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Abstract This paper deals with the hydromechanical

modelling of the initiation of failure in soils with particular

reference to landslides. To this end, localized and diffused

failure modes are simulated with a finite element model for

coupled elasto-plastic variably saturated porous geomate-

rials, in which the material point instability is detected with

the second-order work criterion based on Hill’s sufficient

condition of stability. Three different expressions of the

criterion are presented, in which the second-order work is

expressed in terms of generalized effective stress, of total

stress and thirdly by taking into account the hydraulic

energy contribution for partially saturated materials. The

above-mentioned computational framework has been

applied to study two initial boundary value problems: shear

failure of a plane strain compression test of globally

undrained water-saturated dense sand (where cavitation

occurs at strain localization) and isochoric grain matter,

and the onset of a flowslide from southern Italy due to

rainfall (Sarno-Quindici events, May 5–6 1998). It is

shown that the second-order work criterion applied at the

material point level detects the local material instability

and gives a good spatial indication of the extent of the

potentially unstable domains in both the localized and

diffused failure mechanisms of the cases analyzed, is able

to capture the instability induced by cavitation of the liquid

water and gives results according to the time evolution of

plastic strains and displacement rate.

Keywords Cavitation � Elasto-plasticity � Finite element

simulation � Landslides � Material instability � Multiphase

porous media � Second-order work criterion

1 Introduction

Landslides are often triggered by rainfall. On the one hand,

soil slopes can respond slowly to rainfall and move at very

low speeds, but they can dominate sediment yields and

landscape change for years or even millennia [45]. Slow-

moving landslides typically involve thick, relatively fine-

grained soils that yield large slip surface [21]. On the other

hand, due to the usual large extension of rainfall events,

hydrologically driven instability can be triggered over large

areas and frequently involves shallow soil deposit of dif-

ferent grading and origin [10]. A diffuse, flow type of

failure usually results from shallow slips [22]. Shallow,

rapid landslides often involve thin, sandy soils on steep

slopes; in this case, slope failure occurs abruptly with rapid

post-failure acceleration [21]. Considering the destruc-

tiveness of this type of landslides, the understanding and

the hydromechanical modelling of the mechanisms occur-

ring inside the source areas are fundamental issues for the

mitigation of the posed risk to life and facilities.

This paper focuses on hydromechanical conditions

governing the initiation of failure in geomaterials and more

in particular the onset of landslides in variably saturated

slopes.

There are two rising questions when dealing with this

matter: The first one concerns which approach to follow for

the numerical modelling of rainfall-induced landslides in
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order to predict the most realistic location and time of the

failure occurrence. The most common approach for the

numerical modelling of slope failure in engineering prac-

tice is to uncouple the fluid flow and slope stability prob-

lems and treat them in a sequential fashion. In this sense, a

seepage analysis is performed first (assuming a rigid solid

skeleton) for the calculation of the water pressure distri-

bution, which is then followed by a limit equilibrium

analysis for the slope stability problem, as, for example, in

[8]. However, the behavior of a soil slope under rainfall

conditions is fully coupled and closely related not only to

the distribution of pore water pressure but also to the stress

state during infiltration. Pore water pressure changes due to

rainfall infiltration and seepage and will lead to changes in

stress and consecutively deformation of the soil. In reverse,

stress changes will modify the seepage process, because

soil properties such as porosity, permeability and water

storage capacity are affected by the changes in stress.

Therefore, the seepage and stress–strain analysis have to be

coupled and strongly linked to unsaturated conditions

under rainfall (e.g., [3, 46]).

More exact solutions to the coupled hydromechanical

analysis are obtained when the soils in the slope are con-

sidered deformable in variably saturated conditions. For

this reason, in this work the modelling of rainfall-induced

landslides is considered as a coupled variably saturated

hydromechanical problem. For the numerical simulations,

the geometrically linear finite element code Comes-Geo

developed at the University of Padova, Italy, is used, in

which soils are considered as non-isothermal elasto-plastic

multiphase solid porous materials as developed in

[37, 39, 40] following the works of [26] and [17–19].

The second matter, which is addressed in this paper, is

the concept of material instability in multiphase geomate-

rials. As it is well known, slope failure is the ultimate

outcome of instability mechanisms acting within the soil

strata. These mechanisms can lead to a localized or diffuse

mode of failure. In fact, these are the two main types of

failure attributed to shallow rainfall-induced landslides: the

shear failure, meaning the formation of shear bands due to

strain localization which cause soil slips, and flowslide

(related sometimes to static liquefaction processes), with

no shear band formation resulting in flow-type failures

[31].

Although the first type of failure can be described using

localization theory, diffuse failure mode cannot be described

either by classical empirical methods or by plasticity theo-

ries [27]. Therefore, there is the need for a more generalized

criterion to be used which will be able to capture the

instability independently of the failure mode. To this end,

the second-order work criterion, based on Hill’s sufficient

condition of stability in elasto-plastic solids [20], has been

applied for multiphase porous elasto-plastic solids and is

being examined in this paper to study the stability of initial

boundary value problems. It consists in computing the sign

of the second-order work for each material point of the

domain, enabling to judge the potential instability of a

spatial domain in which a set of local negative values occur

and giving information for the detection of the onset of the

failure. The argument for that is that the second-order work

criterion is considered as a more generalized criterion since

it has been proved mathematically that it is the first bifur-

cation criterion to be reached along a loading path [23] with

respect to failure by divergence instabilities. What has been

proved to be mathematically valid is being tested also

numerically hereafter, on two different cases of multiphase

finite element analyses.

In the following, the mathematical model for non-

isothermal multiphase porous materials is summarized first.

Subsequently, the definition of the second-order work cri-

terion is reviewed and three different expressions are pre-

sented which could be used in the case of variably saturated

porous materials; the second-order work is expressed in

terms of generalized effective stress, of total stress and

thirdly by taking into account the hydraulic energy con-

tribution for the case of partially saturated soils. Finally,

the numerical results of two multiphase finite element

analyses are presented and discussed: Shear failure is being

studied through an example of a finite element analysis of a

plane strain compression test on globally undrained water-

saturated dense and isochoric sand [39], followed then by

the finite element analysis of a real case study from

southern Italy (Sarno-Quindici flowslide events due to

rainfall, May 5–6 1998).

