffiffiffiffi

2=3
p

40 CCW

Flower P ¼ 200
ffiffiffi

3
p

, Q ¼ 100
ffiffiffiffiffiffiffiffi

2=3
p �20 (petals) CW (petals) or

�40 (flower) CCW (flower)

CW clockwise, CCW counterclockwise

Fig. 6 Example of the computation of the accumulated vertical strain

eacc1

Fig. 5 Cyclic loading paths considered within this work. a ‘‘Flower’’ test, b ‘‘big circle’’ test (blue) and ‘‘small circle’’ test (red) (color

figure online)
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4 Description of the ISA 1 hypoplasticity model
(ISA 1 HP)

The current work selects as constitutive model the

hypoplastic model by Wolffersdorff [59] rewritten

according to the ISA-plasticity constitutive platform

[16, 17]. Hereinafter, this model is refereed as the

ISA ? HP model (ISA ? hypoplasticity). The model is

aimed to simulate the behavior of sands under monotonic

and cyclic loading. A brief description of the model is

given in the following lines.

The hypoplasticity alone can be considered as a family

of constitutive models capable of simulating the

mechanical behavior of soils under monotonic loading

[28, 37]. The literature offers several versions of

hypoplasticity for sands [6, 28, 37, 59, 60] and also for

clays [22, 31, 55]. The performance of hypoplasticity in

engineering problems has been also studied [29, 49].

Detailed discussion of these models is out of the scope of

the present work but can be found in [18, 37, 61]. One of

the most used hypoplastic constitutive models is the one

proposed by Wolffersdorff, probably due to its availability

as material subroutine for different finite element soft-

wares, e.g., Tochnog, Plaxis or Abaqus and to its per-

formance in different applications [37]. Among many

features, the model can simulate some experimental

observations, such as the maximum and minimum void

ratio [6], a Matsuoka–Nakai critical state surface within

the stress space [32] and a dilatancy–contractancy

behavior according to the material state (density and

pressure). The general constitutive equation can be

rewritten as:

_r ¼ �E : ð _e� _�epÞ ð5Þ

whereby �E is the ‘‘linear ’’stiffness tensor [59] and �ep is the
hypoplastic strain rate. In contrast to elastoplastic models,

the hypoplastic strain rate �ep is always active, i.e.,

k _�ep k [ 0, because the model lacks of a yield surface.

Therefore, it cannot be directly interpreted as the plastic

strain rate _ep. A summary of the constitutive equations of

this model is provided in Appendix 1 and are explained

with more details in [59].
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It is well known that simulations with hypoplasticity

(Eq. 5) show good agreement with the material behavior

under monotonic loading, but delivers an excessive plastic

accumulation (ratcheting) upon cyclic loading [18, 40]. In

order to encompass this shortcoming, the constitutive

equation can be rewritten according to the ISA constitutive

platform [17]. This recent formulation introduces a yield

surface in terms of a strain amplitude and simulates some

small strain effects, such as the increase in stiffness after

reversal loading and the reduction in the plastic strain rate.

The intergranular strain is actually a state variable, origi-

nally proposed by Niemunis and Herle [40], which pro-

vides information about the recent strain history. It is

therefore able to detect whether the material has been

subjected to monotonic or cyclic loading. Its mechanism is

simple and can be easily illustrated as follows.

Consider the following 1D evolution equation of the

intergranular strain h:

_h ¼ R _e� hj _ej ð6Þ

whereby R is a material parameter bounding the inter-

granular strain, i.e., jhj �R. This evolution equation

implies that the intergranular strain grows in the direction

of _e till the bounding condition jhj �R is reached. Hence, if

one performs 1D cycles with increasing strain amplitude,

as shown in Fig. 8, the intergranular strain h evolves

toward the direction of the current strain rate, denoted as

h� signð _eÞ, while its rate _h decreases when approaching to

the limit jhj ¼ R (red lines in Fig. 8b). The bounding

condition jhj �R (red lines in Fig. 8b) is only reached after

performance of a large strain amplitude, or equivalently

after monotonic loading. Hence, if h lies at the limit and in

the same direction of the strain rate _e, i.e., h ¼ Rsignð _eÞ, the
material has experienced monotonic loading. This partic-

ular state is also called ‘‘mobilized state’’ [17]. On the other

hand, if jhj ¼ R but the strain rate _e points in the opposite

direction, i.e., h � �Rsignð _eÞ, then a reversal loading can

be detected. In that case, small strain effects, such as

increase in the stiffness and reduction in the plastic strain

rate, should be considered by the model. This can be

regarded as the basic idea of the intergranular strain

approach.

Two different intergranular strain approaches are

encountered in the literature, namely the version of

Niemunis and Herle [40] and the recently proposed ‘‘ISA’’-

plasticity by Fuentes and Triantafyllidis [17]. The main

difference is, that in contrast to the ISA plasticity [17], the

first formulation [40] lacks of an elastic locus. For simu-

lations with multidimensional cyclic loading, the existence

of an elastic locus is essential because it allows to control

the elastic threshold strain wherein no plastic accumulation

occurs and the secant shear modulus remains constant [42].

Some details of the ISA plasticity are provided in the next

section.

