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Abstract This paper reports numerical study of pore

pressure evaluation and liquefaction potential around off-

shore buried pipelines by using the local radial basis

function differential quadrature method. The current mesh-

free method is a combination of differential quadrature

approximation of derivatives and function approximation

of MQ-radial basis function. A multilayer node distribution

around a pipeline is used to obtain more accurate results in

the area near the pipelines. Various physical parameters of

the soil such as the permeability coefficient (k) and unit

weight (c) of the soil along with different shapes and lo-

cations of the trench layer are considered. The results are

obtained in terms of liquefaction potential contours and

pore pressure profiles. From the numerical aspect, the

outcomes verify that the current technique is capable of

solving different physical problems with complex

geometries.

Keywords Buried pipeline � Liquefaction � Local RBF-
DQ � Mesh-free method � Trench layer

1 Introduction

Today, a large part of population and industry are con-

centrated around the coast and more and more exploration

activities take place in coastal area and offshore. Marine

structures such as breakwaters, pipeline, oil drilling plat-

forms, and wind turbines are constructed to protect coastal

community, to facilitate marine transport, or to generate

energy. One of the major factors of lifeline damage in

earthquakes is horizontal ground displacement caused by

liquefaction of loose granular soils, as illustrated in the

case studies for many past earthquakes in the USA and

Japan [18].

In case of deformation of water-saturated soil, the

pressure of the water in the pores changes as the conse-

quence of the change in additional external load. Analysis

of soil under this condition is a complicated problem, in-

volving not only the mechanical properties of soil skeleton

but also the interaction with the pore water, which depends

on the permeability of soil and the geometry of the soil

volume. This condition is called ‘‘consolidation.’’ In the

extreme condition of undrained deformation, no movement

of pore water with respect to the soil skeleton occurs and

hardly any volume change is possible due to the large

stiffness of the pore water. The tendency of volume change

for the adjustment of soil particles under the applied load

causes a corresponding change in the pore water pressure.

In the case of a constant total mean pressure and undrained

deformation leading to an increase in pore pressure, the

effective pressure due to the interparticle forces is reduced

and therefore the frictional resistance of the soil becomes

less. The frictional resistance of the soil mass can reduce so

much that almost the whole total stress is carried by the

water. The extreme condition is often identified as the

‘‘liquefied’’ state of soil. The occurrence of this state may

lead to the flow of the soil mass, which is usually

catastrophic

Seismic performance of pipelines has been studied by

Trautmann et al. [30] and Newmark and Hall [7]. Kar-

amitros et al. [11] presented an analytical methodology to

simulate buried pipeline behavior under permanent ground-

induced actions. Sumer et al. [29] used wave tank to
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investigate sinking and floating of pipeline in liquefied

sand. Zhiying [32] introduced the initial and boundary

conditions to Terzaghi’s one-dimensional consolidation

equation containing pore pressure source term. Matsui [17]

presented an analytical solution for a rigid pipeline in a

semi-infinite seabed.

Due to the damages that may be caused by liquefaction

as explained in the previous section, efforts have been

developed to reduce the damage effects of this phe-

nomenon. Of particular interest are efforts to densify the

liquefiable soil and to provide drainage path to accelerate

pore pressure dissipation during seismic loading by inclu-

sion of column-like structure in the ground. Vibro-com-

paction, vibro-replacement, vibratory probe, and aggregate

piers are some examples of ground improvement tech-

niques that fit into this category.

Traditional numerical techniques such as finite differ-

ence, finite volume, and finite element methods (FDM,

FVM, and FEM) are routinely used to solve complex

problems. It is well known that these methods are

strongly dependent on mesh properties. However, in so-

lution of partial differential equations (PDEs) by these

methods for complex geometries, mesh generation takes

up very much time and is the most expensive part of the

simulation. In light of difficulties of the meshing-related

issues, various mesh-free methods have been developed.

