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Abstract In this study, the displacement discontinuity

formulation is used to solve the problem of interaction

between hydraulic fractures (HF) and natural fractures

(NF). Furthermore, a numerical program (2DFPM) is

developed to study the mechanical activation of a NF

because of the propagation of the HF. The accuracy of the

numerical method is enhanced using the higher-order dis-

placement variation along the HF and the special crack tip

element near its ends. The maximum tangential stress cri-

terion is implemented to predict the HF propagation path,

and the stages of hydraulic fracturing tip approaching,

coalescence and fluid penetration along the NF are mod-

eled. The tangential stress around the NF with different

contact modes (bonded, sliding and opening) is calculated

by coupling the finite difference and boundary element

methods. The location of secondary tensile fracture that re-

initiates along the opposite side of NF is determined, and

the key parameters that have great influence on interaction

process are discussed. The results show that position, dis-

tance and inclination of the HF relative to the pre-existing

discontinuity have a strong influence on the HF propaga-

tion path.

Keywords Boundary collocation method � Displacement

discontinuity � Fracture propagation � Hydraulic fracturing �
Interaction � Natural fracture

1 Introduction

One of the most important features needed in hydraulic

fracture design is the ability to predict the geometry and the

characteristics of hydraulically induced fracture.

Due to the presence of discontinuities in rock mass, a

better understanding of how a hydraulic fracture interacts

with a NF is fundamental for predicting the ultimate size

and shape of hydraulic fractures formed by a treatment.

Some experimental research revealed the effect of NF

on hydraulic fracture propagation [3–5, 9–11, 21, 22, 26].

Blanton [4] demonstrated that at low interaction angles and

differential stresses, the NF can prevent the crack propa-

gation. However, at high interaction angles and differential

stresses, hydraulic fracture crosses the NF. Zhou et al. [26]

showed that in addition to differential in situ stresses and

interacting angle, friction coefficient is often a main and

effective parameter. The obtained results indicate that the

most significant factors affecting hydraulic fracture prop-

agation are interacting angle of the hydraulic fracture with

natural fracture, in situ stress condition, and NF shear

strength.

Some numerical studies were developed to study the

effect of natural fracture on hydraulic fracture [6, 20, 24,

25].

Boundary element method has been extensively used in

fracture mechanics and stress analysis [1, 2]. Displacement

discontinuity method (DDM) is an indirect boundary ele-

ment method, which has been used for analysis of crack

problems related to rock fracture mechanics. It should be
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noted that DDM does not have the re-meshing problem.

The higher-order variation of the displacement disconti-

nuities with special crack tip elements is usually used for

the treatment of crack problems [13, 15–18]. Fracture

modeling and crack propagation were also investigated

using meshless [27, 28] and finite element [14] methods.

In this study, a general higher-order displacement dis-

continuity method implementing crack tip element is used

to study the interaction of pressurized fracture with dis-

continuities. This paper shows how the interaction affects

the behavior of the natural fractures and activates them,

and consequently, the hydraulic fracture propagation path

and locations with potential to re-initiate the tensile crack

along the opposite side of NF are determined.

2 Displacement discontinuity method

A displacement discontinuity element (DDE) with length

of 2a along the x-axis is shown in Fig. 1a, which is char-

acterized by a general displacement discontinuity distri-

bution of ûðnÞ. By taking the ux and uy components of the

general displacement discontinuity to be constant and equal

to Dx and Dy, respectively, in the interval (-a, ?a) as

shown in Fig. 1b, two DDE surfaces can be distinguished,

one on the positive side of y (y = 0?) and another one on

the negative side (y = 0-). The displacements undergo a

constant change in value when passing from one side of the

DDE to the other side. Therefore, the constant element

displacement discontinuities Dx and Dy can be written as:

Dx ¼ uxðx; 0�Þ � uxðx; 0þÞ;Dy ¼ uyðx; 0�Þ � uyðx; 0þÞ
ð1Þ

The positive sign conversion of Dx and Dy is shown in

Fig. 1b [8].