4.1 Description of the ISA plasticity

The ISA plasticity proposes a yield surface within the

intergranular strain space to describe the elastic locus of the

material in terms of a strain amplitude. This amplitude is

denoted by k De k¼ R and defined by the user, e.g.,

R ¼ 5	 10�5, such that cycles having strain amplitudes

lower than k De k \R deliver an elastic response.

As mentioned before, the main objective of the inter-

granular strain h is to provide information about the recent

strain history. Similarly to the 1D version from Eq. 6, this

state variable is proposed to evolve with the strain rate _e

independently of the stress tensor r. Its evolution equation

according to ISA is more complicated than the 1D version

to incorporate the elastic locus: it is based on an

0
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Fig. 8 One-dimensional example of the behavior of the intergranular strain. a Strain (input) versus time, b resulting intergranular strain

according to Eq. 6 (color figure online)
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elastoplastic relation considering a yield surface within the

intergranular strain space. The yield function is denoted

with FH ¼ FHðc; hÞ, whereby c is an additional hardening

variable defined in the sequel. The following statements are

considered for the formulation of the intergranular strain

equation:

• Under elastic conditions FH\0, the intergranular strain

evolves identically as the strain _h ¼ _e. With simpler

words, under elastic conditions, an increment of the

strain produces an identical increment of the intergran-

ular strain De ¼ Dh.
• At plastic conditions F ¼ 0, the intergranular strain

evolves with a slower rate than under elastic conditions.

Its rate _h decreases as it approaches to its bounding

condition h ¼ R _e
!, _h ¼ 0.

The aforementioned conditions are suitably considered

though the following evolution equation:

_h ¼ _�� _kHN ð7Þ

whereby kH � 0 is the consistency parameter (or plastic

multiplier) and N is the flow rule (k N k¼ 1) considered as

associative (normal to the yield surface). Obviously, the

consistency parameter is equal to kH ¼ 0 under elastic

conditions.

In order to relate the elastic locus with a small strain

amplitude, the ISA formulation chooses a spherical yield

surface FH ¼ 0 within the principal space of the inter-

granular strain. The yield function reads:

FH ¼k h� c k �R

2
ð8Þ

whereby R is the material parameter describing the maxi-

mum elastic strain amplitude and c is the hardening tensor

describing the center of the surface. Considering that under

elastic conditions the relation De ¼ Dh holds, the yield

surface can be directly interpreted with a specific strain

amplitude k De k¼ R. This surface turns simply into a

circle when plotting it within the space of the invariants

hv ¼ �trðhÞ and hs ¼
ffiffiffiffiffiffiffiffi

2=3
p

kh�k where h� is the devia-

toric intergranular strain, see Fig. 9. Its center c is also

called the backintergranular strain due to its similarity with

backstress tensors in conventional elastoplasticity [24].

The bounding surface limits the space wherein the

intergranular strain may exist, i.e., h cannot lie outside of

this surface. Its shape is also (hyper-)spherical and

described through the function:

FHb ¼k h k �R ð9Þ

The formulation of the plastic component in Eq. 7 is

based on some simple bounding surface plasticity relations

to fulfill the condition k h k �R, see Eq. 9. For this

purpose, an image of the tensor c is projected at the

bounding surface and denoted with cb according to the

following mapping rule:

cb ¼ ðR=2Þ _e
! ð10Þ

Having this, the hardening function �c ¼ _c= _k is proposed

such that the rate of c decays when c approaches to cb. The

hardening function reads:

�c ¼ bhðcb � cÞ=R with _c ¼ _kH�c ð11Þ

From the consistency equation _FH ¼ 0, the expression for

the consistency parameter _kH is derived:

_kH ¼ hN : _ei

1� oFH

oc

� �

: �c
ð12Þ

The ISA formulation permits to detect whether small strain

effects should be considered. Similar to the 1D analysis, if

the bounding condition h ¼ R _e
!

is reached, it is understood

that the material has recently experienced monotonic

loading ðk De k � 10�3Þ. Under this event, no small

strain effects such as increase in the stiffness or reduction

in plastic strain rate should be simulated by the model. The

particular case is referred as ‘‘mobilized state’’ as in the 1D

version. On the other hand, if the material has recently

Fig. 9 Yield and bounding surface of the intergranular strain h.
Adapted from Fuentes [16]
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performed cyclic loading, the intergranular strain would lie

somewhere within the bounding surface. In that case, small

strain effects should be certainly simulated. To consider all

these observations, a projection of the intergranular strain

at the bounding surface is performed under the

consideration of the following mapping rule:

hb ¼ RN ð13Þ

where hb is the projection andN � _e
!

under mobilized states.

Thus, while the case k hb � h k¼ 2R means that a reversal

loading path has been initialized, the case k hb � h k¼ 0

means that the mobilized state has been reached. Considering

the aforementioned statement, a suitable scalar function q is

defined to detect how close is the current state to the

mentioned cases and is defined as:

q ¼ 1� khb � hk
2R

ð14Þ

In this manner, q ¼ 0 implies reversal loading, while q ¼ 1

implies ‘‘mobilized states.’’ In the next section, the

mechanical model will be briefly described.

