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Abstract Sufficient support pressure is required for tun-

neling by the shield machine to prevent the face collapse. It

is found that the failure mechanism and soil aching effect

have great influence on the accurate evaluation of the

required support pressure by using the limit equilibrium

methods, especially in cohesionless soils. In this paper, an

improved 3D wedge-prism model which considers the

height of the prism and the effect of soil arching was

proposed for the analysis of tunnel face stability. In this

model, the height of the prism is thought to be min{C, 2L}

(where C is the cover depth and L is the width of the prism)

by summarizing the results of previous researchers. The

effects of soil arching are mainly embodied in the lateral

stress ratio between the prism and the adjoining soils. An

analytical formula for the lateral stress ratio Ks between the

prism and the adjoining soils which reflects soil arching

effects was also proposed. Comparing the results (i.e., the

limit support pressure) from theoretical models and typical

model tests (i.e., centrifuge model test and 1 g model test),

the accuracy of the improved wedge-prism model was

verified. A design chart was finally proposed for deter-

mining the limit support pressure during tunneling in the

cohesionless ground.

Keywords Face stability � Limit equilibrium method �
Soil arching � Tunneling � Wedge-prism model

List of symbols

C Cover depth of the tunnel

D Diameter of the tunnel

C/D Relative depth of the tunnel

Ks Lateral stress ratio between the prism and the

adjoining soils

k Ratio of horizontal to vertical stress in the wedge

H Height of the prism

L Width of the prism

B Length of the prism

b Inclination angle of the wedge

slim Limit support pressure

c Unit weight of the cohesionless soil

/ Friction angle of the cohesionless soil

1 Introduction

The need for mechanized excavation of tunnels in cities has

continuously increased in recent years. One important

subject for tunneling by the shield machine (i.e., EPB

shield or slurry shield) is to control the face stability,

especially in cohesionless soils (e.g., sandy soils). That
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means, in the practical tunnel engineering, sufficient sup-

port pressure must be required in the machine’s chamber to

balance the external earth and water pressure in front of the

tunnel face to prevent the face collapse. Thus, how to

properly calculate the minimum support pressure (i.e., limit

support pressure) for tunnel face stability is very crucial.

Traditionally, there are two kinds of theoretical methods

to calculate the limit support pressure for tunnel face sta-

bility. One is the limit analysis method [9, 20, 21, 23] and

the other is the limit equilibrium method [1, 2, 5, 11, 13,

17]. Generally, the limit analysis method is much more

complicated for the engineering use. Besides that, the

accuracy of the results mainly depends on the proper

choice of the statically admissible stress field or the kine-

matically admissible deformation field. Comparing to the

limit analysis method, the limit equilibrium method is more

widely used in the practical engineering due to its sim-

plicity. Although many kinds of limit equilibrium models

have been established, the most popular one is the wedge

model. Horn [11] firstly introduced a 3D wedge-silo model,

which assumed a sliding wedge loaded by a soil silo. On

the basis of Horn’s model [11], Anagnostou and Kovari [2]

proposed the classical wedge-prism model to calculate the

limit support pressure in the homogeneous stratum. The

classical wedge-prism model assumes that the failure zone

is a wedge in front of the tunnel face and a vertical prism

above the wedge. By considering the mechanical equilib-

rium of the wedge, the limit support pressure of the tunnel

face can be easily obtained. Theses years, the classical

wedge-prism model has been used and extended in many

subsequent works [1, 5, 17].

Although many researchers have modified the classical

wedge-prism model, there are still considerable potentials

for improving this model in order to predict the limit

support pressure more accurately. One aspect is the

improvement of the failure mechanism. In the classical

model, the height of the prism in the limit state was thought

to be the whole cover above the tunnel crown. Actually,

according to the results of the centrifuge model tests con-

ducted by Chambon and Corte [6], it is found that the

cover-to-diameter ratio C/D (i.e., relative depth; C is the

cover depth and D is the diameter of the tunnel) has sig-

nificant effect on the failure mechanism. That means, when

relative depth C/D is low (e.g., C/D = 0.5), the failure

zone in the limit state has extended to the ground surface.

