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Abstract This paper proposes an elastic bond model in the

framework of contact dynamics based on mathematic

programming. The bond model developed in this paper can

be used to model cemented materials. The formulation can

be reduced to model pure static problems without intro-

ducing any artificial damping. In addition, omitting the

elastic terms in the objective function turns the formulation

into rigid bond model, which can be used for the modeling

of rigid or stiffly bonded materials. The developed bond

model has the advantage over the explicit DEM that large

time step or displacement increment can be used. The

tensile and shear strength criteria of the bond model are

formulated based on the modified Mohr–Coulomb failure

criterion. The torque transmission of bonds is introduced

based on rolling resistance model. The loss of shear or

tensile strength, or torque transmission will lead to the

breakage of bonds, and turn the bond into purely frictional

contact. Three simple examples are first used to validate

the bond model. Numerical examples of uniaxial and

biaxial compression tests are used to show its potential in

modeling cemented geomaterials. Numerical results show

that elastic bonds are indeed necessary for the modeling of

cemented granular material under static conditions.

Keywords Bonded granular geomaterials � Contact
dynamics � Elastic deformability � Mathematical

programming

List of symbols

AI
b

Contact area of the Ith bonds

c The cohesion of the bond

f ext External forces

fs; ft Maximum shear force and maximum tensile

force

gb Bond length in the next time step

gint Length for creating bonds

g0; gb0 Particle gap and initial bond length

h Width of bond

J Mass moment of inertia

kN; kT Normal and tangential stiffness

m Particle mass

mb Rolling moments of the bond

mext External moment

nI0; n̂
I
0

Normal and shear vector at Ith contact

N; N̂ Matrices collecting the normal and tangential

unit vectors

p; q Normal and shear contact force

pb; qb Normal and shear forces of the bond

pI ; qI Normal and shear contact force at Ith contact

r; rI Particle radii and common radius between two

particles at Ith contact

ri; r j Radii of the ith and jth particle

R Strength of the bond

R;R0 Array with common radii of potential contacts

and particle radii

s; s1; s2 Slack variables

t; r Dynamic forces and moments

v; v0 Linear velocities of next and current steps

w;w0 Angular velocity of next and current steps

x; x0 Positions of next and current steps

a; a0 Rotation angles of next and current steps

c Displacement increment per step
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Dt Time step

Dx Incremental displacements

Da Incremental rotation angle

k; k1; k2 Lagrange multipliers

l Friction coefficient

lr Rolling resistance coefficient

lb Friction coefficient of the bond

r1; r3 Cauchy stress

rt Tensile strength of the cementation material

sI Rolling resistance at Ith contact

sb Maximum torque transmission of the bond

ub Friction angle of the bond

1 Introduction

Bonded granular materials (e.g., cemented sands) are com-

mon in geotechnical engineering. The study of the

mechanical behavior of bonded granular geomaterials is of

great importance for the assessment of the safety of many

types of infrastructure. Continuum mechanics, especially

elasto-plastic models are traditionally adopted to model the

behavior of these materials [14, 23, 30, 35, 38–40, 47,

56, 59]. However, these models were developed based on

macroscopic response observed in the laboratory, and the

microstructure of the materials is usually overlooked

[19, 20]. Furthermore, mesh dependence has to be dealt for

mesh- or grid-based solutions before successfully modeling

the complex behavior of bonded granular geomaterials such

as strain localization [32, 33].

Discontinuum approaches, on the other hand, have been

recognized as powerful tools for investigating the

mechanical behavior of bonded geomaterials. The most

popular methods are the discrete (or distinct) element

method (DEM) pioneered by Cundall and Strack [7]. In this

approach, explicit time integration is used and sufficiently

small time steps are necessary. Using the overlap of par-

ticles to calculate the contact forces is the fundamental

principle of the DEM. In contrast, in the basic contact

dynamics (CD) method [17, 43, 44], particles are treated as

perfectly rigid. The effects of particles collisions (e.g., the

non-penetration constraint and the Coulomb’s friction

constraint) are adopted to calculate the contact forces [53].

The implicit time integration is adopted allowing for large

time steps [2, 34, 45, 46].

However, there is relatively scarce application to the

contact dynamics method because it is much more complex

to implement than the classical DEM [8]. To simplify the

formulation and implementation of contact dynamics, a

variational formulation for contact dynamics, so-called

granular contact dynamics, has recently been developed

[27]. This formulation is appealing because it can be easily

implemented using off-the-shelf mathematical program-

ming solvers. Moreover, static equilibrium can be directly

formulated without introducing any artificial damping or

adjusting time step. However, only frictional granular

materials can be formulated using mathematical program-

ming methods until now.

To take into account the mechanical behavior of

cementation in the framework of the contact dynamics

method, contact models which allow for attractive contact

forces have been developed in [18, 22]. Some studies using

contact dynamics have been devoted to the strength and

rheological properties of cemented granular materials

[9–11, 50]. However, the elastic behavior of the cementa-

tion that plays an essential role in failure and the

mechanical response of bonded granular geomaterials is

ignored in these studies. The aim of the present investi-

gation is to develop a bond model with elasticity in the

framework of the granular contact dynamics method. To

model the deformable behavior of geomaterials, the

non-penetration condition is extended to allow for a

penetration which is proportional to the repulse force.