4.2 Description of the mechanical model

The mechanical model relates the (effective) stress rate _r
with the strain rate _e through a constitutive equation. The

constitutive equation is elastoplastic and consistent with

the formulation of the intergranular strain. Thus, an elastic

response of the intergranular strain is accompanied with an

elastic response of the mechanical model. Similarly, a

plastic response is simultaneously delivered by both mod-

els as well. The mathematical structure of the ISA for-

mulation has been proposed to enable the simulation of the

small strain effects by increasing the stiffness and reducing

the plastic strain rate through the incorporation of some

scalar functions:

_r ¼ m �E : ð _e� yh _�e
pÞ ð15Þ

where m and yh are scalar functions and �E and _�ep are now

called ‘‘mobilized’’ stiffness tensor and ‘‘mobilized’’

plastic strain rate, respectively, and follow the relations

of the Wolffersdorff hypoplastic model, see Appendix 1.

The factor yh guarantees the continuity between the elastic

and plastic response and reduces the plastic strain rate upon

cyclic loading. This function is defined as:

yh ¼ qvhN : _e
!i ð16Þ

where v is an exponent considered as material parameter.

Notice that if yh ¼ 0, the behavior is elastic, whereas yh ¼
1 delivers the maximum plastic strain rate for a given state

(r; e). Hence, somehow the scalar yh expresses the plastic

intensity of the material.

On the other hand, the scalar factor m is responsible for

the stiffness increase after reversal loading. The formula-

tion allows to define a maximum factor of m ¼ mR [ 1

which is rendered under elastic conditions yh ¼ 0. Under

mobilized states yh ¼ 1, the model adopts the value of

m ¼ 1. Therefore, a simple interpolation function is

adopted for m:

m ¼ mR þ ð1� mRÞyh ð17Þ

One can show that under the elastic condition FH\0, the

scalar factor gives yh ¼ 0 and the constitutive model

reduces to:

_r ¼ mR
�E : _e (under elastic conditions FH\0Þ ð18Þ

The consideration of all the mentioned statements allows to

illustrate schematically the behavior of the ISA model upon

a secant shear stiffness degradation curve, as shown in

Fig. 10. In this figure, the behavior of the ISA model is

compared to a sketch of a typical experimental curve. The

secant shear stiffness Gsec is normalized with respect to the

maximum shear stiffness Gmax for the sake of simplicity.

At the beginning, when the strain amplitude is lower than

R, elastic conditions are obtained and a constant stiffness is

simulated through the relation _r ¼ mR
�E : _e, see Eq. 18.

Subsequently, when the strain amplitude is larger than R,

the model simulates a transition regime whereby the scalar

factors deliver yh\1 and m[ 1. When the strain ampli-

tudes are large enough and reach the mobilized state, the

scalar factors render yh ¼ 1 and m ¼ 1 and the constitutive

equation turns into hypoplastic _r ¼ �E : ð _e� �_epÞ.

10-5

G
se

c /G
m

ax
  [-

]

Experiment (sketch)

10-6 10-4 10-3 10-2

1

Model

elastic transition hypoplastic0

[-]

Fig. 10 Schematic illustration of the ISA ? HP model peformance in

a secant shear modulus degradation curve. For cycles under small

strain amplitudes k _e k \R, the behavior is (hypo-)elastic. At

mobilized states, the constitutive equation turns into hypoplastic.

Between these two states, a smooth transition is simulated trough the

functions 0�m�mR and 0� yh � 1
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4.3 Numerical integration and material parameters

The numerical implementation is based on a substepping

scheme whereby very small strain subincrements De �
10�5 are applied to achieve numerical convergence. The

programming code was written in FORTRAN under the syn-

tax of the material subroutine UMAT of the software

ABAQUS Standard. The numerical integration was per-

formed with a modified version of the software INCREMEN-

TAL DRIVER [38]. This software is fully compatible with the

subroutine UMAT and allows their numerical integration

without using the software ABAQUS Standard. Some

modifications were made by the authors to the software

INCREMENTAL DRIVER to enable the simulation of multidi-

mensional cyclic loading paths.

The parameters of the ISA ? HP model can be grouped

in those from the hypoplastic model by Wolffersdorff [59]

and those rising from the ISA plasticity [17]. The first set

from the Wolffersdorff Hypoplasticity are in total 8

parameters, namely hs, nB, ei0, ec0, ed0, a and b and are

briefly described in Appendix 2. These parameters can be

calibrated with monotonic tests such as oedometric and

triaxial tests. Details for their determination can be found

in the work of Herle and Gudehus [21], while an expla-

nation of their physical meaning can be found in the work

of Niemunis [37]. The parameters of the Karlsruhe fine

sand were previously calibrated in the work of Tri-

antafyllidis et al. [52], and the reported values are adopted

for the simulations within this work. Some simulations of

monotonic undrained triaxial tests are presented at the end

of this section to evaluate the performance of the reported

parameters.

The ISA-plasticity parameters are in total four, namelymR,

R, bh and vh. In general, these parameters can be fitted to data

of cyclic triaxial experiments following the brief description

given in Appendix 2. Additional details for their determina-

tion can be found in [17]. The values adopted for this work

correspond to those calibrated in [16] for the Karlsruhe fine

sand, except for the parameter bh which has been herein

recalibrated to simulate a larger effect of the intergranular

strain. This parameter controls the strain amplitude needed to

reach mobilized states yh ¼ 1, or in other words, the strain

amplitude wherein the intergranular strain effects are active.