2.1 The quadratic element formulation

The quadratic element displacement discontinuity is based

on analytical integration of quadratic collocation shape

functions over collinear, straight-line displacement dis-

continuity elements [18]. Figure 2 shows the quadratic

displacement discontinuity distribution, which can be

written in a general form as:

Diðe Þ ¼ N1ðe ÞD1
i þ N2ðe ÞD2

i þ N3ðe ÞD3
i ; i ¼ x; y

ð2Þ

where Di
1, Di

2 and Di
3 are the quadratic nodal displacement

discontinuities, and,

N1ðnÞ ¼ nðn� 2a1Þ=8a21; N2ðnÞ ¼ �ðn2 � 4a21Þ=4a21;
N3ðnÞ ¼ nðnþ 2a1Þ=8a21 ð3Þ

are the quadratic collocation shape functions using

a1 = a2 = a3. A quadratic element has 3 nodes, which are

at the centers of its three sub-elements.

The displacements and stresses for a line crack in an

infinite body along the x-axis, in terms of single harmonic

functions g(x,y) and f(x,y), are given by Crouch and Star-

field [8] as:

ux ¼ 2ð1� m Þf;y � yf;xx
� �

þ �ð1� 2m Þg;x � yg:xy
� �

uy ¼ ð1� 2m Þf;x � yf;xy
� �

þ 2ð1� m Þg;y � yg:yy
� �

ð4Þ

and the stresses are

rxx ¼ 2l 2f;xy þ yf;xyy
� �

þ 2l g;yy þ yg;yyy
� �

ryy ¼ 2l �yf;xyy
� �

þ 2l g;yy � yg;yyy
� �

rxy ¼ 2l f;yy þ yf;yyy
� �

þ 2l �yg;xyy
� �

ð5Þ

l is shear modulus and, f,x,g,x,f,y, g,y, etc. are the partial

derivatives of the single harmonic functions f(x,y) and

g(x,y) with respect to x and y, in which these potential

functions for the quadratic element case can be find from:

f ðx; yÞ ¼ �1

4pð1� mÞ
X3

j¼1

Dj
xFjðI0; I1; I2Þ;

gðx; yÞ ¼ �1

4p ð1� m Þ
X3

j¼1

Dj
yFjðI0; I1; I2Þ ð6Þ

in which, the common function Fj is defined as:

FjðI0; I1; I2Þ ¼
Z

NjðnÞ ln ðx� nÞ2 þ y2
h i1

2

dn; j = 1, to 3

ð7Þ
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Fig. 1 a DDE and the distribution of u(n). b Constant element

displacement discontinuity
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Fig. 2 Quadratic collocations for the higher-order displacement

discontinuity elements
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where the integrals I0, I1 and I2 are expressed as follows:

I0ðx; yÞ ¼
Za

�a

ln ðx� n Þ2 þ y2
h i1

2

dn ¼ yðh1 � h2Þ

� ðx� aÞ lnðr1Þ þ ðxþ aÞ lnðr2Þ � 2a ð8� aÞ

I1ðx; yÞ ¼
Za

�a

n ln ðx� n Þ2 þ y2
h i1

2

dn

¼ xyðh1 � h2Þ þ 0:5 y2 � x2 þ a2
� �

ln
r1

r2
� ax

ð8� bÞ

I2ðx;yÞ¼
Za

�a

n2 ln ðx�nÞ2þy2
h i1

2

dn¼ y

3
3x2�y2
� �

ðh1�h2Þ

þ1

3
3xy2�x3þa3
� �

lnðr1Þ�
1

3
3xy2�x3�a3
� �

� lnðr2Þ�
2a

3
x2�y2þa2

3

� �
ð8�cÞ

The terms h1,h2, r1 and r2 in this equation are defined as:

h1 ¼ arctan
y

x� a

� 	
; h2 ¼ arctan

y

xþ a

� �
;

r1 ¼ x� a2
� �

þ y2
� �1

2; and r2 ¼ xþ að Þ2þy2
h i1

2

2.2 Crack tip element and stress intensity factor

Analytical solutions of crack problems for various

loading conditions show that the stresses at the distance

r from the crack tip always vary as r-0.5 if r is small.

Due to the singularity variations 1=
ffiffi
r

p
and

ffiffi
r

p
for the

stresses and displacements at the vicinity of the crack

tip, the accuracy of the displacement discontinuity

method decreases, and usually, a special treatment of the

crack at the tip is necessary to increase the accuracy and

make the method more efficient. A special crack tip

element that already has been introduced in literature

e.g., [18] is used here, to represent the singularity feature

of the crack tip. Using the special crack tip element of

length 2a, as shown in Fig. 3, the parabolic displacement

discontinuity variations along this element are given as:

DiðeÞ ¼ DiðaÞ n=að Þ
1
2 ; i ¼ x; y ð9Þ

where n is the distance from tip along the crack and

Dy(a) and Dx(a) are the opening (normal) and sliding

(shear) displacement discontinuities at the center of special

crack tip element.

