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Abstract Time-dependent response of deep tunnels is

studied considering the progressive degradation of the

mechanical properties of the rock mass. The constitutive

model is based on a rock-aging law for the uniaxial

strength of the rock and for the Young’s modulus. A semi-

analytical solution is developed for the stresses and dis-

placements around a deep circular tunnel taking into

account the face advance. The evolution of the plastic and

damage zones over time is determined. Numerical exam-

ples are presented for the case of Saint-Martin-La-Porte

access adit in France of the Lyon–Turin Base Tunnel. The

computed results which are compared with the field data in

terms of the convergence of tunnel wall and of the dis-

placements inside the rock mass monitored by multi-point

extensometers show the efficiency of the approach to

simulate the time-dependent deformation of a tunnel

excavated in squeezing ground. Simple relationships are

proposed to evaluate the parameters of the constitutive

model directly from those of the empirical convergence

law presented in previous work.

Keywords Closed-form solution � Rock degradation �
Squeezing ground � Time-dependent behavior � Tunnel

List of symbols

ðr; hÞ Polar coordinates

ðrr; rhÞ Radial and hoop stresses

ðer; ehÞ Radial and hoop strains

ur Radial displacement

r0 Far-field vertical stress

k Deconfinement rate used to model the

excavation process

k0, a Two parameters which characterize the

evolution of the deconfinement rate with

the tunnel face advance

pf ¼ ð1 � kÞr0 Fictitious internal pressure at the tunnel

wall to simulate the tunnel face advance

R0 Tunnel radius

RP, RD Radii of the plastic and of the damage

zones

bkðk ¼ 1; 4Þ Coefficients of the strength degradation

law

u Friction angle

w Dilation angle

c(c0, c?) Cohesion (short-term and long-term

values)

Kp Passive coefficient

rc r0
c ; r

1
c

� �
Unconfined compressive strength

(short-term and long-term values)

EðE0;E1Þ Young’s modulus (short-term and long-

term values)

D Damage index

N Total number of rings used in the space

discretization

Ri-1, Ri Inner and outer radius of the ith annulus

pni Radial stress acting on the outer radius

of ith annulus

Dpni Change in radial stress with respect to

its initial value
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ni,n Ratio of the Young’s modulus between

two neighboring rings

C?x, X, T, m, n Parameters of the convergence law

1 Introduction

Time-dependent behavior of rocks has a significant impact

on the stability of underground excavations. In many case

studies, the tunnel closure and the stresses in tunnel sup-

ports increase for months or years after the excavation.

This results in great difficulties for completing tunneling

projects, with increased delays and construction costs. As

one of the typical phenomena associated with time-de-

pendent deformation of rocks, ‘‘squeezing’’ grounds have

intrigued experts for years and tunneling in such grounds is

always seen as a challenging task for engineers. There are

many interesting cases of tunnels over the world where the

squeezing phenomenon has been observed as, for example,

in the Alps, the Lötschberg and Gotthard base tunnels [19],

the Frejus tunnel [27, 32], and more recently the Saint-

Martin-la-Porte access adit of the Lyon–Turin Base Tunnel

[5, 9].

A number of methods are available for the analysis of

the tunnel response, from the earliest closed-form solu-

tions to the most recent numerical simulations [4]. We

will focus here on analytical solutions. Although often

requiring simplifications regarding the rock behavior and

the geometry of the problem, closed-form solutions are of

great interest for a quick evaluation of stresses and dis-

placements around underground excavations and are very

useful in the early design process. Many works have been

devoted to the analysis of time-dependent deformations

for both lined and unlined tunnels using linear viscoelastic

models [15, 17, 21, 23–25, 38], empirical creep laws [1,

28, 32, 33], viscoplastic models [8, 12, 13, 16, 22, 29]

and considering also hydro-mechanical couplings in por-

ous media [14, 39]. As mentioned by Barla [3], the

analysis of tunnels in squeezing ground requires consid-

ering the evolution of the yielding zone which develops

around the tunnel, with the tunnel face advance and with

time.

In this paper, we present a new analytical solution for

stresses and displacements around a circular tunnel exca-

vated in a rock mass which exhibits time-dependent

behavior. This time-dependent behavior is modeled here by

considering the progressive degradation of the rock

strength as in materials aging constitutive models. The

time-dependent solution takes into account the face

advance, and the evolution of the plastic zone around the

tunnel with time is explicitly obtained. We first present the

constitutive model and derive a semi-analytical solution for

stresses and displacements in the case of a deep circular

tunnel. We then apply the obtained solution to the case

study of the Saint-Martin-la-Porte access adit (France) of

the Lyon–Turin Base Tunnel. The computed displacements

of the tunnel wall and inside the rock mass are compared to

the field data. We show that the values of the parameters of

the proposed model can be directly deduced from the

convergence data recorded in situ.

2 A model for rock mass progressive degradation

The long-term strength concept proposed by Ladanyi [20]

is often applied in tunnel practice. In this approach, it is

assumed that the surrounding rock mass undergoes a con-

tinuous deterioration, involving a decrease in its modulus

of deformation and a gradual loss of strength [21]. How-

ever, only two limiting states, i.e., the short-term response

and the long-term response, are generally considered in the

analysis. Using this approach, Vu et al. [36] have analyzed

the short-term and long-term convergences in the Saint-

Martin-la-Porte access adit and found that the long-term

convergences are obtained from the short-term ones by

only reducing the cohesion of the rock mass. The main

drawback of such analyses is that it does not provide any

information on the intermediate states. In order to fill the

gap between the short-term and long-term rock mass

response, we propose here a degradation model considering

the effect of rock-aging on the parameters of a Mohr–

Coulomb elastic perfectly plastic material. The advantage

of the approach is that the evolution in time of stresses and

strains as well as the one of the extent of the plastic zone

around the excavation can be modeled.

Time-dependent deformation around tunnels is com-

monly observed and is attributed to various phenomena

such as viscous creep of the rock mass, consolidation

effects in the presence of fluids, progressive failure of the

rock. Squeezing behavior which induces large deforma-

tion around the excavation and severe loading conditions

of the support systems is generally associated with poor

rock mass deformability and strength properties and is

encountered in altered rock complexes. In the following,

we will focus on the effect of progressive degradation of

the elastic and strength properties of the material. This

time-dependent evolution of the mechanical parameters of

the rock may be attributed to subcritical propagation of

existing and induced cracks [2]. This subcritical crack

growth is responsible for brittle creep of rocks and for

delayed failure. We generally distinguish between the

short-term and long-term strength properties. When the

state of stress is beyond the long-term strength and below

the short-term strength, the rock deforms and eventually
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fails after a time delay that depends upon the applied

stress. Subcritical crack propagation is a physical mech-

anism that can describe such a phenomenon as studied

experimentally in the recent paper of Brantut et al. [10].