2 Mathematical model

The mathematical model necessary to simulate the thermo-

hydromechanical transient behavior of fully and partially

saturated elasto-plastic porous media is developed in [39]

following the works by Lewis and Schrefler [26] and [42]

and using averaging theories by Hassanizadeh and Gray

[17–19]. For sake of brevity, only a summary of the

underlying physical model is presented here. For the

complete description of the model from its mathematical

formulation to the numerical implementation, the reader

can refer to the above-mentioned works of the authors.

The geomaterial is considered as a variably saturated

porous medium and is treated as a multiphase system

composed of a solid skeleton (s) with open pores filled with

liquid water (w) and gas (g). All constituents are assumed

to be immiscible and chemically non-reacting, except for

the gas which is assumed to behave as an ideal mixture of

dry air (non-condensable gas, ga) and water vapor (con-

densable one, gw).
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At the microscopic level, the solid constituents and the

liquid water are considered incompressible, while the gas is

compressible. At themacroscopic level, the porousmaterial is

modelled by a substitute continuum that simultaneously fills

the entire domain, instead of the real fluids and the solidwhich

fill only a part of it. In this substitute continuum, each con-

stituentp has a reduced density, which is obtained through the
volume fraction gpðx; tÞ ¼ dvpðx; tÞ=dvðx; tÞ, where dv is the
volume of the average volume element (representative ele-

mentary volume, REV) of the porous medium and dvp is the

volume occupied by the constituent p in dv. x is the vector of

the spatial coordinates and t the current time.

The following assumptions are made additionally, in the

mathematical model [26]: all fluids are in contact with the

solid phase, and the solid is deformable resulting in cou-

pling of the fluid, the solid and the thermal effects. The

constituents are isotropic, homogeneous and microscopi-

cally non-polar. Local thermal equilibrium among the

solid, gas and liquid phases is assumed. In the model, heat

conduction, heat convection, vapor diffusion, liquid water

flow due to pressure gradients or capillary effects and water

phase change (evaporation and condensation) inside the

pores are taken into account.

2.1 Macroscopic balance equations

The final model consists of four balance equations: mass

balance of the dry air, mass balance of the water species

(both liquid and vapor phase change is taken into account),

enthalpy of the whole medium (latent heat of the phase

change is considered) and the equilibrium equations of the

multiphase medium.

They are completed with an appropriate set of consti-

tutive and state equations, as well as some thermodynamic

relationships.

The governing equations of the model are expressed in

terms of the chosen state variables: gas pressure pg x; tð Þ,
capillary pressure pc ¼ pg � pw½ � [16] where pw x; tð Þ is the
liquid water pressure, temperature T x; tð Þ and the dis-

placement vector of the solid matrix u x; tð Þ. Pore pressure

is defined as compressive positive for the fluids, while

stress in the solid phase is defined as tension positive. The

macroscopic equations of the model are now summarized

[15, 26].

The equilibrium equation of the mixture in terms of

generalized Cauchy effective stress r0ðx; tÞ [41] assumes

the form:

div r0 � pg � Swpc½ �1ð Þ þ qg ¼ 0 ð1Þ

where qðx; tÞ is the density of the mixture, q ¼ 1� n½ �qs þ
nSwqw þ nSgqg with nðx; tÞ ¼ 1� gs is the porosity,

Swðx; tÞ and Sgðx; tÞ are the liquid water and gas degree of

saturation, respectively (Sw þ Sg ¼ 1; gw ¼ nSw;

gg ¼ nSg). qp is the microscopic or bulk mass density with

(p = s, w, g), g is the gravity acceleration vector and 1 is

the second order identity tensor.

The mass balance equation for the solid phase, the liquid

water and the water vapor is:

n qw � qgw½ � oSw

ot

� �
þ qwSw � qgw 1� Sw½ �½ �div ou

ot

� �

þ 1� Sw½ �n oq
gw

ot
� div qg

MaMw

M2
g

Dgw
g grad

opgw

opg

� � !

þ div qw
kkrw

lw
�gradðpgÞ þ gradðpcÞ þ qwg½ �

� �

þ div qgw
kkrg

lg
�gradðpgÞ þ qwg½ �

� �
� bswg

oT

ot
¼ 0

ð2Þ

where qgwðx; tÞ is the microscopic mass density of the

water vapor and k x; tð Þ ¼ Kwlw=ðqwgÞ is the intrinsic

permeability tensor of the porous matrix in saturated

condition (m2), with Kwðx; tÞ the hydraulic conductivity

tensor (m/s). krwðx; tÞ is the water relative permeability

parameter and lwðx; tÞ the dynamic viscosity of liquid

water, function of the temperature Tðx; tÞ. Similarly,

krgðx; tÞ is the gas relative permeability parameter and

lgðx; tÞ the dynamic viscosity of gas;

bswgðx; tÞ ¼ bs 1� n½ � Sgqgw þ Swqw
� �

, where bsðx; tÞ is the
solid cubic thermal expansion coefficient; Dgw

g ðxÞ is the

effective diffusivity tensor of water vapor (the diffusing

phase) in the gas phase (the phase in which diffusion

takes place) contained in the pore space, function of the

tortuosity factor, and Ma; Mw and Mgðx; tÞ are the molar

mass of dry air, liquid water and gas mixture, respec-

tively. In order to account for the diffusive–dispersive

flux of the vapor in the gas phase, Fick’s law is used,

while the advective flows are modelled with Darcy’s law.

The mass balance equation for dry air is:

nqga
oSw

ot

� �
þ qga 1� Sw½ �div ou

ot

� �

þ nSg
oqga

ot
� div qg

MaMw

M2
g

Dga
g grad

opga

opg

� � !

þ div qga
kkrg

lg
�gradðpgÞ þ qgg½ �

� �

� bswgq
ga 1� n½ � 1� Sw½ � oT

ot
¼ 0

ð3Þ

where, similarly, qgaðx; tÞ is the microscopic mass density of

the dry air andDga
g ðxÞ is the effective diffusivity tensor of dry

air in the gas phase contained in the pore space. Equations (2)

and (3) include the mass balance equation for the solid phase:
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on

ot
¼ 1� n½ �div ou

ot

� �
� 1� n½ �bs

oT

ot
ð4Þ

The enthalpy balance equation of the mixture is:

qCp

� 	
eff

oT

ot
þqwCw

p

kkrw

lw
�gradðpgÞþ gradðpcÞþqwg½ �

� �
� gradðTÞ

þqgCg
p

kkrg

lg
�gradðpgÞþqgg½ �

� �
� gradðTÞ

� div veffgradðTÞð Þ ¼� _mvapDHvap

ð5Þ

where qCp

� 	
eff

is the effective thermal capacity of the

porous medium, qwCw
p and qgCg

p are the specific heat of the

water and gas mixture, respectively, veff is the effective

thermal conductivity of the porous medium, and the right-

hand side term considers the contribution of the evapora-

tion and condensation. This balance equation takes into

account the heat transfer through conduction and convec-

tion as well as latent heat transfer and neglects the terms

related to the mechanical work induced by density varia-

tions due to temperature changes of the phases and induced

by volume fraction changes [26].