The proposed bond model can resist tensile force (it is

taken as negative value), shear force and torque up to

certain thresholds. Accordingly, three failure modes are

defined for tensile strength, shear strength and torque

transmission limit, respectively. After the bonds fail, the

formulation degenerates to the conventional framework

for uncemented granular material. This formulation for

the elastic model is general because it can be degenerated

to the rigid bond model or reduced to model pure static

loading without introducing any artificial damping. In the

present study, only two-dimensional problems are con-

sidered. The extension to three-dimensional problems is

straightforward.

The paper is organized as follows. Firstly, the granular

contact dynamics formulation for unbonded particles is

presented in Sect. 2. In Sect. 3, the formulation for the

elastic bond model is detailed and the algorithms for cre-

ating and rupturing bonds are outlined. For clarity, the

formulation for the elastic bond model without shear forces

is presented first and the corresponding optimality condi-

tions are outlined in ‘‘Appendix’’. In Sect. 4, uniaxial and

biaxial compression tests are performed before conclusions

are given in Sect. 5.

2 Granular contact dynamics for rigid unbonded
materials

We first consider the case of rigid unbonded particles. The

particles have both translational and rotational degree of

freedoms. For the purpose of a complete presentation, the

480 Acta Geotechnica (2017) 12:479–493

123



basic variational contact dynamics formulation of granular

materials (i.e., unbonded materials) is reviewed in this

section.

2.1 Equations of motion

The equations of motion for a single rigid particle are given

by

m _v ¼ f ext

J _w ¼ mext

ð1Þ

where m is the mass, v¼ ½vx; vy�T are the linear velocities,

f ext ¼ ½f xext; f
y
ext�T are the external forces, J is the mass

moment of inertia, w is the angular velocity, and mext is the

external moment, respectively.

Following [27], the equations of translational motion are

discretized in time by the h-method:

�mDx ¼ �f 0; v ¼ 1

h
Dx
Dt

� ð1� hÞv0
� �

�m ¼ m

hDt2
; �f 0 ¼ f ext þ �mv0Dt

ð2Þ

where 0 B h B 1, Dt is the time step, Dx ¼ x� x0, x and

x0 are the positions of next and current steps and v0 is the

velocity of current step.

In the same way, the angular momentum equilibrium

equations are discretized as:

JDa ¼ �m0; w ¼ 1

h
Da
Dt

� ð1� hÞw0

� �
ð3Þ

where Da ¼ a� a0 are the incremental rotation angles, and

the subscript 0 again denotes known variables and

�J ¼ J

hDt2
; m0 ¼ mext þ Jw0Dt ð4Þ

The stability properties of the h-method are well known

[57]. When h ¼ 1=2 unconditionally stable and an energy

preserving scheme is recovered, for h[ 1=2 the scheme is

unconditionally stable and energy is dissipative, for h\1=2

its stability depends on the time step [27, 31].

2.2 Non-penetration condition

Considering two circular particles, i and j at contact I as

shown in Fig. 1, the positions of the particles at time t0 are

given by xi0 and x j
0. The non-penetration condition at time

t0 ? Dt can be formulated as

xi � x j
�� ���ðri þ r jÞ ð5Þ

As this inequality constraint is non-convex, the linear

approximation is adopted as

nI0
� �TðDxi � Dx jÞ � g0 � 0 ð6Þ

where the superscript I refers to the potential contact and

nI0 ¼
x j
0 � xi0

x j
0 � xi0

�� �� and g0 ¼ xi0 � x j
0

�� ��� ðri þ r jÞ ð7Þ

are the initial normal vector and gap, respectively.

It is the complementary relation between the contact

force p and the non-penetration equation, so-called Sig-

norini unilateral contact condition [44], which can be stated

as:

p nI0
� �TðDxi � Dx jÞ � g0

h i
¼ 0 ð8Þ

2.3 Frictional contact

For frictional contact problem, the contact force between

two particles i and j at contact I, as shown in Fig. 2, is

resolved into tangential and normal directions i.e., n̂0 and

n0. The shear force qI is limited to the Coulomb friction

law given by

qI
�� ��� lpI ð9Þ

where l is the friction coefficient, and pI is the normal

contact force.

The discrete linear momentum equations in time for the

interacting particles at the contact I can be expressed as:

�miDxi þ pInI0 þ qI n̂I0 ¼ �f i0

�mjDx j � pInI0 � qI n̂I0 ¼ �f j
0

ð10Þ

Similarly, the discrete angular momentum equations in

time can be expressed as

J
i
Dai þ riqI ¼ �mi

0

J
i
Da j � r jqI ¼ �mj

0

ð11Þ

Note that anticlockwise rotations are assumed positive.

x

y

i

j

g0

ri

rj

0
ix

0- Ip n
0
Ip n

0
jx

Fig. 1 Frictionless contact geometry between particles i and j at the

potential contact I, where p is contact force of two particles along the

initial normal
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2.4 Rolling resistance

Natural materials are usually composed of irregular grains

so that the idealization of circular disks may result in

serious errors. For instance, the macroscopic internal fric-

tion angle of a sample of bonded particle is no larger than

258 because the disks are free to rotate [54]. Accordingly,

the application of the discrete methods has been consid-

erably restricted because of ignoring of particle shapes

[13]. Estrada [12] and Jiang [21] suggested that rolling

resistance model could be used as a simple and effective

method to account for particle shapes.