Among them are smooth particle hydrodynamics (SPH)

[14], mesh-less local Petrov–Galerkin approach (MLPG)

[24, 25], least-squares mesh-free method (LSMFM) [25,

31], etc. Recently, a new mesh-free method is proposed

based on the so-called radial basis functions (RBFs) [6,

15]. Kansa [9, 10] introduced the direct collocation

method using RBFs. To approximate derivatives by using

RBFs, Shu and co-workers [5, 22] proposed the RBF-DQ

method, which combines the differential quadrature (DQ)

approximation [2, 23] of derivatives and function ap-

proximation of RBF. Previous applications [8, 12, 26–28]

showed that RBF-DQ is an efficient method to solve

linear and nonlinear PDEs and proved that the local radial

basis function differential quadrature (local RBF-DQ)

method is very flexible, simple in code writing and it can

be easily applied to linear and nonlinear problems. In this

method, the problem of ill-conditioned global matrix has

been solved by replacement of global solvers with block

partitioning schemes for large simulation problems as

shown in Fig. 1.

The main objective of the present work is to investigate

the effects of different physical parameters such as per-

meability coefficient (k) and unit weight of the soil (c)
along with different shapes and locations of the trench

layer on the liquefaction potential and pore pressure pro-

files. The mesh-free local RBF-DQ method is used for

numerical simulation to obtain the desired parameters. A

multilayer node distribution in the computational domain is

used to reduce the computation time and to obtain accurate

results around the pipe line.

2 Mathematical modeling and problem
formulation

The physical model of the present work is shown in Fig. 2.

The problem under consideration consists of a column of

soil in porous seabed of finite thickness h containing a

buried pipeline with radius r and surrounded by two im-

permeable walls.

2.1 Trench layer

In general, protection of a pipeline using a trench layer

involves the following design parameters: (1) the fill-in

materials and (2) configuration of the trench layer. In this

work, the trench layer is simulated by assigning different

properties for the trench layer. In the numerical simulation,

higher permeability is used to mimic the behavior of the

trench layer.

Fig. 1 Supporting knots around a centered knot Fig. 2 Physical model of the present investigation
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In this parametric study, the local RBF-DQ is used for

various shapes and locations of trench layers as shown in

Fig. 3. The computational domain is the same for all cases

which is a rectangle with length and width equal to 60 and

10 m, respectively. The center of pipeline is located at a

fixed depth of 1.5 m under the soil and on the vertical

center line of the domain.

2.2 Problem formulation

Based on Biot’s consolidation theory [3], the equation of

conservation for mass of saturated porous medium under

two-dimensional plane strain condition is expressed as

op

ot
¼ k � E � K 0

cf ½2ð1� 2mÞð1þ mÞK 0 þ ns � E�
o2p

ox2
þ o2p

oz2

� �
þ f

ð1Þ

where p is the pore pressure, cf the weight of pore water,

k the permeability coefficient of soil, ns the soil porosity, m
is Poisson’s ratio of the soil, K0 the bulk modulus of pore

fluid, and E the deformation modulus of the soil. Above f is

the mean accumulative pore pressure source term.

2.3 Boundary conditions

For the physical model shown in Fig. 2, the boundary

conditions in impermeable rigid bottom, impermeable

Fig. 3 Different shapes and arrangements of the trench layer around the pipeline
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boundaries, and the interfaces between soil particles and

pipelines can be expressed as:

where l is the width of computation domain, x0 and z0 are

the center coordinates of the pipeline, and n the outer

normal direction of pipeline. The accumulative excess pore

pressure for the sea surface is set to zero:

pðx; 0; tÞ ¼ 0 ð2bÞ

and the initial condition can be expressed as:

pðx; z; 0Þ ¼ 0 ð3Þ

2.4 Evaluating the accumulative excess pore

pressure

Seed et al. [20] suggested the source term in seabed under

seismic loading to be expressed as

f ¼ opg

oN

oN

ot
ð4Þ

where (qpg/qN) is obtained by cyclic undrained tests. In

Eq. 4, the relationship between pg (accumulative excess

pore pressure due to earthquake loading) and N (number of

cycles of stress application) can be expressed as follows

[19]:

opg

oN
¼ r00

N1

ð5Þ

where r00 denotes initial mean effective stress and N1 is the

number of uniform stress cycles required to cause

liquefaction and expressed approximately as follows [19]:

N1 ¼
1

a
seq
r00

� �1
b

ð6Þ

where a and b are the functions of soil type and relative

density, generally a = 0.246, b = -0.165. Following the

work of Seed et al. [20], the equivalent cyclic shearing

stress seq is expressed as follows:

seq ¼ 0:65
c zj j
g

� �
amaxrd ð7Þ

where z is the depth of calculation point to surface, g is the

gravitational acceleration, amax is the maximum ground

acceleration, c is the unit weight of soil, and rd is the

reduction coefficient of stress. qN/qt in Eq. (4) is expressed

as

oN

ot
¼ Neq

td
0\ t\ td ð8aÞ

oN

ot
¼ 0 t[ td ð8bÞ

where td is the total duration of earthquake shaking and

time is limited to td. Neq is equivalent number of uniform

load cycles for a given design earthquake [19]. The pore

pressure source term can be expressed as

f ¼ o

ot
r00

N

N1

� �
¼ r00Neq

N1td
ð9Þ

2.5 Numerical procedure

The local RBF-DQ method is described in this section. The

present method is different from the conventional RBF-

based collocation methods which are based on the function

approximation [21]. The RBF-DQ method directly ap-

proximates the derivatives. Hence, it can be easily applied

to the linear and nonlinear problems.

2.5.1 Radial basis functions

A radial basis function, denoted by uðkx� xjk2Þ, is a

continuous spline which depends on the separation dis-

tances of a subset of scattered points x 2 <d, in which d

denotes the spatial dimension. The most commonly used

RBF is

Multiquadrics (MQ) : uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
; c[ 0 ð10Þ

where r ¼ kx� xjk2: For scattered points, the

approximation of a function f(x) can be written as a

linear combination of H RBFs

opðx;�h; tÞ
oz

¼ 0 On the bottom rigid boundary:

opð0; z; tÞ
ox

¼ 0
opðl; z; tÞ

ox
¼ 0 For the impermeable boundaries:

op x; z; tð Þ
on

¼ 0 for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2þ z� z0ð Þ2

q
¼ r On the pipeline walls:

ð2aÞ
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f ðxÞ ffi
XH
j¼1

kju x� xj
�� ��

2

� 	
þ wðxÞ; ð11Þ

where H is the number of centers or knots

x; x ¼ ðx1; x2; . . .xdÞ, d is the dimension of the problem,

k’s are coefficients to be determined, and u is the RBF. If

Wq
d denotes the space of d-variate polynomials of order not

exceeding q, and letting the polynomials p1; . . .; pm be the

basis of Wq
d in <d, then the polynomial w(x), in Eq. (11), is

usually written in the following form

wðxÞ ¼
Xm
i¼1

fiPiðxÞ ð12Þ

where m ¼ ðq� 1þ dÞ!=ðd!ðq� 1Þ!Þ: To determine the

coefficients ðk1; . . .; kHÞ and ðf1; . . .; fmÞ, extra m equations

are required in addition to the H equations resulting from

the collocating Eq. (11) at the H knots. This is insured by

the m conditions for Eq. (11), that is

XH
j¼1

kjPiðxjÞ ¼ 0 i ¼ 1; . . .;m: ð13Þ

2.5.2 Differential quadrature method (DQ)

The DQ method is a numerical discretization technique for

approximation of derivatives which is initiated from the

idea of conventional integral quadrature. The essence of the

DQ method is that the partial derivative of an unknown

function with respect to an independent variable can be

approximated by a linear weighted sum of functional values

at all mesh points in that direction. Suppose that a function

f(x) is sufficiently smooth. Then, its mth-order derivative

with respect to x at a point xi can be approximated by DQ as:

f ðmÞx ðxiÞ ¼
XH
j¼1

w
ðmÞ
ij f ðxiÞ; i ¼ 1; 2; . . .;H; ð14Þ

where xj are the discrete points in the domain, and f(xj) and

wij
(m) are the function values at these points and the related

weighting coefficients, respectively. More detail can be

found in [26–28].