This phenomenon is affected by many factors (applied

state of stress, presence of pore fluid, chemical compo-

sition of the pore fluid, temperature, etc.). In this paper,

we shall emphasize the role of the deviatoric stress on

time-dependent behavior of a rock mass in the absence of

pore fluid and temperature change. There is currently no

model that can include all the complexity of the physical

processes that govern time-dependent behavior of rocks.

Micromechanical models can take into account the

physical mechanisms involved in the initiation and growth

of microcracks but present difficulties for implementation

in numerical codes for practical engineering applications.

Therefore, a phenomenological approach based on dam-

age and plasticity continuum theory provides a convenient

macroscopic constitutive framework. The basic idea of

the model developed here is the following: When the state

of stress exceeds a given threshold, time-dependent

degradation of the elastic properties (i.e., time-dependent

damage) and of the strength properties occurs. This

degradation process can be related to the progressive

development of cracks in the material as discussed above,

but the advantage of the phenomenological approach is

that cracks’ development is smeared at the scale of the

representative elementary volume (REV) of the model in

order to be described in the framework of (homogenized)

continuum theories.

The Mohr–Coulomb failure criterion is classically

written as follows

r1 � Kpr3 � rc ¼ 0 ð1Þ

where r1 and r3 are the major and minor principal stresses,

respectively, Kp is the passive coefficient, which depends

on the friction angle u through the relation

Kp ¼ ð1 þ sinuÞ=ð1 � sinuÞ, and rc is the unconfined

compressive strength (rc ¼ 2c
ffiffiffiffiffiffi
Kp

p
, where c is the cohe-

sion). The plastic deformation is controlled by the dila-

tancy parameter Kw ¼ ð1 þ sinwÞ=ð1 � sinwÞ, where w is

the dilation angle.

The proposed model follows the idea of Tran et al.

[34] who have considered a rock-aging law to study the

behavior of a rockfill dam by describing the time-

evolving resistance of the rock blocks. Following the

same lines of thoughts, we define here a rock-aging law

for the evolution of the unconfined compressive strength

with time

rc ¼ r0
c 1 � b1

Z t

t0

jdt

0

@

1

A ð2Þ

where

j ¼ exp b2

r1 � Kpr3 � r0
c

� �

r1 � Kpr3 � r1c
� �

 !

if r1 � Kpr3 � r1c

0 else

8
><

>:

and r1c ¼ b3r
0
c with 0� b3 � 1

where r0
c and r1c are, respectively, the short-term and long-

term unconfined compressive strength. When the stress state

reaches a damage initiation criterion (which is identified here

to the long-term yield criterion), the unconfined compressive

strength starts to decrease over time. The rate of degradation

decreases as the unconfined compressive strength gets closer

to its long-term value r1c . It should be noted that in this

model the passive coefficient Kp (or the friction angle u)

remains constant. Two positive parameters b1 and b2 are

introduced to characterize the velocity of the rock

degradation. The time to failure can be derived as follows

T ¼ t � t0 ¼ 1 � b3

b1 exp b2

r1 � Kpr3 � r0
c

r1 � Kpr3 � r1c

� � ð3Þ

The physical processes that control the degradation of the

rock strength may also affect the rock stiffness. Thus,

degradation of the rock mass is not limited to the rock

strength but also affects the rock elastic properties. Therefore,

we introduce a scalar variable, D, which represents a damage

index of the rock mass which is defined as:

D ¼ r0
c � rc

r0
c � r1c

; ð0�D� 1Þ ð4Þ

A damage law is postulated for the Young’s modulus

with the following expression

E ¼ ð1 � DÞE0 þ DE1 ð5Þ

where E0 and E? are the short-term and long-term Young’s

modulus, respectively. An additional parameter is intro-

duced as b4 = E?/E0 with 0 B b4 B 1. Assuming constant

Poisson’s ratio m, the elastic shear modulus of the rock

G follows the same evolution as the Young’s modulus. The

decrease in the Young’s modulus in time (Eq. 5) controls

the creep of the rock when the stress state is below the

plastic yield criterion.

3 Problem description

We consider a deep tunnel with a circular cross section

of radius R0 excavated in an isotropic elasto-plastic

medium. It is assumed that the rock mass exhibits a

time-dependent behavior described with the above rock
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mass progressive degradation law. The initial state of

stress is hydrostatic and the tunnel is deep enough so

that gravity effect is neglected. Under these assumptions

the problem can be considered as axisymmetric and

displacement, strains and stresses are only functions of

the distance r to the center of the cross section. In plane-

strain conditions, the equilibrium equation in the absence

of body forces can be written in cylindrical coordinates

as follows

orr
or

þ rr � rh
r

¼ 0 ð6Þ

The Mohr–Coulomb yield criterion is written as

f ðrh;rrÞ ¼ rh � rrKp � rc ¼ 0 ð7Þ

In the practice of tunnel support design, the 3D

problem is commonly approached by considering a

section behind the face as a 2D plane-strain problem.

The effect of face advance is taken into account by

applying a varying fictitious internal pressure pf on the

tunnel wall [26]

pf ¼ ð1 � kÞr0 ð8Þ

where r0 is the in situ stress and k is the deconfinement rate

which depends on the distance from the face. The k
parameter varies between 0 and 1 (k = 1 for the sections

far from the tunnel face) and is commonly evaluated from

the following empirical expression

k ¼ k0 þ ð1 � k0Þ 1 � R0a
R0aþ x

� �2
" #

ð9Þ

where k0 and a are two empirical parameters that depend

on the rock mass behavior and x is the distance to the face.

In order to keep the model simple and following Panet

[26], fixed values are assumed for these two parameters

ðk0 ¼ 0:25; a ¼ 0:75Þ. Of course, other mathematical

expressions can be considered for describing the decon-

finement process.

The boundary conditions are

lim
r!1

rrðr; tÞ ¼ r0

rrðR0; tÞ ¼ pðtÞ ¼ ð1 � kðtÞÞr0

ð10Þ

Figure 1 depicts the stress path at the tunnel wall.

Before the excavation, the initial stress state around the

tunnel is homogeneous and isotropic (point A). When the

deconfinement rate is small enough, the stress state is

below the long-term failure criterion and the rock

surrounding the tunnel behaves elastically. In this zone,

the stress path is linear. As the face advances, the

deconfinement rate increases and a (elastic) damage zone

is created at the tunnel wall when the internal pressure is

less than a critical value p�D (point B)

p�D ¼ 2r0 � r1c
Kp þ 1

ð11Þ

In this damage zone, the unconfined compressive

strength rc and the Young’s modulus E start to decrease

with time from their initial values (r0
c and E0, respectively).

A plastic zone develops around the tunnel when the current

yield criterion is reached at the tunnel wall (point C). We

denote by p�P the critical value for the internal pressure

corresponding to the initiation of the plastic zone. A

damage zone with radius RD and a plastic zone with radius

RP are formed around the tunnel as can be seen in Fig. 2.

Time-dependent strains only occur in the damage and in

the plastic zones. Obviously, the time-dependent effect is

more pronounced in the plastic zone as both the stiffness

and the strength decrease with time.