Substituting Eq. (9) into Eqs. (4) and (5), the displace-

ment and stresses can be expressed in terms of Di(a). Then,

the potential functions fC(x, y) and gC(x, y) for the crack tip

element can be expressed as:

fCðx; yÞ ¼
�1

4p ð1� m Þ

Za

¼a

DxðaÞ
a

1
2

n
1
2 ln ðx� nÞ2 þ y2

h i1
2

dn

gCðx; yÞ ¼
�1

4p ð1� m Þ

Za

¼a

DyðaÞ
a

1
2

n
1
2 ln ðx� nÞ2 þ y2

h i1
2

dn

ð10Þ

These functions have a common integral of the

following form:

IC ¼
Z2a

0

n
1
2 ln ðx� nÞ2 þ y2

h i1
2

dn ð11Þ

3 Numerical discretization

Numerical solution to any problem by discretizing a curved

or straight-line crack with enough elements and summing

the effects of all N elements can be found (Fig. 4).

The discretized form of displacement discontinuity

equation can be formed based on the principle of super-

position as:

r
i
s ¼

PN

j¼1

Aij
ssD

j

s þ
PN

j¼1

Aij
sn D

j

n

r
i
n ¼

PN

j¼1

Aij
nsD

j

s þ
PN

j¼1

Aij
nn D

j

n

9
>>>=

>>>;

1� i�N ð12Þ

u
i
s ¼

XN

j¼1

Bij
ssD

j

s þ
XN

j¼1

Bij
sn D

j

n

u
i
n ¼

XN

j¼1

Bij
nsD

j

s þ
XN

j¼1

Bij
nn D

j

n

9
>>>>>=

>>>>>;

1� i�N ð13Þ

where Ds
j and Dn

j are the shear and normal components of

discontinuity with respect to the local coordinates s and n at

the jth element. rs
j and rn

j are the shear and normal stress at

the midpoint of the ith element. Aij and Bij are the influence

coefficient matrix accounting for the different positions and

xu

ξ

( )xD ξ

( )yD ξ

a

y

r
v

Fig. 3 Displacement correlation technique for the special crack tip

element
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orientations of each element. The coefficient Aij
ns, for

example, gives the normal stress at the ith segment (rn
i ) in

terms of the shear component of displacement discontinu-

ity at the jth segment (Ds
j). Finally, a system of

2(3 N) simultaneous linear equations in 2(3 N) unknowns

(DD) is made. Given the boundary conditions on each

element, the system of algebraic equations is solved. These

equations can be solved by standard methods of numerical

analysis, e.g., elimination or iteration, and the values of

elemental DD, element by element along the boundary can

be gotten. In this study, the LU factorization method is

used in this study. The four basic steps of the numerical

program (2DFPM), which is developed by authors, are

shown in the following flowchart (Fig. 5).

It’s necessary to declare that the fluid pressure distri-

bution along the HF is assumed constant in this study for

simplicity. Because of the less effect of fluid pressure

distribution on the HF and NF interaction, this assumption

does not have significant consequence on the accuracy of

the results.

4 Fracture propagation criterion

The ‘‘stress intensity factor’’ is an important concept in

fracture mechanics. Since the DDM is used in this research,

it is necessary to use the formulations given for the SIF (KI

and KII) in terms of the normal and shear displacement

discontinuities [17, 23]. Based on liner elastic fracture

mechanics (LEFM) theory, the mode I and mode II stress

intensity factors KI and KII can be written in terms of the

normal and shear displacement discontinuities as [18]:

KI ¼
l

4 1� mð Þ
2p
a

� �1
2

DyðaÞ; andKII

¼ l
4 1� mð Þ

2p
a

� �1
2

Dx að Þ ð14Þ

Then, the mixed mode of stress intensity factors (i.e.,

mode I and mode II fractures, which are the most

commonly fracture modes occur in rock fracture

mechanics) is numerically computed.