2.2 Constitutive relations

For the gaseous mixture which is assumed to be a perfect

mixture of two ideal gases (dry air and water vapor), the

ideal gas law is introduced. The equation of state of perfect

gas (the Clapeyron equation) and Dalton’s law are applied

to dry air (ga), water vapor (gw) and moist air (g). In the

partially saturated zones, the water vapor pressure pgwðx; tÞ
is obtained from the Kelvin–Laplace equation:

pgw ¼ pgws Tð Þ exp � pcMw

qwRT

� �
ð6Þ

where the water saturation vapor pressure pgwsðx; tÞ
depending only from the temperature T can be calculated

from the Clausius–Clapeyron equation or from an

empirical equation. The saturation Spðx; tÞ and the

relative permeability krpðx; tÞ are experimentally

determined functions of the capillary pressure pc x; tð Þ and
the temperature T x; tð Þ:
Sp ¼ Sp pc; Tð Þ; krp ¼ krp pc; Tð Þ; p ¼ w; g ð7Þ

The mechanical behavior of the soil skeleton is

described within the classical rate-independent elasto-

plasticity theory for geometrically linear problems. The

yield function F(x,t) restricting the effective stress state is

assumed in the form of the Drucker–Prager yield surface

with isotropic linear hardening/softening behavior and non-

associated plastic flow as developed in [39] and is used

here for the sake of simplicity:

F p0; s0; nð Þ ¼ 3aFp
0 þ s0k k � bF

ffiffiffi
2

3

r
cþ hn½ � ð8Þ

in which p0 ¼ 1
3
r0 : 1½ � is the mean effective Cauchy

stress, s0k k is the L2 norm of the deviator effective

Cauchy stress tensor r0 x; tð Þ, c x; tð Þ is the soil cohesion,

sum of the effective cohesion c0 xð Þ in water-saturated

conditions and the apparent cohesion pc tanub (where

ub xð Þ is the internal soil friction angle associated with the

capillary pressure), linked through the relation: c ¼ c0 þ
pc tanub [14]. aF xð Þ and bF xð Þ are two material

parameters related to the internal friction angle u xð Þ of

the soil

aF ¼ 2

ffiffi
2
3

q
sinu

3� sinu
; bF ¼ 2

6 cosu
3� sinu

ð9Þ

and h xð Þ and n x; tð Þ are the hardening/softening modu-

lus and the equivalent plastic strain variable, respec-

tively. The expression of the potential surface Q(x,t) is

defined in [38]; it is similar to Eq. (8), with the

parameters a and b dependent on the dilatant angle

instead of the angle of internal friction used in Eq. (9).

The return mapping algorithm and the consistent tangent

operator for the singular behavior of the Drucker–Prager

yield surface in the apex zone are developed in [39]

following [38] using the concept of multi-surface

plasticity.

2.3 Initial and boundary conditions

For the model closure, the initial and boundary conditions

are presented according to [39, 40]. The initial conditions

specify the full fields of the primary state variables at the

reference time t ¼ t0, on the whole domain and on its

boundaries as:

pg ¼ p
g
0; p

c ¼ pc0; T ¼ T0; u ¼ u0 on B [ oB ð10Þ

The boundary conditions can be of the first kind

(Dirichlet’s boundary conditions) prescribing the values

of the primary variables on oBp for t� t0:

pg ¼ p̂g on oBg; pc ¼ p̂c on oBc

T ¼ T̂ on oBT ; u ¼ û on oBu

ð11Þ

or of the third type (Cauchy’s type) prescribing the value of

the outward normal fluxes (including the convective fluxes)

on oBq
p:

808 Acta Geotechnica (2016) 11:805–825

123



nSgq
gavgs þ J

gw
d

� �
� n ¼ qga on oBq

g

nSwq
wvws þ nSgq

gwvgs þ J
gw
d

� �
� n ¼ qgw þ qw

þ bc qgw � qgw1
� �

on oBq
c

nSwq
wvwsDHvap � veffgradT

� �
� n ¼ qT þ ac T � T1ð Þ

þ er0 T4 � T4
1

� �
on oBq

c

r � n ¼ t on oBq
u

ð12Þ

where nðx; tÞ is the unit normal vector, pointing toward the

surrounding gas, and qgaðx; tÞ; qgwðx; tÞ,qwðx; tÞ; qTðx; tÞ
are, respectively, the imposed fluxes of dry air, water

vapor, liquid water and the imposed heat flux, tðx; tÞ is the
imposed traction vector related to the total Cauchy stress

tensor rðx; tÞ, qgw1 ðxÞ and T1ðxÞ are the mass concentration

of water vapor and the temperature in the far field of

undisturbed gas phase, eðxÞ is the emissivity of the inter-

face, r0 is the Stefan–Boltzmann constant, while acðxÞ and
bcðxÞ are the convective heat and mass exchange coeffi-

cients, respectively.

3 Finite element formulation

The governing equations of the problem are discretized in

space by means of the finite element method. Their dis-

cretized form is obtained by means of the Bubnov–Galer-

kin method for the discretization in space. The time

discretization is accomplished through a fully implicit

finite difference scheme. Because of the nonlinearity of the

system of equations, the solution is obtained with a New-

ton–Raphson type procedure. Monolithic approach is

adopted because of the strong coupling of Eqs. (1)–(5).

Details concerning the matrices and the residual vector of

the linearized equations system of the finite element model

can be found in [39].

4 Second-order work material instability criterion

Although the notion of failure in soils (or more generally

geomaterials) was long described as a perfect plastic limit,

it has been observed in practice that failure can occur well

before the Mohr–Coulomb criterion is met. This is due to

the non-associated behavior (the yield surface does not

coincide with the plastic potential, which leads to a non-

symmetric constitutive tensor) of cohesive and/or frictional

materials, such as soils. According to [12, 23] in case of

such materials, one can find an unstable domain strictly

inside the plastic limit envelope. What is more, material

instabilities can lead to diffuse modes of failure inside the

plastic limit condition, which are characterized by the lack

of localization patterns, and for this reason, it cannot be

detected neither by a plastic limit criterion nor by a

localization criterion [13, 33]. A characteristic example of

this kind of failure can be illustrated through an undrained

triaxial test on loose sand. If a small additional force is

applied at the stress peak value, a sudden failure occurs

with no localization pattern strictly inside the Mohr–Cou-

lomb plastic limit condition (Fig. 1).