Following the approach in [15], the rolling resistance is

incorporated in the time discrete angular momentum

equations.

J
i
Dai þ riqI þ sI ¼ �mi

0

J
i
Da j � r jqI þ sI ¼ �mj

0

ð12Þ

where sI refers to the moment arisen from rolling resis-

tance at contact I.

The rolling resistance is generated by the particle shape

and the contact force. Hence, the rolling resistance can be

formulated as

sI
�� ��� lrr

IpI ð13Þ

where lr is the rolling resistance coefficient. The quantity

rI is the common radius between two particles, and a

common choice for it is the geometric mean of the radii of

the two particles. However, bearing in mind the origin of

the resisting moment—the eccentric contact forces—we

chose the minimum radius of interacting particles as the

common radius (i.e., rI = min(ri, rj)).

2.5 Conic programming formulations

We now have the governing equations for rigid unbonded

particles, i and j, at the contact I. To extend the

formulations to an n-particle system, we introduce the

following notations:

�M ¼ diagð �m1; �m1; . . .; �mn; �mnÞ
�J ¼ diagð�J1; �J2; . . .; �Jn�1; �JnÞ
�f 0 ¼ ð�f 10; . . .; �f n0Þ; �m0 ¼ ð �m1

0; . . .; �m
n
0Þ

R0 ¼ ðr1; . . .; rnÞ; R ¼ ðr1; . . .; rNÞ

ð14Þ

together with arrays of the state variables

x ¼ ðx1; . . .; xnÞ; a ¼ ða1; . . .; anÞ
p ¼ ðp1; . . .; pNÞ; q ¼ ðq1; . . .; qNÞ
g0 ¼ ðg10; . . .; gN0 Þ; s ¼ ðs1; . . .; sNÞ

ð15Þ

where the matrix quantities in bold refer to an n-particle

assembly, the number of contacts is denoted as N, and R

and R0 are the array with common radii of potential con-

tacts and particle radii, respectively. Furthermore, N and N̂

are the matrices which collect the normal and tangential

unit vectors for the potential contacts.

Following [15], the governing equations can be cast as

an optimization problem

min
x;a

max
p;q;s

1

2
DxT �MDx�DxT�f 0

n o
þ DxTðN0pþ N̂0qÞ�gT0p
� �

þ 1

2
DaT�JDa�DaT �m0

n o
þ DaTðR0qþ sÞf g

subject to qk k�lp
sk k�lrRp

ð16Þ

Alternatively, a force-based formulation can be

constructed as

minimize
1

2
tT �M�1tþ 1

2
rT �J�1rþ gT0p

subject to tþ N0pþ N̂0q ¼ �f 0

rþ R0qþ s ¼ �m0

qk k� lp

sk k� lrRp

ð17Þ

where t ¼ �MDx and r ¼ JDa are dynamic forces and

moments.

Similarly, a displacement based optimization problem

can be obtained by solving the max part of the problem

(16), which is equivalent to the above force-based one.

2.6 Implementation

Following [27], the potential contacts of the next time step

are identified by the Delaunay triangulation method. An

example is shown in Fig. 3.

A general second-order cone programming provides a

convenient framework for the optimization problem dis-

cussed above. The Coulomb friction law and rolling

resistance can be treated as second-order cone constraints

x

y
i

j

g0

0( )I Ip n
0ˆ( )I Iq n

0( )I Ip n

0ˆ( )I Iq n

Fig. 2 Frictional contact model between particles i and j at contact I
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for the mathematical programming problem [25, 29]. There

are a number of efficient and robust solvers and of par-

ticular note are MOSEK [1] and SeDuMi [49].

3 The bond model

The bond model shown in Fig. 4 aims to mimic the cohesion

between particles. The subscript b indicates variables related

to the bond. The bond can resist tensile forces, shear forces

and rolling moments up to certain thresholds. If the limit of

tensile strength, the shear strength or the maximum rolling

moments of the bond is reached, the bond is considered to be

broken. After the bond fails, the interactions of particles turn

into the pure frictional contact. In addition, the elasticity of

the bond has been considered in the framework of contact

dynamics, which makes the model more realistic in predicting

the mechanical response of bonded granular geomaterials.

3.1 Normal force and associated elasticity

3.1.1 Tensile strength and associated elasticity

The maximum tensile force ft that the bond can resist is

controlled by the tensile strength of cementation material:

ft ¼ 2rhrt ð18Þ

where rt is the tensile strength of the cementation material.

The linear elastic response of the bond in the normal

direction can be viewed as a spring joining two particles, as

shown in Fig. 5. Thus, the local constitutive law between

the normal contact force and the deformation is:

gb � gb0 � � pIb
	
kN ð19Þ

where gb0 is the initial bond length, kN is the normal

stiffness, and gb is the bond length in the next time step:

gb ¼ g0 � nI0Dx ð20Þ

Incorporating (19) and (20) into the non-penetration

condition (8) leads to:

nI0
� �T

Dx� ðg0 � gb0Þ�CNp
I
b

ðpIb þ f It Þ½ nI0
� �T

Dx� ðg0 � gb0Þ � CNp
I
b� ¼ 0

ð21Þ

where CN ¼ 1=kN.