In all the experiments, the deviatoric strain amplitudes were

lower thanDes\2	 10�3. Using the recommended equation

from Appendix 2, bh ¼
ffiffiffi

6
p

Rðlogð4Þ � 2 logð1� rhÞÞ
� �

=

6Des �
ffiffiffi

6
p

Rð3þ rhÞ
� �

with Des ¼ 2	 10�3 and rh ¼ 0:99

renders bh � 0:35. The last value is adopted as parameter for

the current work.

Table 2 summarizes the parameters of the ISA ? HP

model. For each of them, the units, suggested range and

some useful experiments for their determination are also

recommended. The suggested range and the useful exper-

iments follow from the experience of the authors after

calibrating different sands.

The predictive capabilities of the constitutive model

under monotonic behavior were checked through the sim-

ulation of undrained triaxial tests with Karlsruhe fine sand,

as shown in Fig. 11. The experiments include triaxial

compression and extension paths for different void ratios

e ¼{0.819, 0.742, 0.814, 0.946, 0.827, 0.853} and confin-

ing pressures p0 ¼ f100; 200g kPa. Six undrained triaxial

paths named from A1 to A6 were considered for simulation

purposes as shown in Fig. 11. One may check with these

Table 2 Material constants of the ISA ? HP model

Description Units Approx. range Value Useful experiments

Wolffersdorff hypoplasticity

uc Critical state friction angle � 0�–50� 33 UTC

hs Granular hardness – 10–107 86260 OC

nB Barotropy exponent – 10-6–1 0.32 OC

ei0 Maximum void ratio – 0.1–2 1.21 emax test

ec0 Critical void ratio – 0.1–2 1.09 emax test, UTC, DTC

ed0 Minimal void ratio – 0.1–2 0.67

a Dilatancy exponent – 0–2 0.21 UTC, DTC

b Exponent – 0–10 1.5 UTC, OC, UTC, DTC

ISA parameters

mR Stiffness factor – 1–7 5 CUTC

R IS yield surface radius – 10�5–10�4 1:4	 10�4 -

bh IS hardening parameter – 0–1 0.35 CUTC

vh IS exponent – 1–10 7 CUTC

UTC undrained triaxial test, OC oedometric compression test, DTC drained triaxial test, CUTC cyclic undrained triaxial test
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simulations the performance of the 8 parameters of the

Wolffersdorff hypoplastic model considering that no cyclic

loading has been performed. Although some small dis-

crepancies can be observed, in general the monotonic

behavior is fairly well simulated.

5 Simulations with the ISA 1 HP model
and evaluation of its artificial accumulation

The experiments described in Sect. 3, namely the ‘‘small

circle test,’’ ‘‘big circle test’’ and ‘‘flower test,’’ are in this

Section simulated. The ISA ? HP model is employed

using the parameters of Table 2. Besides this, it is also of

interest the quantification of the artificial accumulation due

to the large number of cycles. Two cases of simulations are

therefore considered in the present analysis:

Case 1 the constitutive model corresponds to the

ISA ? HP model according to the relations explained

in Sect. 4.

Case 2 the constitutive model corresponds to the (hypo-)

elastic component of the ISA ? HP model. The model is

expressed according to Eq. 18 whereby _r ¼ mR
�E : _e.

The simulations are shown in Fig. 12 (blue lines) and

compared to the average curves (accumulated curves) of the

experiments (red lines). It is recalled that ‘‘average curve’’

means that a point at the end of each cycle is plotted, as

shown in Fig. 6. As mentioned before, the experimental

results show a drastic reduction in the accumulation rate for

increasing number of cycles N, see, for example, the results

in Fig. 7. Unfortunately, this reduction is not simulated by

the ISA ? HP model (case 1). Instead, the model simulates

an excessive accumulation rate which seems not to be

reduced with the increasing number of cycles N. This fact

shows a weakness of this formulation when dealing with a

number of cycles and motivates to propose an extension of

the model described in the next section.

The artificial accumulation of the ISA ? HP model is

evaluated through the simulations of case 2. The source of

the artificial accumulation comes from the (hypo-)elastic

nature of tensor �E which depends on the stress r and the

void ratio e, i.e., �E ¼ �Eð r, e). The simulations show

whether the resulting artificial accumulation is negligible

or not. The simulations are plotted in Fig. 13 and once

more compared to the average curves of the experiments

(red lines). The results in Fig. 13 show that the accu-

mulation exhibited by the (hypo-)elastic relation is not

negligible compared to the experiment. In fact, the arti-

ficial accumulation of the small circle produces a larger

reduction in the void ratio compared to the experimental

curve. This is a very important or even disappoint-

ing result, since many constitutive models claiming to

simulate well the cyclic behavior of sands are based on

(hypo-)elastic relations which might produce a similar

result. Notice that the artificial accumulation of the void

ratio e presents a contractive behavior in the case of the

small circle and the flower test, but a dilative (expansive)

behavior in the case of the big circle. This is of course

attributed to the polarization of the loading path (clock-

wise or counterclockwise) which do not agree with

experimental observations.

In the following section, an extension to the ISA ? HP

model will be proposed to simulate the reduction in the

plastic accumulation with increasing number of cycles for

the given experiments.