When C/D is high (e.g., C/D = 1 or 2), the failure zone in

the limit state will be still in the interior of the ground.

These conclusions were also confirmed by Oblozinsky and

Kuwano [24] according to the photographs taken during

their centrifuge model tests, Chen et al. [7] and Karim [16]

via DEM (i.e., discrete element method) simulations,

Takano et al. [25] through X-ray CT, Ahmed and Iskander

[3], Idinger et al. [12], and Kirsch [18] by means of the

technology of particle image velocimetry (i.e., PIV).

Therefore, the influence of the relative depth on the failure

mechanism cannot be ignored, which should be considered

in an improved wedge-prism model. The other aspect of

the improvement is properly considering soil arching

effects (Broere [5]) to calculate the vertical force applied

on the wedge’s upper surface more accurately, as it has

significant influence on the limit support pressure. Soil

arching effects can be mainly embodied in the lateral stress

ratio Ks between the prism and the adjoining soils. In the

classical wedge-prism model, the Ks value was thought to

be 0.8 based on experience. Strictly speaking, the friction

angle of soil has significant influence on the arching effect.

That is to say, Ks should be a function of the friction angle

of soil. Lots of formulas have been adopted for calculating

Ks, such as the formula of the Rankine’s active earth

pressure coefficient (Marston [22]), the formula of the earth

pressure coefficient at rest (Jaky [14], Kirsch and Kolym-

bas [17]), the formula of the Rankine’s passive earth

pressure coefficient (Aubertin et al. [4]), and some other

formulas (Krynine [19], Handy [10]). Although many dif-

ferent analytical methods mentioned above for calculating

Ks were suggested, the calculated results via these methods

are quite different. Therefore, a feasible method for calculat-

ingKs which is based on the actual distribution of stress in the

stratum in the limit state should be established in an improved

wedge-prism model. Only in this way, the vertical force

applied on the wedge’s upper surface can be accurately

obtained for properly calculating the limit support pressure.

In this paper, an improved 3D prism-wedge model for

calculating the limit support pressure for tunnel face stability

in cohesionless soils was firstly proposed. In this model, the

height of the prism was put forward on the basis of the pre-

vious researchers’ results. Considering the effects of soil

arching on the limit support pressure, an appropriate analytical

expression of the lateral stress ratio Ks between the prism and

the part adjoining the prism was proposed. Then, in order to

evaluate the quality of this proposed model, comparisons of

the limit support pressures via the theoretical models

(including the theoreticalmodels proposed in this paper and in

the literatures) with those of the typical reported model tests

were performed. Finally, a design chart using this proposed

method for the proper calculation of the limit support pressure

of the tunnel face in cohesionless soils was given for the

convenience of industrial application.

2 The improved 3D wedge-prism model

As mentioned above, in order to calculate the limit support

pressure on the tunnel face much more accurately in the

homogeneous cohesionless ground, an improved 3D

wedge-prism model (see Fig. 1) was proposed in this
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paper. In this improved model, the failure zone is assumed

to be a sliding wedge ade-bcf loaded by a prism cdef-ghij

(see Fig. 1). The material of the ground conforms to the

Mohr–Coulomb failure criterion. The limit support pres-

sure is thought to be the maximum value of the necessary

support pressures corresponding to the wedges with dif-

ferent inclination angles b. Compared to the classical

wedge-prism model (Anagnostou and Kovari [2]), two

aspects are mainly modified in the improved model. One is

height of the prism which is closely related to relative

depth C/D, the other is the lateral stress ratio Ks between

the prism and the soils adjoining the prism which is sig-

nificantly influenced by the friction angle of soil. In this

part, we firstly briefly discussed the height of the prism for

the improved model. Then, based on the actual distribution

of stress in the stratum in the limit state, an analytical

expression of the lateral stress ratio Ks was established.

Finally, a theoretical formula for calculating the limit

support pressure was derived by the mechanical equilib-

rium of the wedge.