Several mixed mode fracture criteria have been used in

the literature to investigate the crack initiation direction

1
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Fig. 4 Representation of a crack by N elemental displacement discontinuities

start

Read data file

Step 4

Define geometry and coordinates of 
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Solve the equation [C]{D}={b} for the 
displacement discontinuity {D}
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Fig. 5 General flowchart of 2DFPM
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and its path [23]. As most of rocks have brittle behavior

under tension, the mode I fracture toughness KIC (under

plain strain condition) with the maximum tangential stress

fracture criterion (r-criterion) introduced by Erdogan and

Sih [12] mostly is used to predict the crack propagation

direction.

Based on this criterion, the crack tip will start to prop-

agate when:

cos
h0
2

KIcos
2 h0
2
� 3

2
KIIsin

h0
2

� �
¼ KICð14Þ ð15Þ

where h0 is the crack propagation angle follows that

h0 ¼ 2 arctan
1

4

KI

KII

� �
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI

KII

� �2

þ8

s2

4

3

5 ð16Þ

The latter value corresponding to the crack tip should

satisfy the condition:

KIsinh0 þ KII 3cosh0 � 1ð Þ ¼ 0 ð17Þ

For a given crack length of 2a, under a certain loading

condition, the crack propagation angle h0 is predicted

(based on LEFM principles and r-criterion, i.e., Eqs. (15)
and (16)). Then, the original crack for each tip is extended

by an amount Da that has equal length with crack tip

element. This element will be perpendicular to the

maximum tangential stress near the crack tip. So a new

crack length (2a ? 2Da) is obtained and again Eqs. (15)

and (16) are used to predict the new conditions of crack

propagation for this new crack.

5 Joint element

For an elastic joint element with zero initial deformations,

the joint element deforms only in response to the induced

stress caused, for example, by an approaching hydraulic

fracture. The relation between tractions and the displace-

ment discontinuities on the joint surface (having N ele-

ments) is [8]:

0 ¼ ðKsÞð
i

D
i

sÞ þ
XN

j¼1

Aij
ss
D
j

s þ
XN

j¼1

Aij
sn
D
j

n

0 ¼ ðKnÞð
i

D
i

nÞ þ
XN

j¼1

Aij
ns
D
j

s þ
XN

j¼1

Aij
nn
D
j

n

9
>>>>>=

>>>>>;

1� i�N

ð18Þ

Kn
i and Ks

i are the normal and shear rigidity of the joint

and Ass(i, j), etc. are the corresponding influence

coefficient. Dn
i and Ds

i are the total joint deformation

which can be expressed as the sum of the initial total joint

deformation ((Dn
i )0 and (Ds

i)0) and the induced deformation

(Dn

0i and Ds

0i). In this type of joint element, the natural

fracture has reached equilibrium with geological time, and

it does not deform elastically or plastically under far field

stresses prior to the process of hydraulic fracturing, and the

initial stress field around a hydraulic fracture was not

affected by the presence of natural fracture.

During elastic deformation, there is a constraint

between the normal (rn
i ) and shear (rs

i) stresses across

the joint, which is given by Mohr–Coulomb condition

(shown Fig. 6). The total shear stress across a Mohr–

Coulomb joint element cannot exceed the value specified

by Eq. 19.

rs
i


� c

i þð� rn
i Þ tan/

i

ð19Þ

where /i is the angle of friction and ci is the cohesion. It is

required that the element be allowed to undergo a certain

amount of inelastic deformation or permanent slip, when

the total shear stress on the joint element, |rs
i |, exceeds the

total yield stress.

If the element is yielding, the total shear stress must

equal the yield stress. The initial joint deformation is zero

for a joint in this case (Dn
i = Dn

0i and Ds
i = Ds

0i), and then,

the governing equations for the normal and shear defor-

mation can be written as:

� r
i
s;yield ¼ ðri sÞ0 þ

XN

j¼1

Aij
ss
D
j

s þ
XN

j¼1

Aij
sn
D
j

n

0 ¼ ðKnÞð
i

D
i

nÞ þ
XN

j¼1

Aij
ns
D
j

s þ
XN

j¼1

Aij
nn
D
j

n ð20Þ

where

Sign ris;yield

� 	
¼ sign ris

� �
total

� �
ð21Þ

2
i

φ

i

sσ−

cot
i i

c φ

Sliding

2
i

c

tan
i i i i

s ncσ σ φ− = −

i

nσ−

tan
i i i i

s ncσ σ φ+ = −

Stick

Opening

Fig. 6 Mohr diagram for a joint element under different contact

mode and different stress conditions
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Joint separation or tensile cracking is another possible

failure mode for the joint elements. According to the

Mohr–Coulomb condition, the tensile strength of a joint

element can be expresses as:

r
i

n ¼ c
i
cot/

i

ð22Þ

The tensile stress transmitted across an element cannot

be greater than this, so the element must be allowed to crack

open whenever rn
i = ci cot /i. Alternatively, and perhaps

more realistically, we can use a tensile strength cutoff,

rn
i = T0

i (0 B T0
i B ci cot ui), and allow the element to

open whenever rn
i = T0

i . In both cases, when the tensile

stress across an element is greater than the tensile strength,

the total normal and shear stresses become zero for an open

element. For a joint with N elements, if element i becomes

an open joint element, the following equations must be

used:

�ðri sÞ0 ¼
XN

j¼1

Aij
ssD

j

s þ
XN

j¼1

Aij
sn D

j

n

� ðri nÞ0 ¼
XN

j¼1

Aij
nsD

j

s þ
XN

j¼1

Aij
nn D

j

n ð23Þ

6 Numerical procedure

If there are N elements altogether, with M displacement

discontinuity stress elements along the HF boundary and

N–M displacement discontinuity elements along the joint,

then, the first 2(3 M) equations in the system are:

�ðri sÞ0 ¼
XN

j¼1

Assði; jÞDj
s þ

XN

j¼1

Asnði; jÞDj
n

� ðri nÞ0 ¼
XN

j¼1

Ansði; jÞDj
s þ

XN

j¼1

Annði; jÞDj
n

9
>>>>>=

>>>>>;

1� i�M

ð24Þ

The remaining 2(3(N–M)) equations are:

0 ¼ ðKsÞð
i

D
i

sÞ þ
XN

j¼1

Aij
ss
D
j

s þ
XN

j¼1

Aij
sn
D
j

n

0 ¼ ðKnÞð
i

D
i

nÞ þ
XN

j¼1

Aij
ns
D
j

s þ
XN

j¼1

Aij
nn
D
j

n

9
>>>>>=

>>>>>;

M þ 1� i�N

ð25Þ

The numerical algorithm employed for joint modeling is

based on incremental loading of boundary tractions. The

initial tractions are divided into K increments with equal

size and are applied step by step.

ðri sÞk0 ¼
k

K
ðri sÞ0; ðri nÞk0 ¼

k

K
ðri nÞ0 ð26Þ

The incremental loading is continued until all K load

increments are applied [8]. In each time step, at kth

iteration and at element i, first, a joint contact type (for

example, stick mode) is assumed, and the shear and normal

displacements D
i ðkÞ

s , D
i ðkÞ

n at the ith element are achieved

using Eq. 18. Then, the total stresses at the ith element can

be obtained and the yield stress at the kth iteration

according to Eq. 19 can be calculated. After that a check

is made to see whether the yield/opening condition is met

or not according to Eqs. 19 and 22. The Eqs. 20, 18 and 23

are used to compute the next approximation of the normal

and shear displacements at the ith elements (D
i ðkþ1Þ

n and

D
i ðkþ1Þ

s ) for the yield, stick and opening conditions,

respectively. Lastly, the total stresses can be found and

used to check the contact state again. If the new and the

previous contact modes are not in agreement, the assumed

contact mode must be changed and DD must be solved

again. The process will be stopped when the new and the

assumed contact modes are the same and resultant DD and

stresses at each element i along the joint converge. The

incremental technique (k) that is used for applying

the boundary tractions in 2DFPM is shown in Fig. 7. At

the end of the incremental loading, the procedure continues

to calculate the characteristics of the new crack length

3 

no

yes

yes

No

yes

no

Increment loading step

Calculate the stress and displacement 
boundary influence coefficients

Solve algebraic equations

Evaluate frictional slip 
conditions on NF elements

Fracture propagation criterion

Check if any element slip or 
open

Conv. factor<

k=1:K

Modify the boundary condition

Add new increment

CP=1:S

Fig. 7 General flowchart of incremental and iterative technique in

2DFPM
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(2a ? 2Da) and after that the iterative technique (CP) is

used for fracture propagation steps.