6 Extended model for the simulation
of multidimensional cyclic loading

According to the experiments, when the number of cycles

N increases, and the current stress r lies away from the

critical state surface, the rate of the plastic accumulation

reduces. In other words, for a given strain amplitude, the

plastic accumulation rate depends not only on the average

stresses rave and void ratio e, but also on the number of

cycles previously performed. Defining a variable which

counts the number of consecutive cycles is not feasible

considering the three-dimensional nature of the current

modeling framework. Furthermore, under multidimen-

sional cyclic loading, the definition of a cycle or even an

Summary of constitutive relations

Constitutive equation

_r ¼ m �E : ð _e� yh _�e
pÞ

with the scalar functions according to ISA plasticity:

m ¼ mR þ ð1� mRÞyh (function to increase stiffness upon cycles)

yh ¼ qvhN : _e
!i (function to reduce plastic strain rate upon cycles)

and the hypoplastic relations by Wolffersdorff [59] for mobilized states:

�E ¼ fbfe
1

r̂: r̂
ðF2Iþ a2r̂r̂Þ (Mobilized stiffness, hypo-elastic relation by [59])

_�ep ¼ � �E�1 : �N k _e k (Mobilized plastic strain rate)

�N ¼ fdfbf e
Fa

r̂ : r̂
ðr̂þ r̂�Þ (non-linear hypoplastic stiffness [59])

Other relations defined in Appendix 1 and Sect. 4.1.

Yield surface

FH ¼k h� c k �R

2

Evolution equation for the internal variables

_h ¼ _�� _kHN (evolution of intergranular strain)
_c ¼ _kHbhðcb � cÞ=R (evolution of the center of the yield surface)

with the Kuhn–Tucker conditions _kH � 0, FH � 0 and _kHFH ¼ 0

Extension to the plastic accumulation rate under consecutive cycles

_ea¼
Ca

R
ð1�yh�eaÞk _ek (evolutionof internal variable for cyclic history)

v¼v0þeaðvmax�v0Þ (modification to exponent of intergranular strain effect)

Details of this extension are given in Sect. 6, see Eqs. 19 and 20
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amplitude is not very clear because the loading paths may

be smooth and no reversal points can be identified.

Therefore, another strategy is herein followed to extend the

ISA formulation toward the simulation of this effect.

An additional state variable is introduced to identify

paths whereby the material remains under cyclic loading

during a larger time period. The new variable would

identify whether the soil has recently experienced a few or

several consecutive cycles. The provided information is

then considered by the model to decrease the plastic

accumulation rate according to the experiments. The new

state variable is denoted with ea and is proposed to be

bounded by the values 0� ea � 1. If ea � 0, the model

assumes that the material has experienced monotonic

loading or only a few consecutive cycles. On the other

hand, if ea � 1, it means that the model has performed a

large number of consecutive cycles and a reduction in the

plastic accumulation should be rendered. To achieve this,

the following evolution equation is proposed:

_ea ¼
Ca

R
ð1� yh � eaÞ k _� k ð19Þ

whereby Ca is a new material parameter controlling the

rate of ea and yh is the scalar factor defined in Eq. 16. The

desired behavior of the variable ea is achieved because the

scalar function gives yh ¼ 0 under elastic conditions and

yh ¼ 1 upon monotonic loading.

The information of ea is now considered in the

mechanical model. The main idea is to increase the inter-

granular strain effect for increasing values of ea ! 1. It is

known that increasing values of v (see Eq. 16) reduces the

plastic accumulation rate upon the cycles [17]. Actually,

this effect has been already shown by an intergranular

strain-based model by Wegener and Herle [54]. Hence, for

the present work, it is proposed to make v dependent with

the internal variable ea, such that the desired effect is

simulated. A suitable interpolation function is proposed to

increase v between the values v0 � v� vmax, whereby the

boundaries v0 and vmax are now material parameters:
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Fig. 11 Simulations of undrained triaxial tests for the calibration of parameters under monotonic loading
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v ¼ v0 þ eaðvmax � v0Þ ð20Þ

Notice the introduction of the two additional parameters Ca

and vmax. These parameters can be calibrated through a

cyclic undrained triaxial test as shown in Fig. 14a. The

experiment was conducted with Karlsruhe fine sand and

performed cycles on an isotropically consolidated sample

(p0 ¼ 100 kPa, e ¼ 0:798) with a deviator stress amplitude

of qamp ¼ 25 kPa. The accumulated pore water pressure

paccw is plotted in Fig. 14c before failure. The obtained

experimental curve can be divided in two portions as

expected: the first one in which paccw suddenly increases

(N\15 in Fig. 14c) and the rest (N[ 15 in Fig. 14c)

wherein the plastic accumulation shows approximately a

constant rate. The parameter Ca controls how fast the

plastic accumulation rate reduces and therefore can be

adjusted to the first portion of the accumulation curve. To

show this, three different values of Ca have been tested for

a given value of vmax in Fig. 14c. On the other hand, the

parameter vmax controls the accumulation rate when the

number of consecutive cycles is large. Therefore, one can

fit this parameter with the behavior of the second portion of

the curve (N[ 15 in Fig. 14d). The best simulations were

obtained with Ca ¼ 0:015 and vmax ¼ 25 and hence are

selected as parameters. In the next sections, some simula-

tions of multidimensional cyclic loading tests are per-

formed and analyzed with the proposed extension and the

selected parameters.