σθ-K
pσr=σc 

σθ-K
pσr=σc

σr

σθ

A
B

C

D

σ0 2σ0

σ0

2σ0

pD*

0

∞ 

pP*

Fig. 1 Stress path (A–B elastic zone, B–C damage zone and C–D

plastic zone)

Elastic zone
Elastic - damage zone

Plastic - damage zone

R0 RP

RD

pf …. .
σ 0

σ 0

Fig. 2 Scheme of the different zones formed around the tunnel
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The following conditions are always fulfilled

rrðRD; tÞ ¼ p�D on the elastic-damage interface

rrðRP; tÞ ¼ p�P on the damage-plastic interface
ð12Þ

In the long term, when the tunnel is fully excavated

(k = 1), the stress path tends to point D. The final value of

the plastic and damage radius are calculated from the

elasto-plastic solution [30]

RDjt!1¼ RPjt!1¼ R1

¼ R0

2

Kp þ 1
ðKp � 1Þ r0

r1c
þ 1

� �� � 1
Kp�1

ð13Þ

The equilibrium equation (Eq. 6) and the boundary

conditions (Eq. 10) permit the evaluation of the stress state

around the tunnel. However, the extents of the plastic zone

and of the damage zone are unknown and evolve with time.

In the following, we present an incremental scheme for the

computation in time of the radius of the plastic zone and

the radius of the damage zone, together with the

computation of the stress and displacement fields.

4 Semi-analytical solution process

Let’s define t0 as the time when the fictitious internal

pressure attains the critical value p�D. For t\ t0, the rock is

elastic and the solution is time-independent. The stresses

and displacement can be calculated from the Lamé’s

solution and only depend upon the distance to the tunnel

face

rr ¼ r0 � ðr0 � pfÞ
R0

r

� �2

rh ¼ r0 þ r0 � pfð Þ R0

r

� �2

ur

R0

¼ r0 � pfð Þ
2G0

R0

r
ð14Þ

For t[ t0, an excavation damage zone (EDZ) is created

around the tunnel. The material properties of rock mass

inside this zone are no longer homogeneous, and the rock

mass behavior is nonlinear and time-dependent. Stresses

and displacements distributions around the tunnel can be

obtained by adopting a stepwise solution [11, 31]. As

shown in Fig. 3, the medium surrounding the tunnel

between R0 and RN is discretized into N concentric

circular rings. RN is chosen in such a way that the final

value of the plastic and the damage radii do not exceed RN.

For R[RN, the displacement and stresses field are given

by the elastic solution. The ith ring is limited by the inner

radius Ri-1 and outer radius Ri. For the initial mesh, a

constant step d is adopted

Ri ¼ R0 þ id with i ¼ 1;N and d ¼ ðRN � RoÞ=N ð15Þ

It is assumed that inside each ring, the material properties

are homogeneous. Time discretization is performed with

tn = tn-1 ? Dtn. During the nth step of calculation, the

pressure acting on the tunnel wall (r = R0) decreases from

pn�1
f to pnf . The parameters related to the degradation of the

rock mass (the unconfined compressive strength and the

Young’s modulus) in the damage zone decrease with time but

are assumed to be homogeneous in each ring. In the following,

we denote by �i;n the corresponding quantities (stresses and

displacements) inside the ith annulus at the nth time step. The

continuity conditions in terms of displacements and radial

stresses at the annulus’ boundaries are written as

ui;nr ¼ uiþ1;n
r and ri;nr ¼ riþ1;n

r for r ¼ Riði ¼ 1;N � 1Þ
ð16Þ

If the thickness of the rings is small enough, we can assume

that at time tn, the radius of the plastic zone RP and the radius

of the damage zone RD practically coincide with the outer

boundaries of given rings (kth and qth ring, respectively). As

the damage and the plastic zones evolve with time, k and

q must be updated during the computation. In the following,

the numerical solution procedure is sketched. Details of the

derivations are given in ‘‘Appendixes 1 and 2.’’

During each step of calculation, the mechanical

parameters inside each annulus in the damage zone and in

the plastic zone are first updated. For a ring located in the

plastic zone (Ri B RP), the unconfined compressive

strength ri;nc is calculated as

ri;nc ¼ ri;n�1
c � Dtnr

0
cb1 exp b2

ri;n�1
c � r0

c

� �

ri;n�1
c � r1c

	 


0

@

1

A

for i ¼ 1; k

ð17Þ

Fig. 3 Discretization of the rock mass surrounding the tunnel
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For a ring located in the damage zone (RP B Ri B RD),

ri;nc ¼ ri;n�1
c � Dtnr

0
cb1

� exp b2

ri;n�1
h � Kpri;n�1

r

	 
���
r¼Ri

�r0
c

� �

ri;n�1
h � Kpr

i;n�1
r

	 
���
r¼Ri

�r1c

� �

0

BB@

1

CCA

for i ¼ k þ 1; q ð18Þ

The damage index and Young’s modulus are calculated

from Eqs. 4 and 5. During this step, the ith annulus undergoes

a decrease in stressDpni�1 ¼ r0 � pni�1

� �
andDpni ¼ r0 � pni

� �

at the inner and outer boundaries, respectively. In the

following, the equations of the displacements and stresses in

the damage zone and the plastic zone are presented.

4.1 Solution in the damage zone

The radial displacement and the stresses inside the ith

annulus in the damage zone (i = k ? 1,q) are given by:

Dui;nr ¼ � 1

2Gn
i R2

i � R2
i�1

� �

� Dpni R
2
i � Dpni�1R

2
i�1

1 � 2v
r þ

Dpni � Dpni�1

� �
R2
i�1R

2
i

r

� �

ð19Þ

and

Dri;nr ¼ r0 � ri;nr

¼ Dpni R
2
i � Dpni�1R

2
i�1

R2
i � R2

i�1

� � �
Dpni � Dpni�1

� �
R2
i�1R

2
i

R2
i � R2

i�1

� �
r2

Dri;nh ¼ r0 � ri;nh

¼ Dpni R
2
i � Dpni�1R

2
i�1

R2
i � R2

i�1

� � þ
Dpni � Dpni�1

� �
R2
i�1R

2
i

R2
i � R2

i�1

� �
r2

with Ri�1 � r�Ri ð20Þ

Writing the continuity of the radial displacement

Dui;nr
��
r¼Ri

¼ Duiþ1;n
r

��
r¼Ri

for i ¼ k þ 1; q ð21Þ

we obtain

Dpni ¼ hi;nDpnq for i ¼ k; q ð22Þ

with

where

h
i�1;n
1 ¼ 1 þ ni;n

R2
i � R2

i�1

� �

R2
iþ1 � R2

i

� �

 !
R2
i

R2
i�1

�
R2
i � R2

i�1

� �
1 � ni;n
� �

2R2
i�1 1 � vð Þ

h
i�1;n
2 ¼ �ni;n

R2
i � R2

i�1

� �
R2
iþ1

R2
iþ1 � R2

i

� �
R2
i�1

ð24Þ

and

ni;n ¼
En
i

En
iþ1

¼ Gn
i

Gn
iþ1

ð25Þ

Equation 22 shows the relationship between the radial

stress at the outer boundary of the ith annulus in the damage

zone ðDpni Þ and the radial stress at the elastic–damage

interface ðDpnqÞ. This equation obviously allows to derive the

radial stress at the elastic–damage interface ðDpnqÞ from the

radial stress at the damage–plastic interface ðDpnkÞ which is

calculated by using the solution in the plastic zone

(Sect. 4.2). Once the radial stresses at the outer boundary

of each annulus are obtained, the displacement and the stress

fields are calculated using Eqs. 19 and 20. The radial stress

ri;nr in the elastic zone is compared with the critical value p�D
(Eq. 12), and the radius of the damage zone is updated.