2.1 Height of the prism

In the process of tunnel face failure, stratum settlement

decreases gradually from the tunnel crown to the ground

surface. Chen et al. [8] performed 1 g large-scale model

tests to investigate the relations between the support pres-

sure and the ground surface settlement. It is found that, if

C/D is relatively low (e.g., C/D = 0.5), significant surface

settlement is observed when the limit support pressure is

imposed on the tunnel face. That means the failure zone

has extended to the ground surface in the limit state for the

shallow buried tunnel. If C/D is relatively high (e.g., C/

D = 1 or 2), no significant surface settlement (only little

elastic settlement) is observed when the limit support

pressure is imposed on the tunnel face. That is to say, the

failure zone is still in the interior of the ground in the limit

state for the deep buried tunnel. Therefore, the height of the

prism is significantly affected by the relative depth C/D,

which is not revealed in the classical wedge-prism model

since the height of the prism equals the whole cover above

the tunnel crown. In order to suggest the proper height of

the prism in the improved 3D wedge-prism model, some

typical research results were summarized in Table 1. It

should be mentioned that in the centrifuge model tests, the

height of the prism H was identified by excavating the

ground with the pre-buried colored sand layers after the test

(e.g., Chambon and Corte [6]) or by analyzing the photo-

graphs taken during the tests as half of the tunnel was

investigated (e.g., Oblozinsky and Kuwano [24]). While in

the 1 g model tests, H was identified by the variations of

earth pressures above the tunnel crown (e.g., Chen et al.

[8]) or by analyzing the X-ray CT images (e.g., Takano

et al. [25]). As shown in Table. 1, for the relatively deep

buried tunnel (e.g., C/D = 1 or 2), the height-to-width ratio

H/L of the failure prism (L is width of the prism) is in the

range of 1.52–2.36. While for the relatively shallow buried

tunnel (e.g., C/D = 0.5), the H/L value is much smaller

than that for the relatively deep buried tunnel and H is very

close to C. Thus, for the relatively deep buried tunnel,

H can be approximately thought to be 2L (i.e., 2D cot b; b
is the inclination angle of the wedge). It is about the mean

value of the H/L values presented in Table 1 for this con-

dition, and it also induces relatively small deviation of the

real H/L value. As for the relatively shallow buried tunnel,

the height of the prism H equals the cover depth C. To sum

up, the height of prism H is equal to min{C, 2L} in the

improved 3D wedge-prism model.

2.2 Lateral stress ratio Ks between the prism

and the adjoining soils

For the improved 3D wedge-prism model, properly deter-

mining the vertical force on the wedge’s upper surface is

very crucial as it is directly related to the calculation of the

limit support pressure. The vertical force on the wedge’s

upper surface is not equal to the total soil weight above the

tunnel crown, which can be attributed to the soil arching

effect. In order to properly calculate the vertical force on

the wedge’s upper surface, the suitable lateral stress ratio

Ks between the prism and the adjoining soils due to soil

arching effect should be proposed. As mentioned in the

β

Fig. 1 The improved 3D wedge-prism model proposed in this paper
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introduction part, although many suggestions or formulas

for calculating the Ks have been proposed, it is found that

the results (i.e., Ks) are quite different. The main reasons

can be attributed to insufficient understanding of the stress

in the stratum in the limit state. Chen et al. [8] investigated

the variation of soil stress via lots of pre-embedded earth

pressure cells in the 1 g large-scale model tests on tunnel

face failure. It is found that a significant rotation of prin-

cipal stress occurs in the upper part of the failure zone (i.e.,

the prism). This phenomenon was also found by Vermeer

et al. [27] with FEM analysis. Besides that, according to

the numerical results (Vermeer et al. [27]), the trajectory of

the maximum principal stress in the prism in the limit state

seems to be an upper convex circular arc.

Based on the results of model experiments (Chen et al.

[8]) and numerical analysis (Vermeer et al. [27]), a new

method for calculating Ks with the consideration of soil

arching effect were proposed in this paper. In this new

method, the following assumptions were made for the

derivation of Ks.