Therefore, a need is motivated for a more generalized

criterion of instability. Within this context, we examine the

concept of the second-order work which was proposed by

Hill [20]. Hill connected the notion of stability with the

expression of the second-order work. At the material point

level, it is described as follows: A mechanical stress–strain

state is considered as stable if the second-order work is

strictly positive for any couple ðdr; deÞ linked by the rate-

independent constitutive relation:

8ðdr; deÞ 2 R2nn 0f g with de ¼ M : dr;
W2 ¼ dr : de[ 0

ð13Þ

where n is the dimension of the stress (or strain e) space
and M is the stiffness tensor.

Different interpretations of this criterion have been

provided by considerable amount of studies with the aim to

give to it an additional physical meaning. These studies

have led to the notions of controllability and sustainability.

The controllability notion, which was introduced by Nova

[34], related Hill’s criterion to the boundary and loading

conditions (control conditions) imposed on a porous solid.

Loss of controllability of a certain loading path can be

described as loss of uniqueness of the incremental solution.

Fig. 1 CIU stress path of saturated, loose sand [13]
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The notion of sustainability was introduced by Nicot

[30, 32] and relates the second-order work criterion to the

transition from a stationary regime to a dynamic one,

without any external input and accompanied with a burst of

kinetic energy. Loss of sustainability is connected to failure.

Based on the above concepts, the vanishing of the value

of the second-order work indicates potential instability. It

can then be considered as a generalized criterion because,

in case of non-associated materials, the second-order work

W2 (which first vanishes together with the determinant of

the symmetric part of the stiffness tensor M, [27]) becomes

zero before the vanishing of the determinant of the con-

stitutive tensor M and of the determinant of the acoustic

tensor [11, 23, 27].

Following this choice of using the second-order work

criterion (instead of the study of bifurcation at constitutive

level), there is still an open question regarding the type of

stress that should be used in Eq. (13) when studying the

stability of a multiphase porous body. There is the debate

on using effective or total stress; furthermore, in the case of

a partially saturated medium, the hydraulic contribution for

the stability of the porous body can be raised. In fact, the

stability of a material specimen is related to the skeleton

stability. The specimen collapses if the skeleton collapses.

However, the skeleton stability depends on the pore pres-

sures applied to the particles. The fluid phases are therefore

involved in the specimen stability, similarly to the so-

called weak phases, surrounding force chains, which

actively participate in the strength of a dry granular spec-

imen [43]. Discussing which stress expression should be

used is not the objective of the manuscript. Thus, three

different expressions are presented hereafter for the sec-

ond-order work, which could be used in the case of vari-

ably saturated porous materials.

Firstly, it is written in terms of effective stress, W2ðx; tÞ
W2 ¼ dr0 : de ð14Þ

where r0ðx; tÞ is the generalized Cauchy effective stress

[41], as it seems to be the most natural choice when

modelling variably saturated geomaterials.

Subsequently, the second-order work is expressed in

terms of total stress, W2totðx; tÞ:
W2tot ¼ dr : de ¼ dðr0 � pg � Swp

c½ �1Þ :
de ¼ dr0 : deþ dðSwpcÞdev � dpgdev
¼ W2 þ dðSwpcÞdev � dpgdev

ð15Þ

as the total energy of a porous system, from which the

second-order work criterion is derived, involves total

stress. Turning back to the physical origin of the second-

order work, stemming from an energy conservation equa-

tion that embeds force balance, the total stress stands as the

natural stress candidate.

Finally, the extended expression of the second-order

work for the case of a partially saturated medium is pre-

sented, W2unsatðx; tÞ, as it was proposed by [4]:

W2unsat ¼ dr0 : de� ndpcdSw ¼ W2 � ndpcdSw ð16Þ

In the numerical simulations that follow, the above

expressions are implemented in the finite element code

Comes-Geo [26, 37, 39, 40] to investigate the role of the

second-order work criterion on the detection of the material

point instability and the prediction of the failure

mechanism in light of the three expressions (14)–(16). To

this end, the second-order work, W2tot , Eq. (15), and W2unsat ,

Eq. (16), has been also written substituting the term dr0 :
de with W2 from Eq. (14).

The three expressions above are implemented in their

discrete form within the incremental approach used in the

finite element method for nonlinear problems, i.e., substi-

tuting the differential quantity dh with its discrete coun-

terpart Dh = hn?1 - hn, where n ? 1 is the current time

step and n is the previous time step. Their numerical values

will then be plotted in both the space and time domains,

and the results will be analyzed in Sects. 5 and 6 for the

two initial boundary value problems considered in this

work. It is worth mentioning that this computation does not

affect the results, as it is just a post-processing of variables

computed by the finite element algorithm.

5 Finite element analysis of a globally undrained
dense sand sample

In this section, a simulation of rapid desaturation (due to

cavitation) of an initially water-saturated porous media is

analyzed with the finite element code Comes-Geo

[26, 37, 39, 40]. The example was previously solved by

[39] and re-analyzed here. It is inspired by the globally

undrained plane strain biaxial compression test on water-

saturated dense sands where strain localization and cavi-

tation of the pore water (change of the liquid phase to

vapor) were experimentally observed [29]. The original

contribution in this section is the use of the second-order

work criterion to detect the unstable material points of the

domain and the prediction of the failure mechanism.

A rectangular sample of homogeneous soil (Hostun

dense sand) of 34 cm height and 10 cm width (Fig. 2) has

been discretized using a regular grid of 340 biquadratic

isoparametric finite elements (with the dimension of the

finite elements similar to that of the experimental shear

band, to fix the width of the localized zones) with reduced

Gaussian (2 9 2) integration scheme (widely used in

localization analysis). The material is initially saturated

with liquid water; hydrostatic distribution of water
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pressure, with the free surface located at the top of the

specimen, and geostatic effective stress are assumed as

initial conditions. These initial conditions are obtained in

Comes-Geo computing the hydromechanical state in

equilibrium with the given boundary conditions and the

gravity loads.

The boundary of the sample is impervious and adiabatic.