4.2 Solution in the plastic zone

For a ring in the plastic zone (i = 1,k), the solution of the

equilibrium Eq. (6) is obtained as

ri;nr ¼ ri;nc

Kp � 1

r

Ri�1

� �Kp�1

�1

" #

þ pni�1

r

Ri�1

� �Kp�1

ri;nh ¼ ri;nc

Kp � 1
Kp

r

Ri�1

� �Kp�1

�1

" #

þ Kpp
n
i�1

r

Ri�1

� �Kp�1

with Ri�1 � r�Ri; i ¼ 1; k

ð26Þ

where pni is the radial stress at the outer boundary of the ith

annulus (r = Ri) at the nth time step (note that pn0 ¼ pnf at

the tunnel wall (Eq. 8)) and is calculated from the

following relation

hi;n ¼

1 for i ¼ q

ð1 þ ð1 � 2vÞnq;nÞ
2ð1 � vÞ

Rq

Rq�1

� �2

þ
ð1 � nq;nÞ
2ð1 � vÞ ð1 � 2vÞ for i ¼ q� 1

h
i;n
1 hiþ1;n þ h

i;n
2 hiþ2;n for i ¼ k; q� 2

8
>><

>>:
ð23Þ
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pni ¼
ri;nc

Kp � 1

Ri

Ri�1

� �Kp�1

�1

" #

þ pni�1

Ri

Ri�1

� �Kp�1

with i ¼ 1; k

ð27Þ

The general solution for the radial displacement is

Dui;nr
r

¼ 1

2Gn
i

B
i;n
1

Kp þKw

r

Ri�1

� �Kp�1

þCi;n Ri

r

� �Kwþ1

þ B
i;n
2

Kwþ1

" #

ð28Þ

where

B
i;n
1 ¼ ri;nc

Kp � 1
þ pi�1;n

� �
A1 þ KpA2

� �
;

B
i;n
2 ¼ � A1 þ A2ð Þ r0 þ

ri;nc

Kp � 1

� � ð29Þ

A1 ¼ 1 � vðKw þ 1Þ; A2 ¼ ð1 � vÞKw � v ð30Þ

and Ci,n is an integration constant which is calculated by

applying the condition of displacement continuity at the

interface between two adjacent rings

Ci;n ¼
1

Kp þ Kw
B
iþ1;n
1 ni;n � B

i;n
1

Ri

Ri�1

� �Kp�1
" #

þ Ciþ1;nni;n
Riþ1

Ri

� �Kwþ1

þ
B
iþ1;n
2 ni;n � B

i;n
2

Kw þ 1

with i ¼ 1; k � 1 ð31Þ

By applying the displacement continuity condition at the

plastic–damage interface (r = RP), we get

Ck;n ¼ nk;nDu
kþ1;n
r

��
r¼Rk

� B
k;n
1

Kp þ Kw

Rk

Rk�1

� �Kp�1

þ B
k;n
2

Kw þ 1

" #

ð32Þ

The numerical algorithm is sketched in Fig. 4 and can

be summarized as follows: After updating the parameters

related to the rock mass degradation, the stresses in the

plastic zone are calculated and the plastic radius is updated.

By applying the normal stress continuity condition at the

plastic–damage interface, the radial stress at the boundary

of each annulus in the damage zone is then calculated.

Therefore, the stresses and displacement field in the

damage and elastic zone are derived and the damage

radius is updated. Finally, the radial displacement in the

plastic zone is computed by using the displacement

continuity condition. It is important to note that large

displacement computation must be applied for tunnels

which exhibit large values of the convergence. Therefore,

following an updated Lagrangian approach, the radius of

each ring is updated after each computation step. The

computation step is small enough so that a small strain

formulation can be adopted for each increment. The

implementation of this numerical algorithm into

computing codes (e.g., MATLAB, Maple, Mathematica)

is straightforward, and results can be obtained in a quick

and accurate manner. The convergence of the numerical

procedure and the appropriate choice of the space and time

steps are discussed in ‘‘Appendix 3.’’

5 Application to Saint-Martin-la-Porte access adit

As part of the Lyon–Turin project, the excavation of the

Saint-Martin-La-Porte access adit between 2003 and

2010 encountered severe operational difficulties in the

coal schists section associated with an extreme squeezing

condition. Careful instrumentation of displacement mea-

surements of the tunnel walls along different directions
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Acta Geotechnica (2016) 11:693–711 699

123



clearly showed a high time-dependent deformation

behavior of rock mass. In this paper, the analysis of the

convergence measurements is performed for the sections

between chainage 1250 and 1550 m where the largest

displacements have been recorded.

5.1 Geological conditions and difficulties

encountered during excavation

Apart from recent superficial formations, the rock masses

encountered in the Saint-Martin-La-Porte access adit

belong to the internal structural zones of the Alps, char-

acterized by an extreme geological complexity from both

lithological and structural points of view. The section of

the access gallery is characterized by the overlapping of the

‘‘Houillère Briançonnaise’’ zone on the ‘‘Sub-briançon-

naise’’ zone, originating a contact marked by Triassic

formations (gypsum and anhydrite), called ‘‘Front du

Houiller’’ (Fig. 5a). In particular, the tunnel has been

excavated in the ‘‘Productive Carboniferous Formation’’

(Encombres Unit) which is composed of schists and/or

carboniferous schists (45–55 %), sandstone (40–50 %),

and a significant proportion of cataclastic rocks (up to

15 %) [5]. A characteristic feature of the ground observed

at the face during excavation is the anisotropic, highly

heterogeneous, disrupted and fractured conditions of the

rock mass, which exhibits a very severe squeezing

behavior.

