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Abstract Many studies have been conducted to establish

the optimal location of a row of piles to reinforce and

stabilize slopes. However, the results obtained are very

different, and in some cases even inconsistent and contra-

dictory. The factor of safety of piled slopes is determined

by the magnitude of resistive forces exerted by the piles on

the slope. At the same time, the maximum retaining forces

provided by the piles are also affected by the pile position.

In this paper, the problem of the optimal location of piles

used to stabilize slopes is analyzed using a combination of

limit slope stability analysis and the theory of Ito and

Matsui (Soils Found 15:43–59, 8) to calculate limit lateral

loads on piles. Using an illustrative example slope, some of

the issues including the most effective position, the most

suitable position, and the position with the largest safety

factor are discussed. The results show that the most

effective pile position, the most suitable pile position, and

pile position where the factor of safety can take maximum

value are different from each other for a given slope.

Keywords Limit analysis � Optimal location �
Pile � Slope stabilization

1 Introduction

The stabilization of slopes by installation of piles is one of

the innovative slope reinforcement techniques that have

been introduced in recent years. Many successful cases

have been reported [6, 8–11, 18], and numerous methods

have been developed for the analysis of piled slopes [1, 2,

7, 9–11, 12, 18, 20]. One of the main mechanisms by which

drilled shafts and driven piles can enhance the stability of

the soil slope is through soil arching, in which the interslice

forces transmitted to the soil slice behind the shafts are

reduced [15]. Several studies were conducted to consider

the arching mechanism of piles in slope stabilization using

different methods [14, 15, 21, 22]. A major design issue is

to determine the most suitable location of piles within the

slope [18]. Many studies have been conducted in order to

establish the optimal location of the piles within a slope.

However, the results obtained are rather different, and in

some cases even inconsistent and contradictory.

The limit equilibrium method is used by many

researchers to study this issue. Poulos [18] pointed out that

the row of piles should be located in the vicinity of the

center of the critical failure wedge to avoid merely relo-

cating the failure surface behind or in front of the piles. Lee

et al. [12], using the simplified Bishop’s slip circle

approach, found out that the most effective pile positions

are at the toe and crest of the slope for homogeneous

cohesive soil slopes, and between the middle and the crest

of the slope for a two-layered soil slope where the upper

soft layer is underlain by a stiff layer. The extended friction
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circle method and Ito’s approach were used by Hassiotis

et al. [7] to analyze slopes reinforced with one row of piles.

According to their studies, the piles should be located close

to the top of the slope to achieve the maximum safety

factor, especially when the slope is steep.

Numerical methods are also very popular in this issue.

Cai and Ugai [2], using the three-dimensional finite ele-

ment method, showed that the pile should be located in the

middle of the slope to achieve the maximum safety factor

for the slope. Won et al. [20], using FLAC3D [5], draw the

conclusion that the piles should be installed in the middle

of slope where the pressure acting on the piles is the

largest. Wei and Cheng [19], also using FLAC3D, con-

sidered the problem of slope reinforced with one row of

piles. Their numerical results showed that the optimal pile

position lies between the middle of slope and the middle of

the critical slip surface of the slope with no pile and is very

close to the middle of the slope.

Ausilio et al. [1] developed a methodology for the sta-

bility of slopes reinforced with piles using the kinematic

approach of limit analysis. According to their studies, the

optimal location of the piles within the slope is near the toe

of the slope where the stabilizing force needed to increase

the safety factor to the desired value takes a minimum

value. They also found out that piles also appear to be very

effective when they are installed in the region from the

middle to the toe of the slope. Nian et al. [17], using limit

analysis, concluded that the optimal location of the piles is

near the toe of the slope where the force needed to increase

the slope stability to the design safety factor has the lowest

value.

From the above review, the results of all numerical

analyses show that the optimal location of piles is very

close to the middle of the slope, while by using combined

limit equilibrium analysis and Ito-Matsui’s equation, it is

close to the top of the slope, and for the limit analysis

method, it is near the toe of the slope. The divergences are

due to the fact that the force provided by the piles was

considered in different ways. It is evident that different

conclusions will be drawn depending on whether the soil-

pile interaction is considered.

In this study, a method that combines the kinematic

approach of limit analysis and Ito-Matsui’s theory is used

to evaluate the optimal location of piles in slope stabil-

ization. The proposed method rigorously considers the

effects of the pile position on the required reinforcing

force, and the force that piles can provide to stabilize

slopes. The most effective pile position, the most suitable

pile position, and the pile position with the largest safety

factor are analyzed.

2 Method of analysis

2.1 Shear strength reduction method

Slope stability analysis is generally formulated in terms of

the factor of safety F against failure, which can be defined

with respect to soil shear strength parameters as [1]

F ¼ c

cm

¼ tan u
tan um

ð1Þ

where c and u are the cohesion and internal friction angle

of the soil; cm and um are the mobilized cohesion and

internal friction angle for the slope required to attain the

state of critical stability. This definition of F is exactly the

same as that used in limit equilibrium methods and has

been adopted in many other studies [1, 4, 7, 16, 20].