3.1.2 Conic programming formulations

The governing equations for bonded particles in the normal

direction are summarized as:

Fig. 3 Potential contacts by Delaunay triangulation

2r

0bg

ri rj
i j

bp

bq

bm
h

(a)

(b)

Fig. 4 Bond model—two particles i, j bonded at contact I (a) geom-

etry (b) intact bonds resist normal forces pb, shear forces qb and

rolling moments mb, gb0 and h are the initial bond length and the

width of bond, respectively. For two-dimensional plane strain, the

value of h is 1

bg0bg

I
bp

I
tf Tensile rupture

( )0
I I
bp n ( )0

I I
bp n

Fig. 5 Linear elastic law and tensile strength of bond
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�miDxi þ pIbn
I
0 ¼ �f i0

�mjDx j � pIbn
I
0 ¼ �f j

0

nI0
� �T

Dx� ðg0 � gb0Þ�CNp
I
b

ðpIb þ f It Þ nI0
� �T

Dx� ðg0 � gb0Þ � CNp
I
b

h i
¼ 0

pIb þ f It � 0

ð22Þ

For an n-particle system, the governing equations are

extended to

�MDxþ N0pb ¼ �f 0

NT
0Dx� ðg0 � gb0Þ�CNpb

ðpb þ f tÞ½NT
0Dx� ðg0 � gb0Þ � CNpb� ¼ 0

pb þ f t � 0

ð23Þ

where pb þ f t ¼ diagðp1b þ f 1t ; . . .; p
N
b þ f Nt Þ, pb ¼ ðp1b; . . .;

pNb Þ.
These equations constitute the first-order Karush–Kuhn–

Tucker (KKT) optimality conditions associated with the fol-

lowing optimizationproblem(see the ‘‘Appendix’’ for details):

min
Dx

max
pb

1

2
DxT �MDx� DxT�f 0

n o

þ DxTN0pb � ðg0 � gb0ÞTpb �
1

2
pTbCNpb


 �

subject to pb þ f t � 0

ð24Þ

Solving the min part of problem (24) gives the following

force-based problem:

maximize
pb

�1

2
DxT �MDx� ðg0 � gb0ÞTpb �

1

2
pTbCNpb

subject to pb þ f t � 0

�MDxþ N0pb ¼ �f 0 ð25Þ

Similarly, solving the max part of problem (24), the

equivalent displacement based problem can be obtained.

3.2 Shear force and associated elasticity

The shear strength of the bond is defined by a modified

Mohr–Coulomb model as indicated in Fig. 6. The shear

force threshold fs that the bond can resist is

fs ¼ cAI
b þ lbp

I
b ð26Þ

where c is the cohesion, AI
b is the contact area A

I
b¼2rIh, lb

is the internal friction coefficient of the bond, lb ¼ tanub

and ub is the microscopic friction angle.

Adopting the same principle in the DEM, the shear

forces and tangential deformation are updated in every time

step [48, 54, 58]. Therefore, the term accounting for the

shear forces and the associated moments needs to be added

to the objective function [28]. Moreover, the constraints

related to the shear strength have to be modified. Finally,

the following problem is derived:

min
Dx;Da

max
pb;qb

1

2
DxT �MDx� DxT�f 0

n o

þ DxT N0pb þ N̂0qb
� �

� ðg0 � gb0Þ
Tpb

�

� 1

2
pTbCNpb �

1

2
DqTbCTDqb

�

þ 1

2
DaT�JDa� DaT �m0

n o

þ DaTR0qb
� �

subject to pb þ f t � 0

qbk k� cAb þ lbpb ð27Þ

where qb are the shear forces, and a are the angles of

rotation.

In the above problem, both the normal deformation

CN = 1/kN and the tangential deformation CT = 1/kT are

considered.

3.3 Rolling resistance

The rolling resistance is defined as the maximum torque

that the bond can transmit. Following the cohesive bond in

[9, 22, 51], the rolling friction law is given by

sbk k� lrr pb þ ftð Þ ð28Þ

where sb is the maximum torque that the bond can resist.

The bond model that includes elasticity and rolling

resistance is

b

I
bp

sf

I
bcA

I
bq

I
tf

Fig. 6 Shear rupture criterion
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min
Dx;Da

max
pb;qb;s

1

2
DxT �MDx� DxT�f 0

n o

þ DxT N0pb þ N̂0qb
� �

� ðg0 � gb0ÞTpb
�

� 1

2
pTbCNpb �

1

2
DqTbCTDqb

�

þ 1

2
DaT�JDa� DaT �m0

n o

þ DaT R0qb þ sbð Þ
� �

subject to pb þ f t � 0

qbk k� cAb þ lbpb
sbk k� lrR pb þ f tð Þ ð29Þ

3.3.1 Optimality conditions

Following the procedure in the ‘‘Appendix’’, the KKT

conditions associated with (29) can be shown to comprise

the following sets of governing equations relating to

translational momentum balance:

�MDxþ N0pb þ N̂0qb ¼ �f 0 ð30Þ

rotational momentum balance:

�JDaþ R0qb þ sb ¼ �m0 ð31Þ

shear strength conditions:

cAb þ lbpb � qbk k � s1 ¼ 0; s1 � 0
diag(s1Þk1¼0; k1 � 0

ð32Þ

torque transmission conditions:

lrR pb þ f tð Þ � sbk k � s2 ¼ 0

diag(s2Þk2 ¼ 0; k2 � 0
ð33Þ

and kinematics incorporating the elastic deformation

characteristics:

NT
0Dxþ lbk1 þ lrRk2 ¼ ðg0 � gb0Þ þ CNpb

N̂T
0Dxþ R0Da ¼ CTDqb þ SgnðqbÞk1

Da ¼ SgnðsbÞk2
ð34Þ

where Sgn, and k1 and k2 are the sign function and

Lagrange multipliers, respectively. When the failure

criteria are not met, the value of kI1 and kI2 are zero

according to Eqs. (32) and (33). Regrading the kine-

matics, the obvious dilation described in [27] can be

found in Eq. (34) because of the associated sliding rule.

However, this may be viewed as an artifact of the time

discretization [27, 28, 41].

3.3.2 Force-based problem

Alternatively, it is possible to cast the problem into the

following force-based problem:

maximize �1
2
tT �M�1t� 1

2
rT�J�1r� ðg0 � gb0Þ

Tpb

� 1

2
pTbCNpb �

1

2
DqTbCTDqb

subject to tþ N0pb þ N̂0qb ¼ �f 0

rþ R0qb þ sb ¼ �m0

qbk k� cAb þ lbpb
sbk k� lrR pb þ f tð Þ

ð35Þ

where t and r are the dynamic forces and moments, �MDx
and �JDa, respectively.

This mathematical programming problem is solved by

the second-order cone programming solver- MOSEK [1].

The rotation cone is adopted to formulate elastic elements

in the objective function. The displacements are obtained

from the Lagrange multipliers associated with the equality

constraints.

3.3.3 Static problem

Omitting the dynamic forces and moments (i.e., r and t) in

the problem (35) gives the following static formulation:

maximize� ðg0 � gb0Þ
Tpb �

1

2
pTbCNpb �

1

2
DqTbCTDqb

subject to N0pb þ N̂0qb ¼ �f 0

R0qb þ sb ¼ �m0

qbk k� cAb þ lbpb
sbk k� lrR pb þ f tð Þ ð36Þ

In explicit DEM, the quasi-static state is simulated using

artificial damping and specified boundary conditions,

which requires additional calibration for the global and/or

local damping parameters. This may make the numerical

model complex and inaccurate [52]. In contrast, the static

problem can be directly formulated with implicit time

integration scheme [37]. This feature is a significant

advantage of the proposed method. The principle is

governed by the internal pseudo time rather than physical

time.

3.4 Criteria of bond creation and rupture

3.4.1 Creation of bonds

The particles assembly is first generated before creating the

bonds. If the initial gap g0 between two particles is less

than a certain length gint, a bond is created. This parameter

is of great importance in determining the microstructure of

the bonded material. For example, when gint is relatively

small, more bonds are created and so particle interlocking

is increased. Accordingly, the overall strength of the sim-

ulated medium is therefore increased [48].
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3.4.2 Rupture of bonds

There are three criteria for a bond to break: tensile strength,

shear strength and rolling resistance. Once one of these

local criteria is reached, the bond breaks. In other words, a

crack forms. The loss of the bond turns the contact of

bonded particles into a purely frictional one. Accordingly,

the local bond properties are set to zero. The corresponding

force-based problem is given by:

maximize �1
2
tT �M�1t� 1

2
rT�J�1r� gT0p

� 1

2
pTCNp�

1

2
DqTCTDq

subject to tþ N0pþ N̂0q ¼ �f 0

rþ R0qþ s ¼ �m0

qk k� lp

sk k� lrRp

ð37Þ

It is apparent that this formulation, without the torque

transmission, is identical to the problem (27) in [28].

4 Examples

In the following, the force-based static formulation was

implemented. The program for the bond model was first ver-

ified using three simple examples in which the numerical

results were compared to analytic solutions. The uniaxial and

biaxial compression testswere then used to examine the ability

of the proposed bond model in simulating the bonded geo-

materials. The effects of bonding on the mechanical behavior

of the particles assembly were investigated. We note that the

following numerical tests are distinct from the common DEM

models because the pure static formulations were employed.

The initial configurations of first three examples are

presented in Fig. 7. The radius of two particles is 6 mm

with a bond thickness of 1 mm. The local parameters listed

in Table 1 are used in the numerical test.

4.1 Tension test

Figure 8 shows the force–displacement response obtained

from tension test. The bond is subjected to pure tension, and

the tensile force is increased stepwise until bond breakage

occurs. The analytical solution of normal deformation for the

bond is obtained from Eq. (21). According to Fig. 8, the

normal elasticity of the bondmodel is completely reproduced.

4.2 Direct shear test

Figure 9 shows the results from direct shear test under varied

normal bond forces Pb = -10, 0 and 10 N. For the sake of

simplicity, rotational degrees of freedomwas not considered.

The linear elastic law in the tangential direction has been

successfully reproduced as shown in Fig. 9. The shear

strengths of the bond under varied normal forces Pb = -10,

0 and 10 N are computed as 42, 48 and 54 N, respectively,

which are exactly the same value as analytical solution.