Imposed vertical displacements are applied on the top

surface with the constant velocity of 1.2 mm/s until strain

localization is observed. Vertical and horizontal displace-

ments are constrained at the bottom surface. Plane strains

and quasi-static loading conditions are assumed.

The initial temperature in the sample is constant and

fixed at the ambient value (i.e., 20 �C). Gravity accelera-

tion is taken into account during the computation (Eqs. 1–

3, 5). The mechanical behavior of the solid skeleton is

simulated using the elasto-plastic Drucker–Prager consti-

tutive model with isotropic linear softening behavior and

non-associated plastic flow. The material parameters used

in the computation are listed in Table 1. In the analysis, the

dilatant behavior of dense sands is simulated selecting a

positive value of the angle of dilatancy (w = 208).
The results of the simulation after 27 s of loading are

presented. The accumulation of plastic strains can be

observed in narrow zones (shear bands) where the contour

of the equivalent plastic strain (i.e., the L2 norm of the

plastic strain tensor) is depicted (Fig. 3a); it can be noted

that the shear bands are not centrally located in the spec-

imen because they develop from the lower corners, which

are the zones with higher stress concentration due to the

initial geostatic stress, the vertical displacement load

applied to the top surface and the constraints applied to the

bottom surface [39]. Other two minor shear bands develop

in the upper part of the specimen. The contour of the

second-order work, W2 (discretized Eq. 14), is presented in

Fig. 3b, where only the nil and negative values are plotted.

As can be observed, the unstable zones (W2 � 0) are

detected inside the shear bands. Subsequently, in Fig. 3c,

the positive values of the volumetric strains, which are due

to the dilatant behavior of the dense sand in plasticity, are

plotted and it is observed that they are also detected within

the shear bands where the equivalent plastic strains are

accumulated. Consequently, pore water pressure decreases,

up to the development of capillary pressure (Fig. 4a).

Subsequently, desaturation in the strain localization zones

develops (Fig. 4b), as experimentally observed [29], due to

the formation of a vapor phase as the water pressure

decreases below the water saturation pressure

(pgws ¼ 2338:8 Pa at T = 20 �C). This effect is captured by
the model, because of the coupling between the thermo-hy-

dro and mechanical parts, as it is shown in Fig. 4c, with the

vapor phase appearing only inside the dilatant plastic zones.

Finally, the contour plot of the second-order work

written in terms of effective stress, W2 (Eq. 14; Fig. 3b), is

compared with the contour of the second-order work

written in terms of total stress, W2tot (Eq. 15; Fig. 5a), and

taking into account the hydraulic energy contribution,

W2unsat, (Eq. 16; Fig. 5b). The pattern of the shear band is

quite well detected in all three cases, with similar lower

values, even if it is observed that the whole shear band

cannot be captured (see Fig. 3a). In the case of the

expression W2 in terms of effective stress, slightly more

unstable points are detected and even lower values are

reached according to the results.

Hereafter, the evolution of the second-order work W2, of

the water saturation degree, of the equivalent plastic strain,

Impervious 
and 

adiabatic 
boundary 

Imposed vertical displacements (1.2 mm/s)

34
 c

m
 

10 cm

Fig. 2 Description of the geometry, boundary and loading conditions

Table 1 Material parameters assumed for dense sand [39]

Definition Label Dense sand

Solid grain density qs (kg/m3) 2000

Young’s modulus E (Pa) 3.0E ? 07

Poisson’s ratio m (–) 0.4

Friction angle u (�) 30.0

Cohesion in water-saturated conditions c (Pa) 5.0E ? 05

Angle of dilatancy w (�) 20

Softening modulus h (Pa) -1.0E ? 06

Hydraulic conductivity k (m/s) 5E-7

Initial porosity n (–) 0.2
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of the capillary pressure and of the volumetric strain is

presented at the Gauss points of four different elements

(Fig. 6): at the center of the specimen (element 105), near

the base where the shear band initiates (element 20), in the

elastic zone (element 27) and at the top of the shear band

(element 162, where the minimum values of the equivalent

plastic strain are depicted). The location of the Gauss

points is shown in Fig. 6a, within the contour of equivalent

plastic strain drawn in a lower part of the specimen.

It is observed that the evolution of the equivalent plastic

strain starts after 7 s of loading (Fig. 6d) and, consequently,

the volumetric strain becomes positive due to the dilatant

plastic behavior of the material (Fig. 6f). Negative value of

the volumetric strain is observed only for the point in the

elastic domain (element 27, Fig. 6f). At the same time, the

capillary pressure starts to increase. Positive values for the

capillary pressure greater than the air entry value (equal to

2.0 kPa), which correspond to desaturation, are only

obtained later on at the material points of elements 20 and

105 located within the plastic zones which cavitates

(Fig. 6e). For the same elements (105 and 20), the second-

order work (in terms of effective stress, W2) at the material

Fig. 3 Numerical results after 27 s of loading (values plotted at the Gauss points): a equivalent plastic strain contour (–); b negative values of

the second-order work W2 contour (Pa); c positive values of the volumetric strain contour (-)

Fig. 4 Numerical results after 27 s of loading (values plotted at the nodal points): a capillary pressure contour (Pa); b water degree of saturation

contour (–); c vapor pressure contour (Pa)
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point level becomes negative, starting from 15 s as shown in

Fig. 6b, after the development of a certain amount of plastic

strain.

A comparison of the results obtained from the different

expressions derived for the second-order work (Eqs. 14–

16), at the material point of the element 105, is shown in

Fig. 7a. As it can be seen, the results of the three expres-

sions are quite similar. A closer look shows that the

expression of the second-order work written in terms of

effective stress (W2) and the one accounting for the par-

tially saturated conditions (W2unsat) gives the same results

until the point of desaturation (after 24 s of loading). After

that point, W2unsat gives slightly higher values. The second-

order work in terms of total stress (W2tot) becomes zero

slightly after W2 (at 17 s of loading) and obtains greater

values comparing to the other two expressions.

What is more important is that the comparison with

Fig. 6 identifies four zones: a first stable zone during the

elastic behavior, a second zone in which the second-order

work decreases down to negative values when plasticity

occurs, a third zone in which the second work increases

when capillary pressure develops up to cavitation and

finally, a fourth zone in which the second work decreases

rapidly because of cavitation.