1. The cohesionless soil conforms to the Mohr–Coulomb

failure criterion and moves vertically downward in the

failure prism.

2. The shape of the arch is thought to be an upward

circular arc. This arc is also the trajectory of major

principal stresses in the limit state. Herein, the arch is

defined as ‘‘maximum principal stress arch’’ (see

Fig. 2) which is different from ‘‘minor principal stress

arch’’ in Handy’s method [10].

3. The principle stresses are constant throughout the arch,

and the principle stress ratio is equal to the Rankine’s

active earth pressure coefficient (i.e., r3
r1
¼ Ka).

In the following part, we will propose the detailed der-

ivation process of Ks. Considering the equilibrium condi-

tion of any element in the arch, the vertical stress rv and

horizontal stress rv can be expressed as follows (see

Fig. 2).

rv ¼ r1 sin
2 hþ r3 cos

2 h ð1Þ

rh ¼ r1 cos
2 hþ r3 sin

2 h ð2Þ

Where r1 and r3 are the maximum and minimum

principal stress of the element in the arch, respectively. h is

the angle between the direction of the maximum principal

stress and the horizontal plane.

Since r3
r1
¼ Ka, Eq. 1 and Eq. 2 are rewritten as

rv
r1

¼ sin2 hþ Ka cos
2 h ð3Þ

rh
r1

¼ cos2 hþ Ka sin
2 h ð4Þ

Dividing Eq. 3 by Eq. 4 gives

Table 1 Summaries of the height-to-width ratio H/L of the failure prism for different relative depths C/D

Researchers Methods Materials C/D H L H/L

Chambon and Corte [6] Centrifuge model tests Fontainebleau sand 0.5 0.5D 0.46D 1.09

1 0.76D 0.5D 1.52

2 0.84D 0.5D 1.68

Oblozinsky and Kuwano [24] Centrifuge model tests Toyoura sand 2 0.59D 0.26D 2.27

Chen et al. [8] 1 g model Tests Yangtze River sand 2 1.5D 0.75D 2

Takano et al. [25] 1 g model tests Toyoura sand 2 1.18D 0.5D 2.36

Chen et al. [7] DEM simulations – 2 0.75D 0.42D 1.78

Fig. 2 Maximum principal stresses arch
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K ¼ rh
rv

¼ cos2 hþ Ka sin
2 h

sin2 hþ Ka cos2 h
ð5Þ

For the slip planes (as at points A and C in Fig. 2),

h ¼ h0 ¼ p
4
þ /

2
, K ¼ 1�sin2 /

1þsin2 /
. For the centre line (as at point

B in Fig. 2), h = 0, K ¼ Kp ¼ tan2 p
4
þ /

2

� �
.

As shown in Fig. 2, the circular arc can be described

with

x2 þ y2 ¼ d2

sin2 h0
ð6Þ

The average vertical stress on the ‘‘trapdoor’’ can be

obtained by

rav ¼
1

2d

Zd

�d

ðr1 sin2 hþ r3 cos
2 hÞdx ð7Þ

In which d is the half width of the trapdoor. Considering

the assumption (3) (i.e., r1 = Const throughout the arch),

the solution of Eq. 7 is

rav ¼
1

3
ð1� KaÞ sin2 h0 þ Ka

� �
r1 ð8Þ

Defining the distribution factor of vertical stress m as

m ¼ rv
rav

¼ sin2 hþ Ka cos
2 h

1
3
ð1� KaÞ sin2 h0 þ Ka

� � ð9Þ

As shown in Fig. 3, the upward shear stress s acting on

the side of a differential element between the two slip

planes (point A in Fig. 3) can be expressed as

s ¼ KArAv tan/ ð10Þ

Where KA is the ratio of horizontal stress to vertical

stress at the slip plane; rAv is the vertical stress at the slip

plane. Since rAv ¼ mArav (see Eq. 9), the shear stress on

the slip plane can be rewritten as

s ¼ KAmArav tan/ ð11Þ

Therefore Ks = KAmA

Ks ¼ cos2 h0 þ Ka sin
2 h0

1
3
ð1� KaÞ sin2 h0 þ Ka

ð12Þ

Where h0 ¼ p
4
þ /

2
, Ka ¼ tan2 p

4
� /

2

� �
.