The algorithm of calculation of tangential stress along

the NF is presented in ‘‘Appendix’’.

7 Verification of higher-order displacement

discontinuity

For verification of the numerical program (2DFPM), a

problem with analytical solution is solved and the results of

numerical program compared with analytical results and

the validity of the program in calculation of tangential

stresses are confirmed.

7.1 Bonded interface

The accuracy of the program is demonstrated by examining

the shear stress along a bonded interface just ahead of the

fracture (x = 0) that subjected to an isotropic remote ten-

sile stress (5 MPa) and its tip is s = 0.5 cm from the

interface. The analytical solution for stresses around a 1

m long, open crack within a homogeneous, isotropic and

linear-elastic body subjected to uniform remote tension can

be derived from the Westergaard function (e.g., [19]).

The comparison between numerical results and the

analytical values of the shear stresses is shown in the

Fig. 8, and good agreement between the numerical and

analytical results (the error\5 %) is displayed.

8 Interaction between hydraulic and natural fractures

In order to study the interaction between HF and NF, some

problems of hydraulic fracture propagation near

discontinuities are modeled. Then, shear, normal and tan-

gential stresses on the other side of NF are calculated by

2DFPM and the HF propagation path and the change in its

direction near the NF is investigated.

To reduce the number of independent variables and for

simplicity, the dimensionless parameters are used [6].

�rij ¼
rij
rm

; �r1ij ¼
r1ij
rm

ð27Þ

where rm = (r1 ? r3)/2 is the mean in situ stress and rij is
the stress tensor components. The distance and spacing are

normalized by the initial length of hydraulic fracture (LHF).

�x ¼ x

LHF
; �y ¼ y

LHF
; �r ¼ r

LHF
; �q ¼ q

LHF
ð28Þ

where q is the distance between the tip of hydraulic frac-

ture and NF.

The shear and normal displacements (Ds,n) along the NF

are normalized as follows:

�Dk ¼
Dk

LHF

G

ð1� tÞrm
ð29Þ

where G and m are shear modulus and Poisson ratio of rock,

respectively.

8.1 Interaction between hydraulic fracture and inclined

natural fracture

Interactions between the hydraulic fracture and the inclined

natural fracture are investigated in an infinite space

(Fig. 9). For studying the effect of cross angle of HF on

interaction process, the interaction between HF and NF

with 40-degree angle related to the x-axis is modeled here.

The strength and shear properties of rock and NF are

mentioned in Table 1. The NF with shear strength
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properties equal to moderate strength (u = 26.6�,
c = 2.2 MPa and T0 = 0.2 MPa) is investigated here. The

fluid pressure inside the HF is constant along the HF and

equal to -3.9 MPa, and maximum and minimum hori-

zontal stresses are -2.1 and -1.9 MPa, respectively.

The NF (length of 20 m) was discretized with quadratic

DD elements with an equal length and the HF (length of

2 m) was discretized with quadratic DD elements with

equal length and 2 crack tip elements for HF tip. Elements

with 0.5 mm length are selected for 2 m of central NF and

2.5 cm length for other elements. The distance between the

HF tip and NF is equal to 0.1 m for this problem.

The maximum tangential stress (maximum principal

stress) that is created on the other side of the NF is cal-

culated. This parameter can characterize the ability of HF

to cross the NF or arrest by that. For better description of

this process, the normal and shear stresses along the NF are

estimated too.

Normalized normal and shear displacement curves of

NF are shown in Fig. 10. It can be seen that the normal and

shear displacements are equal to zero along most of NF

length and the opening and sliding are happening along the

NF only near the HF tip. In this problem, we suppose that

the NF has initial aperture and the normal stresses can

close it. The results show the elements (598–602) in

-0.092\ y\-0.079 range slipped, while the elements

(603–647) that are in the—0.076\ y\ 0.066 range

opened (opening section).

Normalize profiles of normal, shear and tangential

stresses along the NF are shown in Fig. 11. As shown in

this Fig, the maximum principal stress has two different

peak points along the opposite side of NF. These two points

could become most probable locations for HF re-initiation

at the NF before the HF cross the NF. The results show the

positions of two peaks locate on the end of the opening

section. It should be mentioned that in the opening section

the normal and shear stresses are zero.