Tunneling works in the Jurassic carbonated rocks and in

the Triassic dolomites did not face any particular problem,

including in the Houiller Front. Indeed, excavation using

traditional methods reached a rate of 10 m/day. Then,

when the Houiller sandstones and schists were encoun-

tered, very severe squeezing behavior appeared. Several

traditional support systems were used, but it soon became

apparent that a stiff support could not cope with this

Fig. 5 a Simplified geological longitudinal view of the gallery. b Geological plan view at the base tunnel level
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phenomenon. Subsequent to the metric convergences

encountered in the coal schists section, the geometrical

layout (in plan and elevation) of the gallery was modified

as shown in Fig. 5b. Initially, a ‘‘soft’’ support (named

P7-3), consisting of steel ribs with sliding joints, 8-m-long

rock dowels, and a 20-cm shotcrete primary lining was

installed from chainage 1267 m. The tunnel sections with

such a support system installed up to chainage 1384 m

underwent very large deformations, with convergences up

to 2 m and the need of extensive re-shaping of the tunnel.

A novel excavation and support method (named DSM) was

finally adopted with highly deformable elements inserted in

the shotcrete lining which allowed for controlled defor-

mation and stress in the rock mass and in the supports

[5, 9].

5.2 Monitoring data

The excavation of the Saint-Martin-La-Porte access adit

has been associated with a program of intensive geological

and geotechnical monitoring. Convergence measurements

were carried out by optical ranging on regularly spaced

sections equipped each with five monitoring points along

the perimeter of the section. Figure 6 shows typical relative

convergence curves at chainage 1311 m in an area of large

convergence. This provides a clear example of the time-

dependent behavior of the rock mass with convergence of

the tunnel walls that continues to increase even during a

stop of the face advance.

Starting with a quasi-circular initial cross section, the

convergence data and the in situ observations clearly show

an ovalization of the cross section. In order to describe the

anisotropy observed in the gallery, a method for geomet-

rical processing of the measurement data was proposed

[37]. The evolution of the cross section is described by

fitting the cross section with an ellipse and its principal

axes give directly the principal directions of deformation

mode. The convergences along each semi-axis have been

back-analyzed using the semiempirical law [37] or the

semi-analytical model [36] and numerical simulations [35].

In the present version of the model, the proposed semi-

analytical solution does not consider the anisotropy of the

rock mass. Therefore, we analyze the evolution of the mean

value of the convergence over the two principal directions

by defining the equivalent radius of tunnel section as

Req ¼
ffiffiffiffiffi
ab

p
ð33Þ

where a and b are, respectively, the major semi-axis and

the minor semi-axis of the elliptical cross section of tunnel

which were determined in [37]. The mean value of the

convergence is deduced as C ¼ 2ðR0 � ReqÞ, where R0 is

the initial value of equivalent radius of tunnel section. The

mean convergence of deformed sections is then interpreted

by applying the convergence law proposed by Sulem et al.

[32, 33], where the convergence is expressed as a function

of the distance x to the face and of the time t

Cðx; tÞ ¼ C1x 1 � X

xþ X

� �2
" #

1 þ m 1 � T

t þ T

� �n� �� �

ð34Þ

This convergence law depends on five parameters C?x,

X, T, m and n, where X characterizes the distance of

influence of the excavation, T is a characteristic time

related to time-dependent properties of the ground, C?x is

the ‘‘instantaneous’’ convergence as obtained in the case of

an infinite rate of face advance (no time-dependent effect),

C?x (1 ? m) is the total (long term) closure, and n is a

constant (often taken equal to 0.3). The calibration of the

four parameters of the convergence law has been

performed for sections between chainage 1250 and

1550 m where the largest displacements have been

recorded. All the fitting procedures are performed using a

least squares algorithm. From the curve fitting results, it is

observed that the parameters X, T, and m do not change for

all sections in six different ‘‘quasi-homogeneous’’ zones

which were previously identified (see [35, 37]). Therefore,

an average constant value for these three parameters can be

assumed in each zone and only the parameter C?x changes

to account for the heterogeneity of the field conditions from

one section to another. For all the studied sections, we

obtain an excellent fit of the measured convergence data.

Table 1 summarizes the results of this calibration for each

section of the studied zone.

A number of sections in the tunnel have also been

equipped with multi-position borehole extensometers to

measure the displacement distribution in the rock mass.Fig. 6 Example of convergence measurements at chainage 1311 m
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The extensometers were installed in boreholes of 9–24 m

length oriented in different directions around the tunnel.

Each extensometer includes from 3 to 6 measurement

points. Figure 7 shows the most significant extensometer

measurements at chainage 1331 m where a total of six

multi-position borehole extensometers, each 18 m long,

were installed, one at the invert and crown, and two on

each sidewall, left and right. It is interesting to note that the

radial displacement is not symmetric (the maximal dis-

placement is on the right side of the section), and the length

of the extensometers is not sufficient to take into account

the total radial displacement, which means that the extent

of the plastic zone exceeded the length of the

extensometers.

5.3 Back-analysis of the convergence data using

the proposed semi-analytical model

This section describes the back-analysis of the convergence

data of the Saint-Martin-la-Porte access adit using the

proposed model. The main scope is to highlight the

potential of our semi-analytical solution for the analysis of

time-dependent deformation behavior of tunnels in

squeezing conditions.

In the studied sections, the overburden is approximately

300 m and the initial state of stress r0 in the ground is

assumed to be hydrostatic and equal to 8.5 MPa [6, 36].

Table 1 Curve fitting of the convergence law

Zone Chainage X (m) C?x

(mm)

m (-) T (day) C?total

(m)

1 1272 27.8 307 8.8 16 3.00

1278 389 3.79

1284 478 4.66

1291 471 4.59

1297 528 5.15

2 1311 18.0 656 9.6 71 6.98

1322 519 5.53

1331 456 4.85

1342 559 5.95

3 1367 19.5 361 11.5 117 4.50

1375 473 5.90

1384 495 6.18

4 1399 25.3 346 10.0 25 3.79

1413 335 3.68

5 1470 28.9 382 6.7 10 2.94

1493 247 1.90

1507 554 4.26

6 1531 8.7 438 4.5 11 2.41

1538 257 1.41
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Fig. 7 Radial displacements from multi-point borehole extensome-

ters installed at chainage 1331 m after a 45 and b 135 days from

installation
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Two geometric configurations corresponding to a radius of

the opening section of R0 = 5.5 m and R0 = 6 m,

respectively, have been considered to describe the two

profiles P7-3 and DSM between chainage 1250 and 1550 m

[6]. The recorded convergence data correspond to the stage

for which the soft support system was installed, i.e., before

re-profiling and installation of the yield support system

equipped with compressible blocks. As mentioned above,
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Fig. 9 Comparison between measured convergences and computed convergences using the convergence law and the proposed solution for

different sections between chainage 1250 and 1550 m
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this soft support could not cope with the large convergence

of the tunnel walls and failed. Therefore, in the numerical

analysis we neglect the effect of the shotcrete lining.

The face advance history during the time window con-

sidered (Fig. 8) alternates between the standstills and the

excavation phases, with an advance rate of 0.67–1.0 m/day.