Figure 4 shows the value of lateral stress ratio Ks for

different friction angles / by using various methods. As

shown in Fig. 4, according to the method proposed in this

paper (Eq. 12), the Ks decreases with the increase in /, and
this tendency is also revealed by Handy [10], Kirsch and

Kolymbas [17], and Marston [22] with other methods.

While in the classical wedge-prism model (Anagnostou

and Kovari [2]) or in the Terzaghi’s work [26], Ks is

thought to be a constant which is independent of /. As also
shown in Fig. 4, the value of Ks from this paper’s method is

larger than the at-rest earth pressure coefficient K0 (Kirsch

and Kolymbas [17]) for the same /, which is mainly due to

the larger decreasing amplitude of the vertical stress

comparing to that of the horizontal stress in the prism

(Chen et al. [8] ). It seems that the average value of Ks via

this paper’s method is much closer to the Terzaghi’s result

[26] (i.e., Ks = 1.0), which is a little more than the value

suggested in the classical wedge-prism model (Anagnostou

and Kovari [2]).

v
dz

z

2d dz
K dh

A

 2d( +d  )

v=m av

Point A

0

A

K tan dh
A A

A A

2d

q

v

av

avav

Fig. 3 A differential element between the two slip planes
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K
s
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Fig. 4 Lateral stress ratio Ks for different friction angles / by using

various methods
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2.3 Formula for calculating the limit support pressure

Similar to the classical wedge-prism model, the limit

support pressure via the improved 3D prism-wedge model

is also obtained by the mechanical equilibrium of the

wedge (see Fig. 5). In this improved model, the circle-

shaped tunnel face is approximated by a rectangle abcd

with the same area (see Fig. 5), whose height and length is

D (i.e., tunnel diameter) and B (i.e., D
4
), respectively. The

inclination angle of the wedge surface abfe is assumed to

be b.
The forces acting on the sliding wedge (see Fig. 5)

include the following: (1) the self-weight G of the wedge

abcdef; (2) the vertical force rav acting on the upper sur-

face of the wedge (i.e., cdef); (3) the reaction force Q1

acting on the inclined slip surface abfe; (4) two horizontal

normal forces 2Q2N and two frictional forces 2Q2T acting

on the vertical slip surfaces (i.e., adeand bcf); and (5) the

support force S acting on the tunnel face.

It should be noted that the friction force acting on the

upper surface of the wedge (i.e., cdef) is ignored in the

improved model, which is also not considered in the

classical wedge-prism model (Anagnostou and Kovari [2]).

The self-weight G of the wedge is

G ¼ p
8
cD3 cot b ð13Þ

Where c is the unit weight of the material.

The vertical force rav is obtained on the basis of the silo

theory (Janseen [15]), and the mechanical equilibrium of a

series of the thin horizontal slices in the prism is adopted

for the detailed derivation of rav (Broere [5], Kirsch and

Kolymbas [17]). Eq. 14 shows the formula ofrav.

rav ¼
cA

UKs tan/
1� e�KsU

A
tan/H

� �
þ q0e

�KsU
A
tan/H ð14Þ

with

A ¼ B� L ¼ pD
4

� D

tan b
ð14� 1Þ

U ¼ 2� ðBþ LÞ ¼ 2� pD
4

þ D

tan b

� 	
ð14� 2Þ

H ¼ min C;
2D

tan b


 �
ð14� 3Þ

q0 ¼ c� C �min C;
2D

tan b


 �
 �
ð14� 4Þ

Note that A is the area of the cross section of the prism,

Uis the circumference of the cross section of the prism, Ks

is the lateral stress ratio between the prism and the

adjoining soils (see Eq. 12), / is the friction angle of the

material, H is the height of the prism, and q0 is the

surcharge acting on the upper surface of the prism.