4.3 Combined rolling compression test

This example is used to test the rolling resistance of the

bond. In the test, there are two types of rolling resistance:

(a) Tension test (b) Direct shear test (c) Combined rolling
compression test

Wall

Fig. 7 Initial configurations of numerical models

Table 1 Local parameters used in the test

Normal stiffness (MN/m) 8.0

Tangential stiffness (MN/m) 4.0

Internal friction coefficient 0.6

Interparticle rolling friction coefficient 0.1

Rolling friction coefficient between the particle and the wall 0.2

Cohesion (kPa) 4

Tensile strength (kPa) 2
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the bond between particles and particle-to-wall. When the

normal compressive force is less than 24 N, the maximum

torque under the static equilibrium is limited to the parti-

cle-to-wall type rolling resistance. In contrast for the larger

compressive force, the maximum torque that the bond can

resist is limited to rolling resistance of the bond model. The

analytical solution for this problem can be obtained from

Eqs. (13) and (28). In Fig. 10, the maximum torque pre-

dicted from analytical solutions has been successfully

reproduced by numerical simulations.

4.4 Uniaxial compression test

The previous three examples are used to validate the bond

model. In the following, the potential of the bond model for

the modeling of cemented geomaterials is investigated.

4.4.1 Sample construction

During sample construction, a static formulation for rigid

particles with frictionless contact was adopted. After

omitting the dynamic forces, the elasticity and shear forces,

problem (37) reduces to

maximize �gT0p

subject to N0p ¼ �f 0
p� 0

ð38Þ

The sample construction includes three procedures:

particle generation, compression and cementation. In the

particle generation phase, 7380 particles with radii

uniformly distributed within the range 0.3–0.6 mm were

randomly placed at the nodes of a square grid. As shown in

Fig. 11a, the length of the grid is 1.2 mm so that the

particles do not overlap.

In the compression phase, the upper horizontal wall was

moved downwards and the other walls were fixed. This

procedure was repeated until the required height of 12 cm

was reached. The initial porosity of the sample was 0.19.

In the cementation phase, the initial gaps g0 of all the

potential contacts were calculated. If g0 was less than a

length gint, a bond was employed for the contact. Fig-

ure 11b shows the obtained sample. The local parameters

used for the sample are listed in Table 2.

4.4.2 Rigid bond model

The bond model without elasticity was considered first,

i.e., kN = kT = ?. This formulation can be easily derived
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by setting CN = CT = 0 in the objective function in

problem (36). For the uniaxial compression test, the lower

boundary was fixed while the upper boundary was moved

downward.

The sample immediately broke down in one step with an

axial compressive stress of 1.14 GPa. In the next step, the

sample cannot support any further loading and its failure is

shown in Fig. 12. This result is peculiar to the nature of the

physical test, but reasonable in this numerical static test.

The sample was first densely compacted with rigid parti-

cles, while in the cementation phase, the pores of the

sample were filled with rigid cement. Finally, the sample

cannot bear any deformation, and the immediate failure

would be expected. Furthermore, because the analysis is

purely static and rigid particles are used, the external work

cannot be absorbed as kinetic or strain energy. As a con-

sequence, the sample collapsed in merely one step.

Although bonded granular materials with the rigid

cementation model can be created in the contact dynamics

framework proposed by [3, 9], the tree-like structure can-

not represent the real microstructure of the material and the

loading process on the sample may not be simulated in the

right way. It is well known that failure of a material is

generally a progressive process, accompanied by elastic–

plastic deformation. Thus, elasticity should be included as

in the following static numerical tests.

4.4.3 Elastic bond model

This example concerns uniaxial compression test on a rock

sample. The rock core sample was obtained from the tunnel

Äspö, and the uniaxial compression test was carried out in

the Hard Rock Laboratory (HRL) [24]. The sample is intact

without macroscopic fractures. The local properties of rock

were calibrated with the proposed method and listed in

Table 2. The numerical predictions of our model together

with the results from the Particle Flow Code (PFC;

[16, 42]) are shown in Fig. 13. In the static test, a stepwise

Table 2 Local parameters used in the simulations

Particles

Coefficient of friction 0.4

Coefficient of rolling friction 0.0

Normal contact stiffness (MN/m) 3.4 9 103

Tangential contact stiffness (MN/m) 3.4 9 103

Bonds

Length for creating bonds (mm) 0.06

Normal stiffness (MN/m) 7.9 9 103

Tangential stiffness (MN/m) 7.9 9 103

Coefficient of rolling friction 0.0

Friction coefficient 0.8

Cohesion (MPa) 1.95 9 102

Tensile strength (MPa) 1.44 9 102

Fig. 12 Failure of rigid bond sample after. The red lines between

particles indicate a bond breakage (color figure online)
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displacement increment is imposed on the specimen by the

top wall, while the bottom wall is fixed. The mean number

of iterations per time step is 66 using MOSEK program-

ming solver. The overall computation time of the uniaxial

compression test is 24.7 min using a personal computer

with the Intel Core-Dual 3.00 GHz CPU.