For consistency with previous numerical works on the sim-

ulation of the Saint-Martin-la-Porte access adit [7, 35, 37],

we consider the following numerical values for the elasto-

plastic parameters of the rock mass: Young’s modulus

E0 = 650 MPa; Poisson’s ratio m = 0.30; friction angle

u = 26�; zero dilatancy is assumed (w = 0�). The remain-

ing parameters are the initial cohesion c0 and the four

parameters b1, b2, b3 and b4 which describe the time-de-

pendent behavior of the rock matrix. In order to reduce the

number of parameters to be fitted, we assume here that

b3 = b4. Of course, one can assume different values for these

parameters, but as we shall see in the following, accept-

able numerical results are obtained under this assumption.

The remaining parameters are fitted on the convergence data.

As discussed in ‘‘Appendix 3,’’ the numerical simulation

is performed using a discretization of the medium sur-

rounding the tunnel into 500 rings with a thickness d from

0.025 to 0.030 m. The time step Dt is constant and taken

equal to 0.5 day. This choice gives sufficiently accurate

results. Note that the large displacement approach is used

by updating the rings radii as mentioned above. A com-

parison between the small and large displacement approach

is presented in ‘‘Appendix 4’’ and illustrated in Fig. 13.

When the convergence of the tunnel walls is over 2 m, the

small displacement approach overestimates the conver-

gence of about 20 %.
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The calibration of the four parameters c0, b1, b2 and b3

is done as follows: For each zone as identified in Table 1,

these four parameters are evaluated by the back-analysis of

convergence data of the first section of each zone; then,

following the idea that for the fitting of the convergence

law (Eq. 34) only C?x changes from one section to another

in a given zone, whereas X, m and T are kept constant, the

data of the other sections of the zone are simulated by

keeping b1, b2, b3 unchanged and by only adjusting the

initial cohesion c0 in order to account for the heterogeneity

of the local field conditions.

A comparison between computed and measured radial

displacements at the tunnel wall for all the studied sections

is shown in Fig. 9. The agreement of the numerical results

with the observed values over a period of approximately

160 days is very good. After 20 days the relative error

between the computed and the recorded displacements is

less than 10 %. As, in the calibration procedure, we have

emphasized the good simulation of the long-term conver-

gence, the relative error is only of few % in the long term.

Better results could be obtained for the simulation of the

very short-term data (after few days) by adjusting the

empirical law describing the deconfinement process

(Eq. 9). However, the proposed solution can well capture

the measured data during the stop of the face and also the

increase in convergence rate when the tunnel advances. It

means that the solution correctly takes into account the

effect of the face advance and of the time-dependent

behavior of rock mass.

A good agreement between computed and monitored

radial displacements around the tunnel up to a depth of
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Fig. 10 Computed and monitored radial displacements at depth at

chainage 1331 m after a 45 days and b 135 days from installation of

the multi-point extensometers

Table 2 Constitutive parameters of the proposed model between chainage 1250 and 1550 m

Zone Chainage E0 (MPa) m (-) c0 (MPa) u (�) w (�) b1 (day-1) b2 (-) b3 (-)

1 1272 650 0.3 1.45 26 0 0.01 0.85 0.50

1278 1.20

1284 0.98

1291 0.98

1297 0.90

2 1311 650 0.3 1.00 26 0 0.01 1.00 0.40

1322 1.30

1331 1.42

1342 1.20

3 1367 650 0.3 1.80 26 0 0.01 1.20 0.29

1375 1.55

1384 1.45

4 1399 650 0.3 1.60 26 0 0.01 0.75 0.41

1413 1.65

5 1470 650 0.3 1.80 26 0 0.01 0.58 0.55

1493 2.10

1507 0.94

6 1531 650 0.3 1.00 26 0 0.01 0.60 0.63

1538 1.40
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18 m, at chainage 1331 m, is also shown in Fig. 10. The

two diagrams illustrate the measured and computed dis-

placements 45 days (Fig. 10a) and 135 days (Fig. 10b)

after the installation of the multi-point extensometers. Note

that the measured values are relative displacements to the

reference point at the depth of 18 m which is considered as

a fixed point. Therefore, in order to compare the computed

values with measured displacements, the computed dis-

placement of the reference point must be subtracted.

A total of 19 monitoring section have been considered,

and the constitutive parameters obtained are reported in

Table 2. This permits to distinguish the same six zones as

defined from the analysis of convergence data using the

empirical law presented above. These six zones are char-

acterized with different values of the two parameters b2

and b3 which describe the time-dependent behavior of rock

mass. Parameter b1 is the same everywhere. The hetero-

geneity of the rock mass from one section to another is

described with different values of the initial cohesion c0. At

this point, we can see that there is a correspondence

between the parameters of constitutive model and the ones

of the semiempirical convergence law: Parameters c0 (in

the model) and C?x (in the convergence law) characterize

the ‘‘instantaneous’’ response, b2 (in the model) and T (in

the convergence law) are related to time-dependent prop-

erties of the ground, and finally b3 (in the model) and m (in

the convergence law) describe the ratio between the ‘‘in-

stantaneous’’ response and the final one. Therefore, it is

interesting to compare the constitutive parameters with the

parameters of the semiempirical convergence law. As can

be seen in Fig. 11, a linear fit can describe the relationship

between the cohesion c0 and the parameter C?x for each

homogeneous zone. A linear fit can also approximate the

relationship between the parameters b3 and m. The relation

between the two parameters b2 and T is clearly nonlinear.

Thus, we have here a simple way to infer the constitutive

parameters of the rock mass directly from the convergence

data.

6 Conclusion

In this paper, a semi-analytical solution for stresses and

displacements around a circular tunnel excavated in a rock

mass with time-dependent mechanical properties is pro-

posed. The approach is based on a rock-aging model. It is

capable of modeling both the time-dependent deformation

and the time-dependent extent of the yielding zone as often

observed for tunnels excavated in squeezing ground. The

constitutive model considers a degradation of the elastic and

strength properties with time when the stress state reaches a

damage initiation criterion. A semi-analytical solution
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process based on the discretization of rock mass around the

tunnel in circular rings and on a progressive unloading of

the inner boundary of the tunnel is proposed by deriving

closed-form solutions inside each ring. Large displacement

analysis is also implemented to account for squeezing

ground conditions. The proposed solution is used to back-

analyze convergence data from the Saint-Martin-La-Porte

access adit. The numerical examples show that the time-

dependent deformation behavior of the rock mass observed

in the Saint-Martin-La-Porte access adit can be very well

captured using the proposed solution. Simple relationships

are obtained between the model parameters and those of the

empirical convergence law of Sulem et al. [32, 33].