Normalize curves of normal and shear displacements for

L0 = 0 are shown in Fig. 12. The values of displacements

are several times greater than the displacements in the

previous case. For this case the results show, the elements

(627–677) that are in the 0.002\ y\ 0.162 range opened,

while the elements (678–689) in 0.166\ y\ 0.201 range

slipped.

The maximum principal stress has two different peak

points along the opposite side of NF, but one peak is very

greater than another (Fig. 13). The location of the greater

peak that shows the potential points for hydraulic fracture

re-orientation is located on the positive side (y[ 0) of NF.

For better understanding the movement of peak location

along the NF (y[ 0), the maximum principal stress for

different distances (L0) is calculated (Fig. 14). The results

show when the distance is decreased, the maximum prin-

cipal stress is increased and the location of peak is farther

from the center of NF. The distance between the peak

location and the center of the NF is equal 0.4 m for this

case.

8.2 Fluid flow into the natural fracture

Modeling of the fluid flow into the NF after the coalescence

with the HF is studied in this section. Parameters and

geometry of HF and NF in previous section are used to

study this process. The previous results show the elements

of NF in the positive side of y axis are opened (Fig. 12),

and then, the fluid-filled zone (Lb) is selected for these

elements (Fig. 15). The zone of pressurized NF is extended

gradually and the profile of normalizes principle stress

along the NF is studied.

The results show the fluid-filled zone can shift the peak

of principal stress along the NF. These peaks indicate the

most probable points of HF re-initiation along the NF that

move along the NF with increasing the length of fluid-filled

zone and locate at the end of this zone (Fig. 16).

The normal opening along the NF for different fluid-

filled lengths is shown in Fig. 17. As a result, the fluid

pressure front never coincides with the HF tip, allowing

finite lag zone (empty open zone without fluid) to be cre-

ated in front of the pressurized zone.

For studying the effect of fluid pressure on location of

maximum principle stress peak, the maximum principle

0L

Natural Fracture

x

y

Back side
of the NF

L2

θ
Hydraulic Fracture

Hσ
hσ

L1

Fig. 9 The geometry of interaction between the HF and inclined NF

Table 1 Rock and NF parameters

Rock properties NF properties

Elastic

modulus = 14 GPa

Cohesion = 2.2 MPa, friction angle = 26.6�
and tensile strength = 0.2 MPa

Poisson ratio = 0.1 NF normal stiffness = 0.5 GPa/m

NF shear stiffness = 0.25 GPa/m
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stress is calculated for different fluid pressure in

Lb = 0.6 m (Fig. 18). The results show with increasing the

fluid pressure inside the NF, the location of peaks move

further to the right part of NF and then fluid pressure

increasing cause the HF to deviate from original path.

These results are in agreement with those of Cooke and

Underwood [7], Chuprakov et al. [6] and Xue [24].

9 Hydraulic fracture path near the natural fracture

A better understanding of how a HF interacts with a NF is

fundamental for predicting the ultimate size and shape of

the hydraulic fractures formed by a treatment. Thus, the

propagation path of the HF near the NF which can be

considered as a closed crack is investigated. The Poisson

ratio and Young modulus are considered m = 0.2,
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Fig. 13 Stress distribution along a moderate NF that inclined with 40� (L0 = 0)
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Fig. 15 The geometry of interaction between the HF and NF partly

filled with fluid
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E = 20,000 MPa, respectively. The friction coefficient

between the NF surfaces is assumed to be 0.2 and the

material cohesion is zero. The lengths of the HF and the NF

are 0.5 and 2 m, respectively, and the fluid pressure inside

the HF is 29.1 MPa. The minimum and maximum hori-

zontal stresses are 9.7 and 19.4 MPa, respectively.

The NF has various inclination (15�, 30� and 90�)
related to the rh;min direction. The crack paths for three

different NF inclination angles are shown in Fig. 19. The

results show, when the inclination angle is 90�, the HF

grows along x-direction until cross the left surface of the

NF and the maximum deviation is occurred for NF with

15� inclination. The results show the NF can deviate the

HF in high inclination angles in spite of high differential

stresses. NF changes the field stress near its surface and

causes the principal stresses to be locally parallel and

perpendicular to the surface; therefore, all hydraulic frac-

tures tend to interact with NF at right angle.