7 Simulations with extended ISA 1 HP model

The simulations from Sect. 5 showed two issues related to

the plastic accumulation: the first is the inability in this

model to simulate the dependence of the plastic accumu-

lation rate with the cyclic history. This issue has been

Experiment Model
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Fig. 12 Case 1: Simulations with conventional ISA ? HP model (color figure online)
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overcome through the proposed Eq. 20 in the extended

ISA ? HP model. The second is the artificial accumulation

produced by the stiffness tensor E when the plastic strain

rate is deactivated (case 2). These issues motivated to

simulate once more the experimental results with two

additional cases.

Case 3 The constitutive model corresponds to the

extended ISA ? HP model considering Eq. 20.

Case 4 The constitutive model corresponds to the

extended ISA ? HP model but with a constant (hypo-)

elastic stiffness �E. The stiffness �E is evaluated with the

stress at the center of the loops r0 (p ¼ 200 kPa and

q ¼ 100 kPa) and the initial void ratio e0, i.e.,
�E ¼ �Eðr0; e0Þ. It remains constant during the whole

simulation, such that the only source of accumulation is

the plastic strain rate. This modification is not a

constitutive model itself and has only been considered

for analysis purposes.

Although case 4 does not propose a formal constitutive

model, it permits to eliminate the artificial accumulation

with a simple modification. Other alternatives, such as

incorporating hyperelastic or paraelastic functions, were

not evaluated in the present work. The simulations with

case 3 are given in Fig. 15. Compared to the results of

cases 1 and 2, the new simulations show a significant

improvement. The extended version achieved to reduce the

plastic accumulation with the number of cycles. Some

small inaccuracies are, however, observed and deserve to

be mentioned: concerning to the behavior of the void ratio

e for the big circle test, see, e.g., Fig. 15e, the simulation

showed a dilatant (expansive) behavior for increasing

number of cycles. This contrasts to the experiments and is

attributed to the artificial accumulation already exhibited in

the simulations of case 2.

The simulations of case 4 eliminate the artificial accu-

mulation with the incorporation of a constant stiffness �E to

the model. The results are compared to the experiments in

Fig. 16. The accuracy seems to be in general improved, and

the issue of the dilative behavior in the big circle test has

been overcome. Hence, it has been shown that for these

tests, the artificial accumulation is not negligible and
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Fig. 13 Case 2: Simulations with (hypo-)elastic model. Evaluation of the artificial accumulation (color figure online)
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should be carefully analyzed to avoid mistaken interpre-

tations of the simulations.

8 Simulation of a boundary value problem
with FE

The performance of the proposed constitutive model is

evaluated with a simple boundary value problem dealing

with cyclic loading: a strip foundation (width equal to 2 m

and embedment = 1 m) is simulated using finite elements

under plane strain conditions. A rectangular domain with

20 m 	 10 m is considered. The horizontal displacements

Ux are restricted at the left and right boundaries. Similarly,

the vertical displacement Uy is restricted at the boundary of

the bottom. The mesh is regular using 4-noded finite ele-

ments (linear interpolation). The material is under dry

conditions, with a unit weight of c ¼ 15 kN/m3. A constant

vertical stress equal to ry ¼ 15 kPa is applied on the top

boundary to simulate the additional material above the

foundation base (embedment = 1 m). The geometry and

mesh are depicted in Fig. 17a.

A sinusoidal normal stress fn with a maximum amplitude

of 5 kPa is applied at the center of the top boundary as

depicted in Fig. 17a to simulate the foundation. The load

has a width of 2 m and follows the function:

fnðtÞ ¼ 5 0:5 sinðxtÞ þ 0:5ð Þ ðkPaÞ ð21Þ

where t is the time (t ¼ 0 at the beginning of the step) and

x ¼ 0:0188495. The load performs 45 cycles among a total

time of 15	 103 segs, see Fig. 17b. In addition, a

sinusoidal tangential stress ft is considered with an

amplitude of 5 kPa as schematically illustrated in

Fig. 17b. The tangential stress ft satisfies the following

equation:

ftðtÞ ¼ 5 sinðxtÞð Þ ðkPaÞ ð22Þ

The simulations were performed considering all the cases

studied before, i.e., cases 1–4.
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The contours of the magnitude of the displacements

k U k are plotted in Fig. 18 at the end of the simulation. As

expected, the largest displacements after 45 cycles were

obtained for case 1 (Fig. 18a) with k U k� 2:2 mm. The

artificial accumulation (case 2, Fig. 18b) produced dis-

placements in the order of k U k� 0:2 mm, i.e., a tenth of

the case 1. With the extended ISA ? HP model (case 3,

Fig. 18c), the accumulation is reduced to almost the half of

the first case. Small differences were observed between

case 4 and case 3. In the next lines, the vertical displace-

ment Uy and horizontal displacement Ux are carefully

analyzed.

The results of the vertical displacement Uy at the middle

of the foundation (Point A, see Fig. 17a) are plotted in

Fig. 19. Each figure corresponds to a different case. The

results show a similar pattern than those obtained in the

previous sections. The ISA ? HP model (case 1) simulates

an excessive accumulation as shown in Fig. 19a. The

artificial accumulation is small as shown in Fig. 19b but

not negligible. It will be shown that this component turns

out to be important for the horizontal displacement Ux. The

results of cases 3 and 4 show a reduction the accumulation

for increasing number of cycles similar to the simulations

in the previous section.