As we conducted the numerical simulation for the

same Äspö diorite sample, the peak strength and Young’s

modulus are in good agreement with the observed values

given in [24]. But for the post-peak behavior, the stress–

strain curve of the granular contact dynamics sample

tends to be more brittle than the PFC sample. The

accumulated number of microcracks from the two meth-

ods is compared in Fig. 13a. The progressive failure

process of the sample is shown in Fig. 13b. The cracks

are randomly distributed in the sample and their interac-

tion is not clear (Fig. 13b-I). According to [5, 36], at an

axial stress 88.5 % of the short-term peak strength, the

state I (Fig. 13b-I) is in an unstable cracking phase. A

macro-failure plane can be seen at the peak axial load

where most of microcracks were localized, as shown

in Fig. 13b-II. With increasing axial strain, the microc-

racks progressively coalesce until a persistent shear band

is formed (Fig. 13b-IV). Once the macro-failure plane

formed, the sample failed.

4.5 Biaxial compression test

The second example involves a biaxial compression test on

cemented sands. The sample has 6160 particles with an

initial porosity of 0.17. Figure 14 shows the initial sample

where the particles are colored in purple and gray to

show global deformation. Four movable rigid walls were

placed as the boundaries. The local properties used for the

cemented sand are shown in Table 3.

To achieve the specified confining stress in DEM, ser-

vomechanism algorithms for the moving walls have to be

developed. Even with this algorithm, the appropriate

velocities of the walls are still not easy to determine [6]. In

contrast, the force-based constraint for the specified con-

fining stress can be directly imposed on the sample in our

method.

If the confining force is applied to the sample in a single

step, the large force increment may cause large deforma-

tion and thus damage the specimen. In this study, the force

employed by the walls was gradually increased in five steps

to the specified confining stress.

Figure 15a shows the stress–strain relationship of the

cemented sand with a bond strength R of 10, 50 and

100 kPa, respectively. As expected, the peak shear

strength of the sample increases with increasing bond

strength. The strain softening behavior of the cemented

sands is apparent compared to the uncemented sample.

As for the volumetric response, the samples experienced

volumetric dilation after an initial contraction (Fig. 15b).

The initial contraction is greatest when the strength of

the bond is high. Since the boundary condition with rigid

walls can inhibit the free deformation of the specimen,

the post-peak behavior may not be realistic until the

problem is studied with a flexible boundary to model a

soft rubber membrane.

14
75

m
m

800 mm

σ3=200 kPaσ3

σ1

σ1

Four rigid walls,
μ=0, μr=0.05

Fig. 14 Setup of the biaxial compression test

Table 3 Local properties used for the biaxial compression test

Particles

Diameter (uniform distribution) (mm) 10–18

Coefficient of friction 0.3

Coefficient of rolling friction 0.05

Normal contact stiffness (MN/m) 60.0

Tangential contact stiffness (MN/m) 30.0

Bonds

Length coefficient of creating bonds (mm) 2

Normal stiffness (MN/m) 60.0

Tangential stiffness (MN/m) 30.0

Friction coefficient 0.5

Coefficient of rolling friction 0.05

Strength 1

R = c = rt (kPa) 10

Strength 2

R = c = rt (kPa) 50

Strength 3

R = c = rt (kPa) 100
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The bond breakage was recorded with red line segments

in the specimen as shown in Fig. 16. Significant defor-

mation and bond breakage are concentrated in two major

shear bands. It can be seen that several potential shear

bands formed at the peak deviatoric stress. As the shear

strain further increases, significant deformation and bond

breakage are mostly in one conjugate shear band. The

intense particle rotate, deformation and bond breakage are

consistently observed in the localization region, as shown

in Fig. 16.

In this numerical test, stepwise displacement,

c = 0.3 mm/step is applied to top and bottom walls. For a

series of biaxial compression test, the mean computation

time is 3.7 h using a server with 256 GB RAM and

Intel(R) Xeon(R) CPU E5-4617 0 @ 2.90 GHz. The

number of iterations per time step is around 56 using

MOSEK programming solver.

The sensitivity of displacement increment c on the

mechanical behavior of samples is studiedwith four different

values of 0.2, 0.3, 0.4 0.5 and 1.0 mm/step. The above

configuration for the biaxial compression test is employed

for the cemented sand with a bond strength R of 10 kPa. The

numerical results of biaxial compression test are shown in

Fig. 17. The results show that the influence of displacement

increment to the mechanics behaviors is insignificant. Fur-

ther studies on the effect of displacement increment
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Fig. 16 Numerical results obtained from biaxial compression results with R = 10 kPa. a distribution of bond breakage at peak deviatoric stress,

b distribution of bond breakage: strain = 12 %, c distribution of particles indicating the specimen deformation: strain = 12 %, d contour plot

indicating the relative magnitude of the rotation rate: strain = 12 %
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involving the crack development,material shear strength and

strain and stress fields may need to be carried out.

5 Conclusion

3In contrast to traditional DEM, implicit time dis-

cretization is adopted in developed granular contact

dynamics, so large time step can be adopted in the

model. Moreover, a static formulation can be directly

formulated by omitting dynamic forces and moments,

which is valuable for modeling common laboratory tests

such as triaxial compression test. In the current paper, a

bond model based on the granular contact dynamics

framework is proposed for cemented geomaterials. The

elastic behavior, tensile strength, shear strength and

torque transmission are considered in the model. Both

uniaxial compression and biaxial compression tests are

conducted to demonstrate its potential. The conclusions

are summarized as:

1. The traditional rigid granular contact dynamics for-

mulation is extended to include the elastic bond. The

formulation is more general than the common DEM

because it recovers the rigid bond model and pure

static problem.