Therefore, the observational method proposed in [37] and

[18] can be extended. The parameters of the empirical

convergence law can be determined from continuous

monitoring of the convergence data, and the corresponding

values of the parameters of the proposed constitutive model

can be subsequently evaluated. This procedure would per-

mit an assessment of the material properties of the ground

and their variability along the tunnel and an adjustment of

the excavation and lining design.
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Appendix 1: Derivation of the governing equations
in the (elastic) damage zone

Let’s consider the loading step for which the ith annulus

inside the damage zone undergoes a decrease in stress

Dpni�1 ¼ r0 � pni�1

� �
and Dpni ¼ r0 � pni

� �
at the inner and

outer boundaries, respectively. The constitutive relation-

ships are written for each annulus

Dri;nr ¼ Mn
i De

i;n
r þ ðMn

i � 2Gn
i ÞDe

i;n
h

Dri;nh ¼ ðMn
i � 2Gn

i ÞDei;nr þMn
i De

i;n
h

ð35Þ

with Mn
i ¼ En

i ð1�vÞ
ð1þvÞð1�2vÞ; G

n
i ¼

En
i

2ð1þvÞ :

For axisymmetric conditions Dei;nh ¼ Dui;nr
r

and under the

assumption of small displacement,

Dei;nr ¼ dDui;nr
dr

;Dei;nh ¼ Dui;nr
r

ð36Þ

This assumption is justified by the fact that the elastic

damage zone is beyond the plastic zone and therefore

undergoes small displacements.

Replacing Eq. 36 with Eq. 35 and the equilibrium

equation (Eq. 16), one gets

d2Dui;nr
dr2

þ 1

r

dDui;nr
dr

� Dui;nr
r

¼ 0 ð37Þ

The general solution is

Dui;nr ¼ Ar þ B

r
ð38Þ

The boundary conditions Dri;nr ¼ Dpni�1 at r ¼ Ri�1

�

and Dri;nr ¼ Dpni at r ¼ RiÞ are applied to obtain the

integration constants A and B

A ¼ � Dpni R
2
i � Dpni�1R

2
i�1

2Gn
i ð1 � 2vÞ R2

i � R2
i�1

� �

B ¼ �
Dpni � Dpni�1

� �
R2
i�1R

2
i

2Gn
i R2

i � R2
i�1

� �
ð39Þ

Hence, the radial displacement and the stress state inside

this annulus in the damage zone can be calculated as

Eqs. 19 and 20.

The continuity of the radial displacement,

Dui;nr
��
r¼Ri

¼ Duiþ1;n
r

��
r¼Ri

for i ¼ k; q� 1 ð40Þ

yields

Dpni�1 ¼ h
i;n
1 Dpni þ h

i;n
2 Dpniþ1 for i ¼ k; q� 1 ð41Þ

with

h
i�1;n
1 ¼ 1 þ ni;n

R2
i � R2

i�1

� �

R2
iþ1 � R2

i

� �

 !
R2
i

R2
i�1

�
R2
i � R2

i�1

� �
1 � ni;n
� �

2R2
i�1 1 � vð Þ

h
i�1;n
2 ¼ �ni;n

R2
i � R2

i�1

� �
R2
iþ1

R2
iþ1 � R2

i

� �
R2
i�1

ð42Þ

and

ni;n ¼
En
i

En
iþ1

¼ Gn
i

Gn
iþ1

ð43Þ

In the elastic zone (r C RD), the radial displacement is

obtained from the Lamé’s solution

Duqþ1;n
r

Rn
D

¼
Dpnq
2G0

Rn
D

r
with i ¼ q;N ð44Þ

the continuity of the displacement on the elastic–damage

interface

Duq;nr

��
r¼Rq

¼ Duqþ1;n
r

��
r¼Rq

ð45Þ

yields

Dpnq�1 ¼ hq�1;np
n
q ð46Þ

with

hq�1;n ¼
ð1 þ ð1 � 2vÞnq;nÞ

2ð1 � vÞ
Rq

Rq�1

� �2

þ
ð1 � nq;nÞ
2ð1 � vÞ ð1 � 2vÞ

ð47Þ
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We obtain the following relation from Eqs. 21 and 27

Dpni ¼ hi;nDpnq for i ¼ k; q� 2 ð48Þ

with

hi;n ¼ h
i;n
1 hiþ1;n þ h

i;n
2 hiþ2;n ð49Þ

Appendix 2: Derivation of governing equations
in the plastic zone

For a ring in the plastic zone (i = 1,k), the plastic criterion

ri;nh � ri;nr Kp � ri;nc ¼ 0
� �

is satisfied. Replacing with the

equilibrium equation (Eq. 6), we obtain

dri;nr
dr

þ ð1 � KpÞri;nr � ri;nc

r
¼ 0 ð50Þ

Integration of the above equation gives the classical

expression of the radial and hoop stresses for a Mohr–

Coulomb elasto-plastic medium

ri;nr ¼ ri;nc

Kp � 1

r

Ri�1

� �Kp�1

�1

" #

þ pni�1

r

Ri�1

� �Kp�1

with Ri�1 � r�Ri; i ¼ 1; k

ri;nh ¼ ri;nc

Kp � 1
Kp

r

Ri�1

� �Kp�1

�1

" #

þ Kpp
n
i�1

r

Ri�1

� �Kp�1

ð51Þ

where pni is the radial stress at the inner boundary of the ith

annulus (r = Ri) at the nth time step [note that at the tunnel

wall (Eq. 8)] and is calculated from the following relation

pni ¼
ri;nc

Kp � 1

Ri

Ri�1

� �Kp�1

�1

" #

þ pni�1

Ri

Ri�1

� �Kp�1

with i ¼ 1; k

ð52Þ

The new position of the plastic–damage interface must be

determined. We first assume that this interface is still on

the outer boundary of the kth annulus. The decrease in the

radial stress Dpnkð¼ r0 � pnkÞ at the plastic boundary is

calculated from Eq. 52. The stress state and displacement

are obtained by replacing Dpn0 and R0 by Dpnk and Rk,

respectively, in the elastic–damage solution presented

above, and we have

Dpnkþ1 ¼ hkþ1;n

hk;n
Dpnk ð53Þ

Then the stress state on the outer boundary of the (k ? 1)th

annulus is calculated from Eq. 51, and the plastic criterion

must be checked f ¼ ðrkþ1;n
h � Kprkþ1;n

r Þ
���
r¼Rkþ1

�rkþ1;n
c

� �
.

If f\0, the plastic boundary is still on the outer boundary of

the kth annulus, and the stress state surrounding the tunnel is

determined. Otherwise, it is assumed that this interface is now

on the outer boundary of the annulus where the radial stress is

pnkþ1 ¼ rkþ1;n
c

Kp � 1

Rkþ1

Rk

� �Kp�1

�1

" #

þ pnk
Rkþ1

Rk

� �Kp�1

ð54Þ

The elastic–damage solution process is again applied to

calculate the stress state from the (k ? 1)th annulus to the

qth one with a stress decrease Dpnkþ1 ¼ r0 � pnkþ1

� �
at

r ¼ Rkþ1. The yield criterion on the outer boundary of

the (k ? 2)th annulus must be checked. If

f ¼ ðrkþ2;n
h � Kprkþ2;n

r Þ
���
r¼Rkþ1

�rkþ2;n
c \0

� �
, the plastic

boundary is on the outer boundary of the (k ? 1)th

annulus and the plastic radius is updated. Otherwise this

process is repeated successively for rings k ? 3, k ? 4 …
until the extent the plastic zone is reached. Once the new

position of the plastic–damage interface is determined, the

stress field in the plastic–damage and in the elastic–damage

one is determined. In the damage zone, the displacement is

again calculated with Eq. 19.