The behavior of the horizontal displacement Ux is

plotted in Fig. 20. Surprisingly, the artificial accumulation

(case 2, Fig. 20b) is the predominating mechanism if one

compares it with the results of the other cases (Fig. 20a, b,

d). Moreover, in the simulation of case 4, in which the

artificial accumulation has been eliminated, the direction of

the accumulation seems to be reversed. Hence, the artificial

accumulation is producing horizontal displacements Ux in a

different direction than those from the general model and

are actually governing the behavior of this variable. This
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Fig. 15 Case 3: Simulations with the extended ISA ? HP model

1278 Acta Geotechnica (2016) 11:1263–1285

123



issue is attributed to the fact that in this boundary value

problem the accumulated horizontal displacements are very

small but comparable to those obtained with the artificial

accumulation.

9 Conclusions

In the computational geomechanics, the constitutive mod-

eling of the plastic accumulation under complicated cyclic

loading paths is not an easy task. Some relevant issues

related to the simulation of cyclic loading has been pointed

out within this work. The first concerns to the experimental

observation that under multidimensional cyclic loading

performing stress loops away from the critical state line,

the accumulation rate drastically reduces. The direct

implication is that constitutive models should depend on an

additional information to distinguish whether the tested

path has been simulating a few or a large number of con-

secutive cycles. To overcome this issue, an extension has

been proposed to the ISA plasticity wherein an additional

state variable has been introduced to capture some infor-

mation about the cyclic history. In this way, the extended

version of the model achieved to reduce the plastic accu-

mulation upon increasing cycles as observed. Currently,

further investigation is being performed to evaluate the

model in a wider range of strain amplitudes.

The second issue recalls the importance of the arti-

ficial accumulation on cyclic loading. The artificial

accumulation delivered by the simulations is in fact

comparable in some cases with the amount of plastic

accumulation recorded in the experiments. This is an

important drawback, considering that the artificial

accumulation is not an adjustable magnitude: for
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Fig. 16 Case 4: Simulations with extended ISA ? HP and constant E
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example, running a closed circular loop clockwise or

counterclockwise would return a different (artificial)

accumulation contrasting to the experimental results.

The finite element simulation performed within this

work showed also that this component is not negligible.

The usage of (hypo-)elastic tensors in the constitutive

modeling of cyclic loading is in many cases not rec-

ommended. Most of the published models for cyclic

loading do not consider this fact except by a few, e.g.,

[9, 10, 19, 39, 53]. The next generations of constitutive

models should be aware of this undesirable effect.

The precision of simulating cyclic phenomena in

boundary value problems may be compromised if the

aforementioned shortcomings are not properly overcome.

Researchers developing constitutive models to simulate

cyclic behavior should be aware of the aforementioned

10
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2 m
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ft (t) (tangential stress)
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Fig. 17 Geometry and boundary conditions of the FE problem

Fig. 18 Magnitude of displacements k U k for the 4 cases. Note that different contour scales are used in each plot.
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issues. More research in this direction is recommended to

find appropriate formulations enabling us to simulate this

complicated behavior.

Appendix 1: Hypoplastic model
from Wolffersdorff

The general equation of the hypoplastic model by Wolf-

fersdorff [59] can be written as:

_r ¼ �E : ð _e� _�epÞ ð23Þ

whereby �E is the ‘‘linear’’ stiffness and �ep is the hypoplastic

strain rate defined in the sequel. According to the

ISA ? HP nomenclature, the tensor E is referred as the

mobilized stiffness and �ep as the mobilized plastic strain

rate. The definition of �E reads [59]:

�E ¼ fbfe
1

r̂ : r̂
ðF2Iþ a2r̂r̂Þ ð24Þ

whereby r̂ ¼ r=trr is the relative stress, fb, fe, F and a are

scalar factors and I is the fourth-order tensor for symmetric

second-order tensors. The scalar factor F is responsible for

the Matsuoka–Nakai shape of the critical state surface and

is defined as:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

8
tan2ðwÞ þ 2� tan2ðwÞ

2þ 2
ffiffiffi

2
p

tanðwÞ cosð3hÞ

s

� 1

2
ffiffiffi

2
p

tanðwÞ
ð25Þ

whereby the factors a, h and w are defined as:

a ¼
ffiffiffi

3
p

ð3� sinðucÞÞ
2

ffiffiffi

2
p

sinðucÞÞ
tanw ¼

ffiffiffi

3
p

kr̂�k

cosð3hÞ ¼
ffiffiffi

6
p trðbr�

br�
br�Þ

ðbr� : br�Þ3=2

ð26Þ

The tensor r� is the deviator stress tensor and uc is the

critical state friction angle. The model incorporates the

characteristic void ratios corresponding to the maximum ei,

minimum ed and critical ec, respectively. They follow the

function proposed by Bauer [5] depending on the mean

pressure p:
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ei ¼ ei0 exp � 3p=hsð ÞnBð Þ
ed ¼ ed0 exp � 3p=hsð ÞnBð Þ
ec ¼ ec0 exp � 3p=hsð ÞnBð Þ

ð27Þ

where ei0, ed0 and ec0 are parameters representing the

characteristic void ratios at p ¼ 0 and hs and nB are

additional parameters to fit these curves. The scalar

functions fe and fb read:

fe ¼
ec

e

� �b

fb ¼
hs

n

1þ ei

ei

� �

ei0

ec0

� �b

� trr

hs

� �1�n

	 3þ a2 �
ffiffiffi

3
p

a
ei0 � ed0

ec0 � ed0

� �b
" #�1

ð28Þ

whereby b and a are material parameters The mobilized

plastic strain rate _�ep is defined as:

_�ep ¼ � �E�1 : �N k _e k ð29Þ

whereby tensor �N reads:

�N ¼ fdfbfe
Fa

r̂ : r̂
ðr̂þ r̂�Þ ð30Þ

and the factor fd follows the relation:

fd ¼
e� ed

ec � ed

� �a

ð31Þ

Details of these functions are explained in [37]. The

required parameters are briefly described in the following

appendix.