Herein, F can also be understood as the factor by which the

soil shear strength parameters are reduced to give rise to

incipient failure. According to the kinematic theory of limit

analysis, the factor of safety determined by equating the

rate of external work to the rate of internal energy dissi-

pation for any kinematically admissible velocity field is no

less than the true solution of slope stability analysis. Thus,

the safety factor can be calculated by minimizing F with all

kinematically admissible failure mechanisms.

When a row of piles is inserted in a slope, the additional

resistance that each pile can provide depends on the soil

strength. It is suggested that the retaining force be calcu-

lated with the reduced values of c and u to get conservative

results in the design of piled slopes.

2.2 Limit analysis of piled slopes

The kinematic approach of limit analysis is used herein to

analyze the stability of slopes reinforced with one row of

piles. The upper bound limit analysis is based on the

assumption that soil will be deformed according to the

associated flow rule and the convexity of the soil yield

condition [16]. For simplicity, the slope is assumed to be

composed of homogeneous, isotropic, and dry soil. Of the

various potential failure mechanisms of a slope, rotational

failure has been found to be the most adverse for earth

slopes. Thus, the rotational log-spiral collapse mechanism,

which was earlier examined by Chen [3] and many other

researchers, is adopted herein. The geometry of the failure

surface (Fig. 1) is described by the log-spiral equation

r ¼ r0 exp ðh� h0Þ
tan u

F

h i
ð2Þ

where r and h are the radius and corresponding angle of the

log spiral, r0 is the radius of the log spiral with respect to
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angle h0. The failing soil mass rotates as a rigid body about

the point O with angular velocity x. The slope geometry is

defined by height H, and angles a and b, which are also

indicated in Fig. 1.

The kinematic approach of limit analysis states that a

slope will collapse if the rate of work done by external

loads as well as the body forces exceeds the energy dissi-

pation rate for any assumed kinematically admissible

failure mechanism. The rate of external work due to the

soil weight takes the form

W1

�
¼ cr3

0xð f1 � f2 � f3 � f4Þ ð3Þ

where c is the soil unit weight, and the functions f1–f4
depend on the angles h0, hh, u, b and b0. Expressions for

f1–f4 can be found in several works [1, 3, 13]. For com-

pleteness, these expressions are included in the ‘‘Appen-

dix’’ of this paper.

For the rigid-block mechanism considered, the energy

dissipation takes place both alone the sliding surface and

surrounding the piles. The rate of energy dissipation caused

by soil cohesion of the sliding surface is

D1

�
¼ cr2

0xf5 ð4Þ

where c = soil cohesion, and f5 is given in ‘‘Appendix’’.

To account for the presence of the piles, a lateral force is

assumed to be applied at the failing soil mass. So the rate of

energy dissipation by the piles can be calculated as

D2

�
¼ Fp sin hFrFx ð5Þ

where Fp is the force exerted on unit width of sliding

mass by the piles, rF is the radius of Fp about the rotation

center, and the angle hF specifies the position of the

retaining piles.

The total rate of internal energy dissipation is given by

the sum of D1 and D2. Therefore, equating the rate of

external work to the rate of energy dissipation leads to the

following expression for Fp:

Fp ¼
cr3

0ð f1 � f2 � f3 � f4Þ � cr2
0f5

sin hFrF

ð6Þ

Equation (6) gives the force per unit width of soil that

must be provided by a row of piles to achieve the desired

value of the safety factor of the slope. In Eq. (6), f1–f5 are

functions of F, the soil properties and the slope geometry

(see the ‘‘Appendix’’). For any known failure surface, the

only unknowns are Fp and F. If Fp is known, the safety

factor can be obtained. By considering all possible failure

surfaces, a minimum safety factor of the slope can be

found.

In this paper, the value of Fp is estimated using the

plasticity theory developed by Ito and Matsui. As the value

of Fp is related with the length of piles between the failure

surface and the ground surface, every time a new slip

surface is selected, the magnitude of the force Fp is cal-

culated according to the newly selected failure surface.

This force is then used in Eq. (6) to determine a new safety

factor.

2.3 Forces on piles undergoing lateral soil movement

To determine the magnitude of force Fp, a theory, which

was developed earlier by Ito and Matsui [8] to calculate

earth pressures on a row of passive piles, is chosen in the

present work. The soil around the piles is assumed to be in

plastic equilibrium, satisfying the Mohr–Coulomb yield

criterion. Then, the lateral load acting on the piles can be

calculated regardless of the state of equilibrium of the

slope. Based on these assumptions, the lateral force per unit

thickness of soil layer acting on the piles, p, is estimated by

the following equation [8–10]:

pðzÞ ¼ cA

 
1

Nu tanu
exp

D1�D2

D2

Nu tanu tan
p
8
þu

4

� �� ��

�2Nð1=2Þ
u tanu� 1

�
2 tanuþ 2N

ð1=2Þ
u þN

�ð1=2Þ
u

N
ð1=2Þ
u tanuþNu� 1

!