The results of the three expressions are compared in

Fig. 7b and c, where the difference of the W2unsat and of the

W2tot relative to W2 is plotted. The difference

W2unsat - W2 (Fig. 7b) is slightly positive only after the

moment of desaturation, showing that W2 is slightly more

negative than W2unsat because the term –ndpcdSw is always

positive (or nil in water-saturated conditions, see Eq. 16). It

is observed that also the difference W2tot - W2 is positive

(Fig. 7c), but the time histories of the two variables are

quite similar. Then, Fig. 7d compares W2tot with W2unsat

showing similar trends of Fig. 7c.

Finally, the von Mises constitutive model has been also

tested on the same analysis. As this model is reduced from

the Drucker–Prager one, Eq. (8), by setting the coefficients

aF and bF to zero and one, respectively, and assuming

associated plastic flow, the values of the elasto-plastic

model parameters (Young’s modulus, Poisson’s ratio, ini-

tial yield and softening modulus) are those reported in

Table 1. Also the values of the parameters for the porous

material (solid grain density, hydraulic conductivity and

porosity) are those of Table 1. In this case, it is observed

that the second-order work W2 captures the whole shear

band (Fig. 8b) and that the equivalent plastic strain starts

appearing at the same time step with the first negative

value of the second-order work at the material point level

(Fig. 8c). This is explained by the fact that von Mises

plasticity considers associated plastic flow; in the case of

associated plasticity, since the tangent stiffness matrix

M of the solid is symmetric, the second-order work crite-

rion (det Ms = 0) will give the same results as the limit

criterion (det M = 0), [13].

In summary, the analysis of the strain localization test

simulated in this section shows that the three expressions of

the second-order work (Eqs. 14–16) give similar results in

terms of spatial and temporal distribution, especially for

W2 and W2unsat.

Moreover, the second-order work criterion is able to

capture the instability induced by cavitation of the pore

water. The comparison between the results obtained from

the Drucker–Prager and the von Mises constitutive model

evidences the role of the volumetric plasticity, which

delays instability up to the development of a certain

amount of plastic strains, because the first indication of

instability (negative second-order work) is obtained later

than the beginning of the plastic strains.

6 Finite element analysis of the Sarno flowslide

At the beginning of May 1998, landslides of the flow type

occurred along the slopes of the Pizzo d’Alvano carbonate

massif (Campania region, southern Italy) because of a

severe rainfall event throughout the area [5, 9]. The case

addressed in this section occurred on May 5, 1998, and

constitutes one of these hundred slope instability events. In

the sample area shown in Fig. 9, the section A–A has been

analyzed which is of 400 m length, with a variable thick-

ness between 2 and 5 m and composed of 3 types of

materials: upper ashy, pumice and lower ashy.

Fig. 5 Numerical results of the second-order work (Pa) after 27 s of

loading (values plotted at the Gauss points): a in terms of total stress

W2tot; b expression for partially saturated soils W2unsat

Acta Geotechnica (2016) 11:805–825 813

123



The values of the mechanical and hydraulic properties of

each material layer which were used in the analysis are

summarized in Table 2. These values were selected in

agreement with [1, 44]. From the list of the material

parameters, we can deduce that the pumice layers should

be the first collapsible layers because of the lower value of

cohesion in water-saturated condition and Young’s modu-

lus; they are also those with the higher permeability, and

hence, the liquid water infiltrated with the rainfall and from

the bedrock will penetrate easier and faster in the pumice

layers, reducing their cohesion in unsaturated condition.

The rain gauges located at the toe of Pizzo d’Alvano

massif recorded a cumulated rainfall value of more than

160 mm, for the period April 27–May 5, 1998. The daily

rainfall for the analyzed period is shown in Fig. 10.

However, according to [7], the cumulated rainfall must

have been higher than the one measured at the toe, as the

rain gauges which were installed at the top of the massif

frequently gave higher values.

For the discretization of the geometry of the slope

(Fig. 9), a rather coarse mesh has been used (Fig. 11),

composed of 1565 nodes and 480 eight node quadrilateral

isoparametric elements with a Gaussian integration of 3 x 3

order. In Fig. 11b, the elements at toe are presented as an

example of the spatial discretization adopted in the com-

putation; the size of these elements is variable in the range

Fig. 6 a Material points location; b evolution of the W2 (Eq. 14); c of the water saturation degree; d of the equivalent plastic strain; e of the

capillary pressure; f of the volumetric strain, at these points
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0.11–0.34 m in height and about 9 m in length. This

choice, with high aspect ratio, was made on the base of

reducing the computational cost (min 2 h-max 52 h/day

of rain) because the hydromechanical behavior (water flux

and displacements) develops mainly along the axial

direction (moreover, it is also observed that the numerical

solution is convergent and consistent with the flowslides

observed in situ, as described below in this section). When

meshing the geometry of the stratigraphic section of Fig. 9,

the toe of the slope was cut with a vertical side to avoid the

generation of highly distorted finite elements in the toe

region (see Fig. 11c).

Vertical and horizontal displacements are constrained at

the bottom surface, which is also assumed impervious. The

vertical boundary at toe of the discretized domain is not

constrained to displacements, because it can move with the

deformation of the slope, as can be seen in the Fig. 11c,

and similarly, it is assumed impervious because the water

flow at toe at the occurrence of the flowslide is unknown.

This condition is realistic up to the saturation of the

thickness of the slope at toe; then, when the condition of

water saturation is reached, it overestimates the liquid

water accumulation at toe and represents an upper bound

for the numerical solution.

This choice can be reasonable as a first approximation

and influences the numerical solution only during the 8th

day of rain; during this period, the failure at toe of the

slope was observed in situ. In fact, the numerical com-

putation shows that: (1) the displacement of the vertical

boundary at toe of the mesh remains very small and the

behavior of the materials up to the first third of the 8th

day of rain remains in the elastic regime (Fig. 18a); (2)

the saturation of the thickness at toe occurs during the 8th

day of rain (Fig. 19b) at which, simultaneously, the

computed displacements increase continuously with high

rate (Fig. 18a).

As a first step of the simulation, the stress state is

computed in equilibrium with the gravity load, the

boundary conditions and the initial hydrothermal condi-

tions (Fig. 12), which, because of the low thickness of the

slope, are a uniform capillary pressure of 10 kPa (reason-

able value for the slope in the days before the rainfall,

which were not rainy—see Fig. 10a), a uniform gas pres-

sure at atmospheric value of 101.325 kPa and a uniform

temperature at ambient value of 293.15 K.