2.5.3 Local MQ-DQ method formulation

In the local MQ-DQ method, the MQ RBFs are used as the

basis functions to determine the weighting coefficients in

the DQ approximation of derivatives for a two-dimensional

problem [22]. However, the method can be easily extended

to three-dimensional problems. Suppose that the solution of

a partial differential equation is continuous, which can be

approximated by MQ RBFs, and only a constant is in-

cluded in the polynomial term w(x), the function in the

domain can be approximated by MQ RBFs as

f ðx; yÞ ¼
XH
j¼1

kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xjÞ2 þ ðy� yjÞ2 þ c2j

q
þ kHþ1 ð15Þ

To make the problem be well posed, one more equation

is required. From Eq. (13), we have

XH
j¼1

kj ¼ 0 ) kj ¼ �
XH

j¼1;j 6¼i

kj ð16Þ

Substituting Eq. (16) into Eq. (15) gives

f ðx; yÞ ¼
XH

j¼1;j 6¼i

kjgjðx; yÞ þ kHþ1 ð17Þ

where

gjðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xjÞ2 þ ðy� yjÞ2 þ c2j

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ2 þ c2i

q
ð18Þ

kH?1 can be replaced by ki and Eq. (17) can be written as

f ðx; yÞ ¼
XH

j¼1;j 6¼i

kjgjðx; yÞ þ ki ð19Þ

f(x, y) in Eq. (19) constitutes H-dimensional linear vector

space VH with respect to the operation of addition and

multiplication. Substituting all the base functions into Eq.

(18), we have

XH
k¼1

w
ðmÞ
ik ¼ 0 ð20Þ

ogj xi; yið Þ
ox

¼
XH
k¼1

w
ðmÞ
ik gj xk; ykð Þ � x� xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� xið Þ2þ y� yið Þ2þc2i

q
i ¼ 1; . . .;H; j 6¼ i

ð21Þ

For the given i, equation system (20, 21) hasH unknowns

with H equations. So, solving this equation system can

obtain the weighting coefficient swik
(m). From Eq. (18), one

can easily obtain the first-order derivative of gj(x, y) as

ogj xi; yið Þ
ox

¼ x� xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xj

 �2þ y� yj


 �2þc2j

q
� x� xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� xið Þ2þ y� yið Þ2þc2i

q ð22Þ

In the matrix form, the weighting coefficient matrix of

the x-derivative can then be determined by

½G�½Wn�T ¼ fGxg ð23Þ

where [Wn]T is the transpose of the weighting coefficient

matrix [Wn], and
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½Wn� ¼

w
ðnÞ
1;1 w

ðnÞ
1;2 � � � w

ðnÞ
1;H

w
ðnÞ
2;1 w

ðnÞ
2;2 � � � w

ðnÞ
2;1

..

. ..
. . .

. ..
.

w
ðnÞ
H;1 w

ðnÞ
H;2 � � � w

ðnÞ
H;H

2
6666664

3
7777775
;

½G� ¼

1 1 � � � 1

g1ðx1; y1Þ g1ðx2; y2Þ � � � g1ðxH ; yHÞ
..
. ..

. . .
. ..

.

gNðx1; y1Þ gNðx2; y2Þ � � � gHðxH ; yHÞ

2
66664

3
77775

½Gx� ¼

0 0 � � � 0

gnxð1; 1Þ gnxð1; 2Þ � � � gnxð1;HÞ
..
. ..

. . .
. ..

.

gnxðH; 1Þ gnxðH; 2Þ � � � gnxðH;HÞ

2
66664

3
77775

ð24Þ

With the known matrices [G] and [Gx], the weighting co-

efficient matrix of x-derivative [Wn] can be obtained by

using a direct or iterative method such as LU decomposi-

tion or SOR. The weighting coefficient matrix of the

y-derivative can be obtained in a similar manner. More

details can be found in Ref. [1, 4, 5, 13, 22, 23].

2.5.4 Shape parameter (C) in local MQ-DQ method

As mentioned before, the MQ approximation of the func-

tion contains a shape parameter C that could be knot de-

pendent and must be determined by the user. In our study,

C is chosen as a constant and is taken as 0.12, and the

number of supporting knots is taken as 16 based on the

previous work of Ding et al. [14].