In order to obtain two frictional forces Q2T acting on the

vertical slip surfaces (i.e., ade and bcf), a linear distribution

of the vertical stress rz along the slip surfaces (i.e., ade and

bcf) will be assumed (see Fig. 6). As shown in Fig. 6, the

gradient of rz is thought to be c.

Q2T ¼ k
2
ravD

2 cot bþ k
6
cD3 cot b ð15Þ

With

k ¼ 1� sin/ ð15� 1Þ

Where k is the ratio of horizontal to vertical stress in the

wedge.

β

0q

avσ

1Q

2t2Q

G

ϕ
S

tan
D

L
β

=

( )d c ( )e f

( )g h ( )j i

Z

YO

( )a b

C

D

2
min{ , }

tan
D

H C
β

=

Fig. 5 Mechanical equilibrium of the wedge

avσ

D

4
B Dπ=

zσ

H D+

H

Z

avσ

D

av Dσ γ+

Fig. 6 Distribution of the vertical stress rz along the two side slip

surfaces of the wedge
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Therefore, the support force S can be determined by the

equilibrium of the sliding wedge in horizontal and vertical

directions.

S ¼ ravA tanðb� /Þ þ G tanðb� /Þ
� 2Q2t tanðb� /Þ tan bþ 1½ � cos b ð16Þ

Thus, the limit support pressure slim can be expressed as:

slim ¼ max
4S

pD2


 �
¼ maxff1rav þ f2cDg ð17Þ

Where

f1 ¼
tanðb� /Þ

tan b
� ke tan/ ð17� 1Þ

f2 ¼
tanðb� /Þ
2 tan b

� 1

3
ke tan/ ð17� 2Þ

e ¼ 4

p
cot bþ tanðb� /Þ½ � cos b ð17� 3Þ

b 2 ½p
4
;
p
2
Þ ð17� 4Þ

3 Results and discussions

3.1 Verification of the improved wedge-prism model

Two typical model tests were selected to verify the accu-

racy of the improved wedge-prism model. One is the

centrifuge model tests conducted by Chambon and Corte

[6], the other is the 1 g large-scale model tests performed

by Chen et al. [8]. The material used in the centrifuge

model tests [6] is the Fontainebleau sand (/ = 38�–42�),
while the material adopted in the 1 g large-scale model

tests [8] is the Yangtze River sand (/ = 37�). Moreover,

other theoretical methods were also added for the com-

parisons, including the classical wedge-prism model (An-

agnostou and Kovari [2]), the empirical equation by fitting

the FEM results (Vermeer et al. [27]), the wedge-prism

model considering horizontal arching (Anagnostou [1] ),

the upper-bound solution propose by Leca and Dormieux

[20], and the upper-bound solution suggested by Mollon

et al. [23].

Figures 7 and 8 compare the normalized limit support

pressures slim/cD for different relative depths C/D obtained

from the above-mentioned theoretical methods with those

from the centrifuge model tests [6] and 1 g large-scale

model tests [8], respectively. Due to a slight uncertainty of

the friction angle / of the Fontainebleau sand in the cen-

trifuge model tests [6], two extreme values of / (i.e., /
= 38� or / = 42�) were adopted for the calculations (see

Fig. 7a, b), respectively. In Figs. 7 and 8, when C/D is less

than 1.0, slim/cD obtained from the improved wedge-prism

model (i.e., this study) increases obviously with the

increase in C/D, which are also revealed by Anagnostou

and Kovari [2]. When C/D is more than 1.0, the slim/cD via

this study seems to increase slowly with the increase in

C/D as the results of the centrifuge model tests (Chambon

and Corte [6]) shows, which is slightly different from the

results of Anagnostou and Kovari [2], Anagnostou [1],

Leca and Dormieux [20], Vermeer et al. [27], and Mollon

et al. [23].
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Fig. 7 Comparison of normalized support pressures slim/cD obtained

from the theoretical methods using different fiction angles / with

those from centrifuge model tests (Chambon and Corte [6]): a / =

38�, b / = 42�
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As shown in Figs. 7 and 8, it should be noted that the

normalized limit support pressures slim/cD obtained from

the experiments (i.e., centrifuge model tests (Chambon and

Corte [8]) and 1 g model tests (Chen et al. [8])) are less

than the results predicted by the above-mentioned theo-

retical methods in cohesionless soils (i.e., cohesion c = 0).