In the plastic zone, strains are classically written as the

sum of the elastic part and the plastic part

_er ¼ _eer þ _epr ; _eh ¼ _eeh þ _eph ð55Þ

where the elastic strains are determined by using Hooke’s

law and the plastic strains derived from a plastic potential

gðrh;rrÞ ¼ rh � rrKw ð56Þ

according to

_epr ¼ _K
og

orr
¼ � _KKw

_eph ¼ _K
og

orh
¼ _K ð57Þ

where _K is a plastic multiplier. Thus, we can write

_epr þ Kw _e
p
h ¼ 0 ð58Þ

In an axisymmetric configuration,

_ei;nr ¼ dD _ui;nr
dr

; _ei;nh ¼ D _ui;nr
r

ð59Þ

From Eqs. 55, 58, and 59, and considering that Kw

remains unchanged during the loading process (no hardening

effect), the above rate equations can be integrated in time to

obtain the equation that governs the radial displacement

oDui;nr
or

þ Kw
Dui;nr
r

¼ Dee;i;nr þ KwDe
e;i;n
h

with Ri�1 � r�Ri; i ¼ 1; k
ð60Þ

In the left-hand side of the equation, the accumulated

elastic strains are assumed to be small enough so that the

small strain constitutive relationships (Eq. 35) hold.
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Finally, it is obtained that the radial displacement is the

solution of following differential equation

oDui;nr
or

þ Kw
Dui;nr
r

¼ 1

2Gn
i

A1Dr
i;n
r þ A2Dr

i;n
h

� 


with Ri�1 � r�Ri; i ¼ 1; k

ð61Þ

with

A1 ¼ 1 � vðKw þ 1Þ; A2 ¼ ð1 � vÞKw � v ð62Þ

Thus,

oDui;nr
or

þ Kw
Dui;nr
r

¼ 1

2Gn
i

B
i;n
1

r

Ri�1

� �Kp�1

þB
i;n
2

" #

ð63Þ

with

B
i;n
1 ¼ ri;nc

Kp � 1
þ pi�1;n

� �
A1 þ KpA2

� �
;

B
i;n
2 ¼ � A1 þ A2ð Þ r0 þ

ri;nc
Kp � 1

� � ð64Þ

The general solution for the radial displacement is

Dui;nr
r

¼ 1

2Gn
i

B
i;n
1

KpþKw

r

Ri�1

� �Kp�1

þCi;n Ri

r

� �Kwþ1

þ B
i;n
2

Kwþ1

" #

ð65Þ

where Ci,n is an integration constant and is found by

applying the condition of displacement continuity at the

interface between two adjacent rings

Ci;n ¼
1

Kp þ Kw
B
iþ1;n
1 ni;n � B

i;n
1

Ri

Ri�1

� �Kp�1
" #

þ Ciþ1;nni;n
Riþ1

Ri

� �Kwþ1

þB
iþ1;n
2 ni;n � B

i;n
2

Kw þ 1

with i ¼ 1; k � 1 ð66Þ

By applying the displacement continuity condition at the

plastic–damage interface (r = RP), we get

Ck;n ¼ nk;nDu
kþ1;n
r

��
r¼Rk

� B
k;n
1

Kp þ Kw

Rk

Rk�1

� �Kp�1

þ B
k;n
2

Kw þ 1

" #

ð67Þ

Appendix 3: Convergence of solution

We study here the effect of the discretization around the

tunnel and of the time step on the convergence curve. For

that, we assume a constant excavation rate of 1 m/day and

we take the following numerical values for the parameters

describing the behavior of the rock matrix: E0 = 650 MPa;

m = 0.3; c0 = 1 MPa, u = 26�, w = 0�, b1 = 0.01 day-1,

b2 = 0.85, b3 = 0.50. Different computations have been

performed with a number of ring between 20 and 1000 and

a time step between 0.5 and 10 days (Fig. 12).

It is obtained that for a time step smaller than

Dt = 1 day, the obtained diametrical closure of the tunnel

after 100 days differs from less than 0.25 % as compared

to the one computed with a time step Dt = 0.5 day

(Fig. 12a).

On the other hand, Fig. 12b shows the results for dif-

ferent number of rings. We observe that the numerical

solution converges with increasing number of rings and

that a discretization with 500 rings ensures a very accuracy

of the numerical results. Therefore, we choose a time step

Dt = 0.5 day and a number of ring of 500 in all the

computations.
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Fig. 12 Effect of the time step (a) and the number of annulus (b) on

the computed diametrical convergence (E0 = 650 MPa; m = 0.3;

c0 = 1 MPa, u = 26�, w = 0�, b1 = 0.01, b2 = 0.85, b3 = 0.50,

excavation rate of 1 m/day)
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Appendix 4: Comparison between the small
and large displacement approach

Figure 13 presents a comparison of the computed conver-

gence curve with and without updating the spatial dis-

cretization. This example corresponds to a section for

which a convergence of more than 2 m was recorded. The

computations show a difference of about 20 % between the

two computations after 100 days (2484 mm without

updating the mesh and 2040 mm with updating it).

Therefore, the large displacement approach is needed for

the sections of the Saint-Martin-la-Porte access adit

exhibiting metric convergences as encountered in the coal

schists zone.

References

1. Aiyer (1969) An analytical study of the time-dependent behavior

of underground openings. University of Illinois at Urbana-

Champaign

2. Atkinson BA (1987) Fracture mechanics of rock. Acad Press

Geol Ser. doi:10.1007/978-94-007-2595-9

3. Barla G (2001) Tunnelling under squeezing rock conditions. In:

Kolymbas D (ed) Tunnelling mechanics—advances in geotech-

nical engineering and tunnelling, eurosummer-school in tunnel

mechanics, Innsbruck, chap 3. Logos Verlag Berlin, Berlin,

pp 169–268

4. Barla G, Barla M (2000) Continuum and discontinuum modelling

in tunnel engineering. Min Geol Pet Eng Bull 12:45–57

5. Barla G, Bonini M, Debernardi D (2008) Time dependent

deformations in squeezing tunnels. 12th International conference

international association computation methods Adv Geomech

6. Barla G, Bonini M, Debernardi D (2010) Time dependent

deformations in squeezing tunnels. Int J Geoengin Case Hist

2:40–65. doi:10.4417/IJGCH-02-01-03

7. Barla G, Bonini M, Semeraro M (2011) Analysis of the behaviour of

a yield-control support system in squeezing rock. Tunn Undergr

Space Technol 26:146–154. doi:10.1016/j.tust.2010.08.001

8. Berest P, Nguyen-Minh D (1983) Modèle viscoplastique pour
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