3 Numerical validation of the present code

To validate the present code, the results obtained by MQ-

DQ model are compared with those of one-dimensional

model. The governing equations for the one-dimensional

model read [20]:

op

ot
� k � E � K 0

cf ½2ð1� 2mÞð1þ mÞK 0 þ ns � E�
o2p

oz2

� �
¼ r00Neq

N1td

0\t\td

ð24aÞ

Fig. 4 Comparison of the obtained result from the present code with

the analytical solution of Zhiying [32]

Fig. 5 Comparison of the present result with those obtained by

Maotian et al. [16]

Fig. 6 Node distribution within the computational domain

348 Acta Geotechnica (2015) 10:343–355

123



op

ot
� k � E � K 0

cf ½2ð1� 2mÞð1þ mÞK 0 þ ns � E�
o2p

oz2

� �
¼ 0 t[ td

ð24bÞ

The initial and boundary conditions for Eqs. (24a) and

(24b) can be expressed as follows:

pðz; 0Þ ¼ 0; pð0; tÞ ¼ 0;
opð�h; tÞ

oz
¼ 0 ð25Þ

Figure 4 shows the comparison of the obtained result

with the analytical solution of Zhiying [32] for

amax = 0.19 g, Neq = 15, td = 30 s, thickness of seabed

h = 15 m, unit weight of soil cs = 19 kN/m3 and porosity

of soil ns = 0.4. The deformation modulus, permeability

coefficient, and Poisson’s ratio of soil are E = 50 9 106

Pa, k = 0.004 m/s and m = 0.3, respectively. As can be

seen, the results are in an excellent agreement.

Moreover, the result of two-dimensional investigation

obtained by Maotian et al. [16] is compared with the result

of the present code in Fig. 5. The comparison indicates the

acceptable agreement of them.

4 Results and discussion

To obtain an accurate result around the pipeline along and

reducing the computational time, a multilayer node distri-

bution is used in the computational domain as shown in

Fig. 6. A serial test is carried out to obtain the appropriate

number of nodes inside the computational domain. The

independency of results from the number of the computa-

tional nodes is achieved for 4156 nodes inside the com-

putational domain.

The constant parameters used for the numerical com-

putations are: amax = 0.13 g, Neq = 27, td = 45 s. Thick-

ness of seabed is h = 10 m, and the porosity and unit

weight of soil are ns = 0.4 and cs = 20 kN/m3. The

deformation modulus, permeability coefficient and Pois-

son’s ratio of soil are E = 70 9 106 Pa, k = 0.0002 m/s,

and m = 0.35, respectively. The bulk modulus of pore fluid

is K0 = 2 9 109 Pa. The burial depth and radius of the

pipeline are set to y = 1.5 m and r = 0.5 m. The lique-

faction potential is defined as R ¼ p=r00 in this study, where
r00 = (cs - cf) 9 z is the initial vertical effective stress of

seabed and p is accumulative pore pressure induced by

seismic loading [32]. The liquefaction occurred when

R[ 1.

4.1 Effect of soil permeability of trench layer

Figure 7 shows the effect of trench layer’s permeability on

the accumulative excess pore pressure for case (1) with

Fig. 7 Development of accumulative excess pore pressure for various permeability coefficients of soil (k) a at the top of the pipeline b at the

bottom of the pipeline c at depth of 8 and 5 m from the pipe

Fig. 8 Variation of R along the vertical centerline in the solution

domain for different permeability of the trench layer
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depth (d = 6 m) and width (b = 4 m). The figure

demonstrates that with increase in permeability, the accu-

mulative excess pore pressure generation reduces. More-

over, Fig. 7c indicates that as the distance from the trench

layer enhances, the effect of trench layer diminishes.

Variation of liquefaction potential (R) along the vertical

centerline in the solution domain for different permeability

of the trench layer is shown in Fig. 8. The figure clearly

shows that as the distance from the trench layer increases,

the liquefaction potential profiles approach together be-

neath the pipe, indicating the reduction in trench layer

effect at these locations. In general, with growth of depth,

R decreases considerably as the rate of increasing effective

stress becomes greater than the rate of increasing accu-

mulative excess pore pressure.

Figure 9 shows the variation of R around the pipeline at

various angular locations. As seen, the maximum and

minimum values of liquefaction potential occur at h = 270

and h = 90�, respectively. In addition, increase in the

permeability coefficient causes the values of R to reduce.

4.2 Effect of unit weight of trench layer

Development of accumulative excess pore pressure for

various unit weights of soil at the top and bottom of the

pipeline is shown in Fig. 10a and b. This figure shows that

increase in unit weight of the trench layer has no significant

effect on the time–history curve of seismic accumulative

excess pore pressure far away the pipeline. Figure 11

shows the liquefaction potential profiles for various values

of cs along the vertical centerline of the computational

domain. The figure indicates that adding a trench layer with

higher unit weight has a significant effect on the decrease

in liquefaction potential inside the trench area. This re-

duction is due to the increasing effective stress in the trench

layer. It is worth mentioning that this effect becomes

negligible outside the trench layer.