Theoretically, the upper-bound solutions (Mollon et al.

[23], Leca and Dormieux [20] ) are the unsafe estimations

of the actual limit support pressure for face stability (i.e.,

smaller or equal to that actually required). Herein, conflicts

exist between the results obtained from the experiments

and the upper-bound solutions in cohesionless soils. The

reasons for the conflicts can be attributed to not fully dried

sand adopted in the experiments (Chambon and Corte [6],

Chen et al. [8]), which means the soils of the experiments

have a little cohesion (i.e., c = 0–5 kPa for the Fontaine-

bleau sand (Chambon and Corte [6]) and c = 0–0.5 kPa

for the Yangtze River sand (Chen et al. [8])). As shown in

Figs. 7a and 8, if little cohesions are considered in the

upper-bound solutions (Mollon et al. [23], Leca and Dor-

mieux [20] ), no conflicts exist between the results of the

model tests (Chambon and Corte [6], Chen et al. [8]) and

those of the upper-bound solutions (Mollon et al. [23],

Leca and Dormieux [20]). Moreover, the cohesion of the

material will induce the measured limit support pressure in

the model tests less than the actual one without cohesion.

More details about the model tests and the upper-bound

solutions can refer to the related literatures (e.g., Chambon

and Corte [6], Chen et al. [8], Mollon et al. [23]).

As also shown in Figs. 7 and 8, the improved wedge-

prism model (i.e., this study), the classical wedge-prism

model (Anagnostou and Kovari [2]), and the empirical

equation (Vermeer et al. [27]) are reasonable on theory as

the slim/cD obtained from these methods are greater than

the slim/cD predicted by the upper-bound solutions (Leca

and Dormieux [20], Mollon et al. [23]). It can be seen that

comparing to the improved wedge-prism model (this study)

and Vermeer et al.’s empirical equation [27], the classical

wedge-prism model (Anagnostou and Kovari [2]) is rela-

tively conservative for predicting the slim/cD especially for

the cohesionless soil with the relatively low friction angle

/ (e.g., / = 38�). The slim/cD obtained from the improved

wedge-prism model (i.e., this study) agree very well with

that from the Vermeer et al.’s empirical equation [27] on

the condition that C/D[ 1. Note that the Vermeer et al.’s

empirical equation [27] was proposed on the basis of a

series of rigorous FEM calculations; thus, it means the

improved wedge-prism model (i.e., this study) has suffi-

cient accuracy for predicting the limit support pressure.

Moreover, the wedge-prism model considering horizontal

arching (Anagnostou [1] ) seems to slightly underestimate

the actual limit support pressure as the slim/cD obtained

from this method are smaller than the slim/cD predicted by

the upper-bound solution proposed by Mollon et al. [23]. In

addition, the upper-bound solution proposed by Mollon

et al. [23] can predict slim/cD more accurately than the

upper-bound solution suggested by Leca and Dormieux

[20] due to the optimization of the failure mechanism.

Furthermore, the effects of H (i.e., the height of the

prism) on slim (i.e., the limit support pressure) should also

be investigated for the relatively deep buried tunnel (e.g.,

C/D = 1 or 2). As pointed in Sect. 2.1, for the relatively

deep buried tunnel, the recommended value of H/L in the

improved wedge-prism model is 2, while the range of H/L

in Table 1 is 1.5–2.5. Thus, consider H/L of 1.5 and 2.5,

respectively, as the lower limit and upper limit of H/L in

the improved wedge-prism model. As shown in Eq. 17, slim
increases with the increase in rav (i.e., the vertical force

acting on the upper surface of the wedge). Take the

derivative of Eq. 14 with respect to H, the following

equation (i.e., Eq. 18) can be obtained.