2. Three failure criteria are employed in the proposed

bond model, respectively, defining the tensile, shear

and torsional strength. The tensile and shear

strength criteria are formulated based on the

modified Mohr–Coulomb failure criterion. The

torsional strength criterion is introduced based on

the rolling resistance model. The bond failure leads

to irreversible loss of bond strength. Unlike the

explicit DEM, quasi-static problems can be simu-

lated directly.

3. Rigidly bonded samples break down in merely one

step in the static test because the external work cannot

be absorbed as kinetic or strain energy in the sample.

An elastic bond is essential for the simulation of dense,

bonded granular geomaterials.
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Appendix: Optimality conditions for second-order
cone programs

We consider the min–max problem representing the elastic

bond model in the normal direction:

min
Dx

max
pb

1

2
DxT �MDx� DxT�f 0

n o

þ DxTN0pb � ðg0 � gb0Þ
Tpb �

1

2
pTbCNpb


 �

subject to pb þ f t � 0

ð39Þ

Following the procedure [4, 26, 55], the first-order

Karush–Kuhn–Tucker (KKT) optimality conditions
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associated with the problem (25) can be derived. The

inequality constraints are first converted into equality

constraints by the addition of positively restricted slack

variables s. Then, a logarithmic barrier function is added to

the objective function, which eliminates the need to

enforce the constraint s C 0 explicitly. Thus, the

equivalent modified problem is

min
Dx

max
pb

1

2
DxT �MDx� DxT�f 0

n o

þ DxTN0pb � ðg0 � gb0ÞTpb �
1

2
pTbCNpb

n o

þ b
X
I2C

ln sI

subject to pb þ f t � s ¼ 0

ð40Þ

where b is an arbitrarily small positive constant, and C is

the set of bonded contacts of the model. The standard

Lagrange multiplier technique can then be applied to solve

(40) according to:

L ¼ 1

2
DxT �MDx� DxT�f 0 þ DxTN0pb � ðg0 � gb0ÞTpb

� 1

2
pTbCNpb þ b

X
I2C

ln sI þ kT pb þ f t � sð Þ ð41Þ

where k are Lagrange multipliers. The stationary

conditions are given by:

oL

ox
¼ �MDx� �f 0 þ N0pb ¼ 0

oL

opb
¼ NT

0Dx� ðg0 � gb0Þ � CNpb þ k ¼ 0

oL

ok
¼ pb þ f t � s ¼ 0

oL

osI
¼ b

sI
� kI ¼ 0 ) b ¼ sIkI ; I 2 C

ð42Þ

The first set of equations is the equations of motion

including the normal forces in the bonds. The second set

of equations is the linear elastic response for the bond,

which is the modified non-penetration condition from the

original granular contact dynamics approach with rigid

particles. The third set of equations defines the tensile

strength of the bonds. The last equations (in the limit of

b = 0) ensure that the normal force of the bond is

calculated either by the described linear elastic law or by

the value of the tensile strength. Tensile ruptures make

the value of sI zero.
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12. Estrada N, Azéma E, Radjai F, Taboada A (2011) Identification

of rolling resistance as a shape parameter in sheared granular

media. Phys Rev E 84(1):011306

13. Ferellec J-F, McDowell GR (2010) A method to model realistic

particle shape and inertia in DEM. Granular Matter

12(5):459–467. doi:10.1007/s10035-010-0205-8

14. Gens A, Nova R (1993) Conceptual bases for a constitutive

model for bonded soils and weak rocks. Geotech Eng Hard Soils

Soft Rocks 1(1):485–494

15. Huang J, da Silva MV, Krabbenhoft K (2013) Three-dimensional

granular contact dynamics with rolling resistance. Comput Geo-

tech 49:289–298. doi:10.1016/j.compgeo.2012.08.007

16. Itasca Consulting Group, Inc. (2005) PFC3D, Version 3.1. Min-

neapolis, MN: ICG

17. Jean M (1999) The non-smooth contact dynamics method.

Comput Methods Appl Mech Eng 177(3):235–257

18. Jean M, Acary V, Monerie Y (2001) Non-smooth contact

dynamics approach of cohesive materials. Philos Trans R Soc

Lond Ser A Math Phys Eng Sci 359(1789):2497–2518

19. Jiang M, Leroueil S, Konrad J-M (2005) Yielding of

microstructured geomaterial by distinct element method analysis.

J Eng Mech 131(11):1209–1213

20. Jiang MJ, Yan HB, Zhu HH, Utili S (2011) Modeling shear

behavior and strain localization in cemented sands by two-di-

mensional distinct element method analyses. Comput Geotech

38(1):14–29. doi:10.1016/j.compgeo.2010.09.001

21. Jiang M, Shen Z, Wang J (2015) A novel three-dimensional

contact model for granulates incorporating rolling and twisting

resistances. Comput Geotech 65:147–163

22. Kadau D, Bartels G, Brendel L, Wolf DE (2002) Contact

dynamics simulations of compacting cohesive granular systems.

Comput Phys Commun 147(1):190–193

23. Kavvadas M, Amorosi A (2000) A constitutive model for struc-
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