After applying the rainfall load history, the results at the

end of May 6 are presented below. In Fig. 13, it is observed

that the displacements are mainly concentrated at the lower

Fig. 7 a Comparison between the results obtained from the three different expressions of the second-order work (Eqs. 14, 15, 16) in the middle

of the shear band; b evolution of the W2unsat - W2 difference; c evolution of the W2tot - W2 difference; d evolution of the W2tot - W2unsat

difference
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part of the slope (near the toe, affecting a zone of 15 m

length), with a maximum value of about 2 m.

The displacements are due to the accumulation of the

plastic strain at the toe, as it is presented in the contour plot

of the equivalent plastic strain variable on Fig. 14. In

particular, as it was expected, the higher values are

detected within the pumice layers which are the less

resistant and the most permeable. The extent of the plastic

zone and of the zone of displacements coincides with the

zone of the increased degree of saturation, thus showing

clearly the localized effect of the infiltrated water.

Apart from the localized effect at the lower portion of the

slope, where the upslope groundwater flow is collected, the

multiphase analysis reveals also the effect of the temporary

spring from the bedrock observed after the event [6]. To this

end, a flux condition was imposed at the basis of the pyro-

clastic deposits (Fig. 9, central part of the slope) with a

volumetric inflow rate equal to 2.893 m3/s from May 2.

The results presented in Figs. 15 and 16 at the end of

May 5 highlight the important role of the local water cir-

culation inside the bedrock showing, in particular, that the

area around the spring zone has been saturated (Fig. 16b)

causing loss of soil strength and development of plastic

strains at the base of the pyroclastic soils (Fig. 16a). This

leads to the increase in the displacements (Fig. 15a, b),

sliding and instabilizing of this zone (Fig. 16a, c, respec-

tively) earlier than at the toe, as observed in situ during the

flowslide events. These results are confirmed by the anal-

ysis of the W2 value (Eq. 14) showing that the strongest

indication of W2 at the outlet occurs 5 h before the toe (the

white regions in Fig. 16c represent zones with value of W2

larger than -1.0E-10 Pa).

In order to understand better the main failure mechanism

at the toe of the slope, we present hereafter the evolution of

the above contour quantities in time, as this was captured

on the different nodes (Fig. 17).

The calculated surface displacements, which are dis-

played in Fig. 18a, indicate a strong and continuous

increase in nodal displacements during the 8th day of rain

infiltration (May 6th) when the slope approaches failure. At

the same time, large irreversible deformations occur at the

toe of the slope with the largest values to be detected on the

layers of the pumice (nodes 7, 15) as expected due to its

low strength.

The contour of the equivalent plastic strain at the moment

of failure is mainly due to the fact that by that time this zone

has become fully saturated as it can be observed from the

Fig. 19a. The evolution of the water table starts from the

bottom on the 4th day (node 3) until it reaches the surface

layers (nodes 19, 15) at the beginning of the 8th day.

This allows us to understand and analyze the mechanical

response of the slope to rain infiltration: With increasing

water content, the capillary forces acting between the soil

particles decrease up to saturation of the pores (Fig. 19a)

and pore water pressure develops (Fig. 19b). This de-

bonding effect of wetting is taken into account in the model

through the effective stress in the form r0 ¼ rþ
pg � Swpc½ �1 [41], which decreases during rain infiltration,

and as a consequence, the soil reduces its strength. When

the point of significant excess pore water development is

reached, there is little or no effective confining stress acting

on the soil and the soil state may approach a zone of

instability in which the shear strength decreases. Fig-

ure 20a, b describes this phenomenon in particular in the

pumice layers (nodes 7 and 15), where it is observed that

the capillary pressure (negative relative water pressure)

vanishes up to the development of liquid water pressure

(Fig. 19b); the mean pressure decreases down to zero and

the deviatoric stress starts to decrease, suggesting a prob-

able achievement of liquefaction (this state is then not

described by the Drucker–Prager constitutive model

adopted in this simulation because the loss of stiffness due

to liquefaction is not modelled and the mean pressure starts

to increase—Fig. 20a). This point would merit further

Fig. 8 Numerical results after 0.77 s of loading using the von Mises

constitutive model: a equivalent plastic strain contour (.); b nil and

negative values of the second-order work W2 (Pa) contour; c evolution
of the equivalent plastic strain and of W2 in the middle of the shear

band
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investigation using a more advanced constitutive model

able to describe the liquefaction state in soils both at stress

and at stiffness level (e.g., the Pastor–Zienkiewicz model

[35] and its extension to variably saturated conditions

[2, 28]).

As far as the results of the second-order work W2 are

concerned, at the beginning of May 6 (8th day) we have the

strongest indication of instability at the toe as shown in

Fig. 21a. The negative values are concentrated in the

pumice layers, at the upper ashy soil and at the base of the

toe affecting a zone of about 21 m in length.

In Fig. 21b, c, the evolution of the second-order work

W2 (Eq. 14) is plotted in comparison with the evolution of

the displacement rate and of the equivalent plastic strain at

the material point level of the lower pumice layer (a gauss

point of element 281, Fig. 21a, close to node 7 in the lower

pumice layer, Fig. 17). It is observed that the second-order

work W2 becomes negative during the sharp increase in the

displacement rate (Fig. 21b and zoom up in Fig. 21d) and

the continuous development of plastic strain (Fig. 21c) and

displacement (Fig. 18a). This behavior is observed also in

other points, e.g., in a Gauss point at 4.5 m on the left of

node 7. Few points of Fig. 21b, c deviate from the averaged

interpolation line of the numerical results, but the general

trend is not modified. It is observed also in the analysis of

this section that the indication of the potential local insta-

bility from the W2 comes later (difference of almost one

day) than the beginning of plastic strains development,

Fig. 9 Field site plan geometry and stratigraphy of the section A–A [7]

Table 2 Geotechnical characterization of soil layers

Definition Label Lower Ashy Upper Ashy Pumice

Solid grain density qs (kg/m3) 2393 2169 2039

Young’s modulus E (Pa) 5E ? 05 4E ? 05 2E ? 05

Poisson’s ratio m (–) 0.316 0.294 0.30

Friction angle u (�) 32.0 36.0 37.0

Friction angle associated with capillary pressure ub (�) 25.0 25.0 25.0

Cohesion in water-saturated conditions c (Pa) 4.7E ? 03 4.7E ? 03 3.3E 1 02

Angle of dilatancy w (�) -4.75 -5.5 5

Softening modulus h (Pa) 6.5E ? 04 8.0E ? 04 1.1E ? 04

Hydraulic conductivity k (m/s) 1E-06 1E-05 1E204

Initial porosity n (–) 0.664 0.584 0.69
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similarly to what is observed for the strain localization test.