4.3 Effect of width (b) of trench layer

Variation of the accumulative excess pore pressure for

various widths (b = 4, 5, 6 m) and a constant depth

Fig. 9 Variation of R around the pipeline at various angular locations

Fig. 10 Development of accumulative excess pore pressure for various unit weights of soil (cs); a at the top of the pipeline b at the bottom of the

pipeline
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(d = 4 m) of rectangular trench layer (case 1) is shown in

Fig. 12. It can be seen that the effect of b on the excess

pore pressure is not considerable. Figure 13 also shows that

the effect of trench layer width on the liquefaction potential

is not considerable along the vertical axis.

4.4 Effect of depth (d) of trench layer

Figure 14 shows the effect of trench layer depth on the

accumulative excess pore pressure for the trench layer

width (b = 6 m) and different depths (d = 4, 5, 6 m) for

case (1). The figure indicates that the effect of changing

depth of trench layer is more considerable than the effect of

trench layer’s width. In addition, the growth of d decreases

the accumulative excess pore pressure at the top and bot-

tom of the pipeline. As can be seen in Fig. 15, effect of

increasing the trench layer depth on the reduction in liq-

uefaction potential area is greater than the effect of the

trench layer’s width on that. Contrary to the effect of trench

layer width, as the depth of trench layer increases, the

Fig. 11 Variation of R along the vertical centerline in the solution

domain for different cs of the trench layer

Fig. 12 Development of accumulative excess pore pressure for various widths of rectangular trench layer; a at the top of the pipeline b at the

bottom of the pipeline
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liquefied area around the pipeline reduces noticeably and

disappears at d[ 5 m.

The comparison of the accumulative excess pore pres-

sure for a triangular trench layer with the base length of

6 m and height of 4 m is shown in Fig. 16. The comparison

is carried out for two different arrangements: case (4) and

case (5). These profiles indicate that case (5) where the

base of the triangle is located at the deeper location of

seabed causes less accumulative excess pore pressure.

Comparison of R for two arrangements of trapezoidal

trench layer of cases (2) and (3) is shown in Fig. 17. The

result is similar to the triangular trench layer case, but the

difference between these two cases are much less than

those of cases (4) and (5).

4.5 Effect of the trench layer location

Effects of different locations of the rectangular trench layer

on the accumulative liquefaction potential and liquefied
Fig. 13 Variation of R along the vertical centerline in the solution

domain for different trench layer widths

Fig. 14 Development of accumulative excess pore pressure for b = 6 m and various depths of rectangular trench layer; a at the top of the

pipeline b at the bottom of the pipeline
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area around the pipeline are shown in Figs. 18 and 19.

Figures 18 and 19 show that case (6) results in less lique-

faction potential around the pipeline.

5 Conclusion

Liquefaction of soil around a buried pipeline under earth-

quake loading is investigated in this study applying the

mesh-free local RBF-DQ method. Using a multilayer node

distribution in the computational domain, the effects of

various physical parameters of the soil such as the per-

meability of the soil coefficient (k) and unit weight (c) of
the soil along with different shapes and locations of the

trench layer are studied. From the liquefaction potential

contours and pore pressure profiles, the following results

are concluded:

(a) With increase in permeability of soil, the accumula-

tive excess pore pressure generation reduces. Hence,

Fig. 15 Countor of liquefaction of soil for various values of depth (d) of trench layer around pipeline

Fig. 16 Comparision of the accumulative excess pore pressure at during seismic loading for the triangular trench layer a at the top of the

pipeline b at the bottom of the pipeline
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increase in the permeability coefficient causes the

values of R to reduce.

(b) As the distance from the trench layer increases, the

effect of trench layer diminishes.

(c) The trench layer with higher unit weight has a

significant effect on the decrease in the liquefaction

potential inside the trench area.

(d) Increase in the width of the trench layer has no

significant effect on the accumulative excess pore

pressure generation.

(e) The effect of changing depth of the trench layer is

more considerable than the effect of its width.

(f) A triangular trench layer in which the base of the

triangle is located at the deeper location of seabed

causes less accumulative excess pore pressure.
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