For calculating the effect of shear strength of NF on HF

path near the NF, HF propagation near the NF with zero

and infinite strength is modeled too. As is shown in Fig. 20,

for a bonded NF (without opening and sliding) with 30�
inclination, the HF propagates in its direction, but for

unbonded NF (with opening and sliding), the HF deviates

from its original direction.

10 Conclusion

In this study, the problem of interaction between a

hydraulic fracture and a pre-existing natural fracture in

an impermeable media is investigated numerically with
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constant pressure distribution assumption along the

hydraulic fracture. Furthermore, the numerical program

(2DFPM) is developed to study the mechanical activa-

tion of a NF because of the propagation of the HF.

Joint elements are employed to describe different NF

contact modes (stick, slip and open mode). The maxi-

mum tangential stress criterion is implemented sequen-

tially to trace the crack propagation path. The stages of

hydraulic fracturing tip approaching, coalescence and

fluid penetration along the NF is modeled. By coupling

the finite difference and boundary element (DDM), the

tangential stress along the both side of the NF is cal-

culated and the maximum principal stress peaks (tensile

stress) that are the locations of new tensile fractures are

founded.

The results display before the HF reaches a NF, the

fracture re-initiation across the NF and with an offset is

probable. The results show that the probable re-initiation

points are located in the end of the open zone along the NF,

which shift with decreasing the distance between the HF tip

and NF. After that, HF trajectories near a NF and prior to

coalesce with the NF are examined using different joint

properties. The results show HF trajectories near a NF

deviate from the direction of the maximum horizontal

stress because of NF inclination angle and shear strength. It

is found that the position, distance and inclination of the

HF relative to the natural fractures have a strong influence

on the HF propagation path.

Appendix

The tangential stresses rt
i? and rt

i- on the both side of the

ith element of the crack can be written in the following

form:

r
i þ
t ¼ 1

2
ðri

�
t þ r

i þ
t Þ �

1

2
ðri

�
t � r

i þ
t Þ;

r
i �
t ¼ 1

2
ðri

�
t þ r

i þ
t Þ þ

1

2
ðri

�
t � r

i þ
t Þ

where

r
i �
t � r

i þ
t ¼ 2G

1� m
D
iþ1

s cosð b
iþ1

� b
i

Þ � D
i�1

s cosðb
i

� b
i�1

Þ
� �

=Ds
i

� �

� 2G

1� m
D
iþ1

n sinð b
iþ1

� b
i

Þ þ D
i�1

n sinðb
i

� b
i�1

Þ
� �

=Ds
i

� �

where b is the inclination angle of the elements and

Ds
i

¼ a
i�1

cosðb
i

� b
i�1

Þ þ 2a
i

þ a
iþ1

cosð b
iþ1

� b
i

Þ

In which, the term 1
2
ðrt
i � þ rt

i þÞ is continues. This term
represents the combined effects of the N elemental

displacement discontinuities along the boundary and is

written [8]:

1

2
ðri

�
t þ r

i þ
t Þ ¼ 2G

XN

j¼1

2 cos2 c �F4 � sin 2c �F5 þ �yðcos 2c �F6 þ sin 2c �F7Þ
� �

D
i

s

þ 2G
XN

j¼1

� �F5 � �yðsin 2c �F6 � cos 2c �F7Þ½ �D
i

n

then

rt
i þ ¼

XN

j¼1

Aij
ts
D j

s þ
XN

j¼1

Aij
tn
D j

n �
1

2
ðri

�
t � r

i þ
t Þ

rt
i � ¼

XN

j¼1

Aij
ts
D j

s þ
XN

j¼1

Aij
tn
D j

n þ
1

2
ðri

�
t � r

i þ
t Þ

The maximum principal stress is calculated along the

frictional interface at points between successive elements

from the normal, shear and tangential stresses. The

maximum principal stress is determined above and below

the interfaces from the respective normal and shear

stresses.

r�1 ¼ r�xx þ ryy
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�xx � ryy

2

� �2

þryx

s

When the maximum tensile stress (r1) exceeds the

tensile strength of the rock, a new fracture will grow

perpendicular to the direction of maximum tension. The

new splay crack is oriented at an angle a from the frictional

interface that is p/2 from the orientation of the maximum

tensile stress.

a�1 ¼ p
2
þ 1

2
tan�1 2ryx

r�xx � ryy

� �
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