r
0

av ¼ �c C � Hð ÞKs U

A
tan/e�KsU

A
tan/H ð18Þ

Obviously, r
0

av is less than zero. That means rav
decreases with the increase in H. Then, we can get a

conclusion that slim decreases with the increase in H for the

relatively deep buried tunnel. Thus, sH=L¼2:5
lim

[ sH=L¼2
lim

[
sH=L¼1:5
lim

(sH=L¼2:5
lim

, sH=L¼2
lim

, andsH=L¼1:5
lim

corresponding to the

limit support pressure via H/L = 2.5, 2, and 1.5,

respectively). As sH=L¼2
lim

has good accuracy (see Figs. 7

and 8), sH=L¼2:5
lim

is relatively conservative, while the safety

degree of sH=L¼1:5
lim

for the engineering application will
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Fig. 8 Comparison of normalized support pressures slim/cD obtained

from the theoretical methods with those from 1 g model tests (Chen

et al. [8])
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decrease. In general, H/L = 2 is suitable for the improved

wedge-prism model for calculating the limit support

pressure of the tunnel face in the relatively deep buried

tunnel.

To sum up, the improved wedge-prism model has suf-

ficient accuracy as the limit support pressure obtained via

this model agrees well with that obtained via Vermeer

et al.’s method [27] which was proposed based on a series

of rigorous FEM calculations. In addition, the improved

wedge-prism model is also a relatively safe estimation of

the limit support pressure for the practical application.

3.2 A design chart of the limit support pressure

Considering the convenience of industrial application, a

design chart of the limit support pressure for cohesionless

soils via the improved wedge-prism model was given in

this paper (see Fig. 9). Fig. 9 shows the calculated nor-

malized support pressure slim/cD with different friction

angle / for a series of relative depth C/D. As shown in

Fig. 9, for the same C/D, the slim/cD decreases with the

increase in /, and the rate of reduction for slim/cD also

decrease as the increase in /. As also shown in Fig. 9,

for the same /, the slim/cD increases with the increase in

C/D, while the rate of increase for slim/cD decreases with

the increase in /. For the situations that the slim/cD may

not be directly obtained from the design chart (e.g.,

C/D = 0.8 and / = 34.5�), the linear interpolation

method can be adopted for the approximate determination

of slim/cD.

4 Conclusions

In order to properly calculate the limit support pressure for

tunnel face stability in cohesionless soils, an improved 3D

wedge-prism model which optimizes the failure mecha-

nism and considers soil arching effects was proposed in

this paper. The height of the prism H is thought to be min

{C,2L} (where C is the cover depth and L is the width of

the prism). An analytical formula for the lateral stress ratio

Ks between the prism and the adjoining soils which reflects

soil arching effects was also proposed. Comparing the

results (i.e., limit support pressure) from the theoretical

models and type model tests (i.e., centrifuge model test

(Chambon and Corte [6]) and 1 g model tests (Chen et al.

[8])), it is found that limit support pressure obtained by the

improved wedge-prism model is sufficiently accurate as it

is very close to the result obtained by Vermeer et al.’s

method [27] which was put forward based on a series of

rigorous FEM calculations. For the convenience of indus-

trial application, a design chart on the basis of the

improved wedge-prism model was proposed finally for

calculating the limit support pressure in cohesionless soils.

The main conclusions on the limit support pressure are

presented as follows:

1. When the relative depth C/D B 1, the normalized

support pressure slim/cD increase obviously as the

increase in C/D. When C/D[ 1, the normalized

support pressure slim/cD seems to increase slowly with

the increase in C/D.

2. For the same relative depth C/D, the normalized

support pressure slim/cD decreases with the increase in

/, and the rate of reduction for slim/cD also decrease as

the increase in /.
3. For the same friction angle /, the slim/cD increases

with the increase in C/D, while the rate of increase for

slim/cD decreases with the increase in /.
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