It can be also seen that the contour plot area of negative

second-order work (Fig. 21a) coincides with that of the

equivalent plastic strain at the toe of the slope (Fig. 14a)

and the magnitude is greater than that corresponding to

high displacements (Fig. 13a).

Finally, the numerical results of the second-order work

W2tot and W2unsat as expressed from Eqs. (15) and (16),

respectively, are presented in Fig. 22. When compared with

the contour plot of the second-order work in terms of

effective stress W2 (Fig. 21a), it can be observed that the

results of all the expressions are similar, especially for the

part of the slope which is saturated, with a greater extent for

the W2unsat variable (Fig. 22b). The comparison of the val-

ues between them shows that they are slightly different, with

the expression of the second-order work accounting for the

partially saturated conditions (W2unsat) to give lower values.

7 Conclusion

In this work, the finite element modelling of two initial

boundary value problems in geomechanics has been con-

sidered as a coupled variably saturated hydromechanical

28 April: 40 mm/24h 

29 April: 8 mm /24h 

30 April –1-2 May: 5 mm /24h

3 May: 0 mm /24h 

4 May: 40 mm /24h 

5 May: 80 mm /24h 

(b)(a)

Fig. 10 a Rainfall recorded at the toe of Pizzo d’Alvano massif [7]; b rainfall loading function on the upper surface

(a) (b)

(c)

Fig. 11 a Discretization of the section A-A; b finite element discretization at the basis of the slope; c stratigraphic section of the slope at toe. The
vertical line indicates the vertical boundary of the mesh at toe (Fig. 11b)
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problem. Therefore, a multiphase model for elasto-plastic

porous media has been used for the analyses, in conjunc-

tion with the second-order work criterion based on Hill’s

sufficient condition of stability. In particular, this mod-

elling framework has been applied for the finite element

analysis of plane strain compression tests of water-satu-

rated dense sand and isochoric grain matter, where strain

localization is observed, and of the failure initiation of a

well-documented flowslide (Sarno-Quindici events, Italy,

May 5–6, 1998).

The numerical results have pointed out that a sufficiently

general coupled model for multiphase geomaterials is

capable of modelling a variety of phenomena as strain

localization in laboratory tests and the initiation of flow-

slides, giving results in agreement with experimental or

in situ observations, and can be a powerful tool for the

understanding of the triggering mechanisms during the

progressive localized or diffused failure (in the first case, a

regularization procedure should be introduced for mesh

objectivity upon mesh refinement, using, e.g., local or non-

Fig. 12 Distribution of the deviatoric stress after the equilibrium with the initial and boundary hygro-thermal conditions

Fig. 13 a Displacement contour (m); b displacement vectors at the end of May 6 (lower part of the slope)
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local visco-plasticity as in [25], but this topic is beyond the

scope of this work. In this paper, the width of the shear

band has been fixed by the width of the finite element, with

dimension similar to that of the experimental shear band).

What is more in this work is that the second-order work

criterion, implemented in a finite element code for multi-

phase geomaterials (Comes-Geo, in our case), has been

used in the simulations at the material point level to detect

the zones with material point instability in the two cases

mentioned above. Three different expressions have been

presented, which could be used in case of variably satu-

rated porous materials: the second-order work expressed in

terms of effective stress, of total stress and thirdly by

taking into account the hydraulic energy contribution [4]

for partially saturated soils.

The finite element results have shown that the set of

the local negative values of the second-order work com-

puted from the three expressions gives a good indication

of the spatial extent of the potentially unstable domains

and is consistent with the spatial and time evolution of

variables that are adopted to detect the occurrence of

localized or diffuse unstable zones as the equivalent

plastic strain and the displacement and its rate; all

expressions seem equivalent, but local values and also

spatial extents are different, as expected, with a slightly

better agreement for the expression of the second-order

Fig. 14 a Equivalent plastic strain (–); b water saturation (–) contour at the end of May 6 (lower part of the slope)

Fig. 15 a Displacement contour (m); b displacement vectors at the end of May 5 (spring zone)
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work in terms of effective stress, W2, and taking into

account the hydraulic energy contribution, W2unsat. The

numerical results indicate also that the second-order work

criterion detects the local instability associated with cav-

itation of the pore water.

To extend these conclusions to the evaluation of the

instability of the entire soil mass (the global domain), the

value of the second-order work obtained by integration on

the whole physical domain has to be computed. If this

global value is negative, then entire domain is unsta-

ble [24, 27, 36] and the global value plays the role of a

safety factor (see [36] in case of single phase material).

When local negative values are obtained with a positive

global value, the criterion indicates that the whole slope is

still globally stable, possibly approaching to a properly

unstable state; in this case, a limited zone with local neg-

ative values can indicate local instability and can also be an

indication of a possible local failure mechanism.

Further research on this criterion is encouraged, in

particular to investigate how this criterion can be related to

the global instability and to combine the second-order work

Fig. 16 a Equivalent plastic strain (-) contour; b water saturation (–) contour; c second-order work W2 (Pa) contour at the end of May 5 (spring

zone)

Fig. 17 Node location for the analysis at the lower part of the slope
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criterion with the results stemming from the bifurcation

analysis for multiphase materials. This is necessary to

evaluate separately the contribution of the hydro (capillary

pressure/degree of saturation) and mechanical parts (stress/

strain). Also the use of advanced constitutive models for

the solid skeleton is encouraged, to take into account the

Fig. 18 a Evolution of the displacements (m); b the equivalent plastic strain (–) at the lower part of the slope

Fig. 19 a Evolution of the water saturation (–); b the relative water pressure (kPa) at the lower part of the slope

Fig. 20 a Evolution of the mean stress (kPa); b deviatoric stress (kPa) at the lower part of the slope
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Fig. 21 a Second-order work contour in terms of effective stress at the beginning of May 6th (lower part of the slope); comparison between the

evolution of the second-order work W2 and the displacement rate b; and the equivalent plastic strain c, at the material point level in the lower

pumice layer at toe. d Comparison between the evolution of the second-order work W2 and the displacement rate for a Gauss point close to node

7—zoom up of Fig. 21b; e zoom up for a Gauss point at 4.5 m on the left of node 7 at the material point level in the lower pumice layer at toe
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huge variety of the constitutive response of the geo

materials.
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