Appendix 2: Short guide to determine
the ISA 1 HP parameters

The ISA ? HP model (without the proposed extension)

requires the calibration of 12 parameters. In this appendix,

a short guide for their determination is provided.

• The critical state friction angle uc can be adjusted with

points of a triaxial compression test after a vertical

strain of e1 [ 25%. The critical state slope within the
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Fig. 20 Horizontal displacements Ux at the point A for the 4 cases
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p� q space can be calibrated with the relation q=p ¼
6 sinuc=ð3� sinucÞ for these points.

• The maximum void ratio at p ¼ 0 denoted with ei0 can

be obtained through the standardized minimum density

test (ASTM D4254-14).

• The exponent nB can be adjusted to match the elastic

stiffness dependence with the mean pressure G� p1�nB

through the results of resonant column test for different

confining pressures. If the experiments are scarce, some

values from the literature can be adopted, e.g., nB ¼ 0:5

[47].

• The granular hardness hs can be adjusted to simulate

the oedometric compression stiffness under very loose

states e � ei where ei ¼ eiðpÞ is the maximum void

ratio curve. A method to determine hs given some

oedometric results is described by Herle and Gudehus

[21].

• The critical state void ratio at p ¼ 0 denoted with ec0
can be adjusted from points lying at the critical state

(e1 [ 25% with triaxial compression) in the e� p

space with very low pressure p\20 kPa. When data are

scarce, one may adopt the approximation ec0 � 0:9ei0.

• The dilatancy exponent a is calibrated with the

behavior of medium-dense and dense samples sheared

through drained triaxial compression. This parameter

controls the dilatancy rate of the volumetric strains after

reaching the phase of transformation line. A relation to

determine a with drained triaxial test is described by

Herle and Gudehus [21].

• The barotropy exponent b is adjusted to dense samples

compressed under oedometric conditions. Herle and

Gudehus [21] provided an equation to determine this

parameter.

• The parameter R defines the size of the elastic locus in

terms of strain increments. For the secant shear stiffness

Gsec, this can be interpreted as the strain range at which

no degradation occurs. Many experiments point a value

of approximately k De k� 10�5 for sands, but as

mentioned in [17], a small value of this parameter

may lead to numerical difficulties when dealing with

finite element simulations. Hence, a value of k De k
[ 5	 10�5 is recommended.

• The parameter bh controls the needed strain increment

to eliminate the influence of the intergranular strain

effect in the model. In other words, it controls the size

of the strain amplitude at which no ‘‘small strain

effects’’ is simulated by the model. The equation

relating this strain amplitude with the parameter bh was
provided in [17] and reads:

bh ¼
ffiffiffi

6
p

Rðlogð4Þ � 2 logð1� rhÞÞ
6Des �

ffiffiffi

6
p

Rð3þ rhÞ
ð32Þ

where Des is the deviatoric strain amplitude and rh � 0:99

is a factor which defines how close is tensor c to its

bounding condition rh ¼k c k = k cb k.
• The parameter v controls the degradation curve shape

of the secant shear modulus Gsec. Its calibration can be

performed simulating some cycles of triaxial test as

explained in [17].

• The parameter Ca controls how fast the plastic accu-

mulation rate reduces upon the cycles. It can be

adjusted with a cyclic undrained triaxial test with the

behavior of the accumulated pore pressure paccw versus

the number of cycles N. The first portion of this curve,

with approximately N\10, can be adjusted through

parameter Ca by trial and error. An example of its

calibration is given in Fig.14c.

• The parameter vmax controls the accumulation rate

when the number of consecutive cycles is large, of

about N[ 10. It can be adjusted with a cyclic

undrained triaxial test with the behavior of the

accumulated pore pressure paccw versus the number

of cycles N. An increasing number of vmax would

return a lower value of N to reach failure at the

critical state line. It can be adjusted by trial and error

after fixing Ca. An example of its calibration is given

in Fig. 14d.
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Veröffentlichungen des Institutes für Bodenmechanik und Fels-

mechanik der Universität Fridericiana in Karlsruhe, Karlsruhe,

Germany, Heft 130, pp 1–13

6. Bauer E (1996) Calibration of a comprehensive constitutive

equation for granular materials. Soils Found 36(1):13–26

7. Bernardie S, Foerster E, Modaressi H (2006) Non-linear site

response simulations in Chang-Hwa region during the 1999 Chi-

Chi earthquake, Taiwan. Soil Dyn Earthq Eng 26(11):1038–1048

8. Bjerrum L (1973) Geotechnical problems involved in foundations

of structures in the North Sea. Géotechnique 23(3):319–358
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