� c D1

2 tanuþ 2N
ð1=2Þ
u þN

�ð1=2Þ
u

N
ð1=2Þ
u tanuþNu� 1

� 2D2N�ð1=2Þ
u

 !

þ cz

Nu
A exp

D1�D2

D2

Nu tanu tan
p
8
þu

4

� �� �
�D2

� �

ð7Þ

where D1 = center-to-center spacing between piles,

D2 = opening between piles, D1 - D2 = pile diameter,

Fig. 1 Rigid rotation collapse mechanism for a slope reinforced with

a row of piles
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c = unit weight of soil, z = depth of soil layer from

ground surface, Nu ¼ tan2ðp=4þ u=2Þ, and A ¼ D1

ðD1=D2ÞðN
1=2
u tan uþNu�1Þ

. The total lateral force acting on a

pile due to the plastically deforming soil layer around the

pile, Ft, can be obtained by integrating Eq. (7) along the

depth of the pile in the failing wedge. Then, the stabilizing

force per unit width of soil provided by the pile, Fp, can be

calculated by dividing Ft with the center-to-center distance

between the piles, D1 (i.e., Fp = Ft/D1). The validity of this

theory in the design of stabilization of slopes with piles was

examined by Hassiotis et al. [7].

3 Illustrative example

The approach outlined above is illustrated considering the

slope shown in Fig. 2 as an example. The slope has a

height of 13.7 m, a slope angle of 30�, and is made of a

homogeneous soil with cohesion of 23.94 kPa, friction

angle of 10�, and unit weight of 19.63 kN/m3. The water

table is not considered. This case was previously examined

by Ausilio et al. [1] and Michalowski [16] using limit

analysis. It was found that the safety factor of the slope

(without the pile reinforcement) was about 1.11. Since a

safety factor of 1.11 is considered inadequate, the slope

may be reinforced by installing a row of piles to increase

the safety factor to a desired value. In the present example,

the piles are assumed to be 0.9 m in diameter with a center-

to-center distance of 2.25 m (to satisfy a D2/D1 ratio of

0.6). The pile is assumed to be rigid. For the convenience

of analysis, large diameter piles are used in this example,

but it should be noted that large diameter piles driven in the

slope are rarely used in practice to increase the factor of

safety as such action may invoke slope instability during

the pile driving operation.

4 Results and discussions

As pointed out by Poulos [18], the design of piles to

reinforce slopes involves not only evaluating the force

needed to increase the safety factor to the desired value

but also the maximum force that each pile can provide

to resist sliding. In the present study, the optimal loca-

tion of the piles was determined by considering both the

stabilizing force needed to increase the safety factor to

the desired value and the maximum force that each pile

can provide according to Ito and Matsui’s theory. The

pile position is denoted by the dimensionless abscissa

XF/Lx, where Lx = H/tanb (Fig. 1). It is assumed that

XF/Lx varies between 0.1 and 0.9. These limits corre-

spond to the pile positions near the toe and the crest of

the slope, respectively. The reason for this assumption

is that when the value of XF/Lx below 0.1 or over 0.9,

the failure surfaces do not pass through the piles are

considerably large.

4.1 The most effective pile location

The most effective position of the piles within the slope

is where the stabilizing force needed to increase the

safety factor to the desired value takes the minimum

value. Figure 3 gives the results of needed force to

improve the slope stability to required safety factors for

different pile positions. As can be expected, Fp increases

with increasing required safety factor. In all the cases

examined, the most effective location of the piles is near

the toe of the slope, where the force need to be provided

by the piles to achieve the selected value of safety factor

takes the lowest value. This result is corroborated by

Ausilio et al. [1]. As pointed out by these authors, this is

due to the shape of the sliding surface that is a log-spiral

curve having a radius that increases as the surface

develops from the top to the base of the slope. For a

rotational failure mechanism as shown in Fig. 1, the

required stabilizing moment due to Fp, with respect to

the rotation center, has an arm that increases as the

location of the piles approaches to the slope toe, and

consequently force Fp decreases.

The effects of pile location on the required Fp show that

if the retaining force that a row of piles can provide is large

enough, the piles should be installed near the toe of the

slope where the stabilizing force can produce maximum

stabilization results. It also indicates that the most eco-

nomic location for piles in slope stabilization is near the toe

of the slope.

4.2 The most suitable pile location

The most effective pile position may be different from

the most suitable pile position, which is discussed below.

Soil is a plastic material. As a result, according to Ito

and Matsui’s theory, the stabilizing force that a row of

piles can provide is proportional to the depth of soilFig. 2 Illustrative example of a slope reinforced with piles
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layer from ground surface. The length of the portion of

the pile between the sliding surface and the ground

surface is denoted by h and plotted against the dimen-

sionless abscissa XF/Lx in Fig. 4. It can be seen that the

magnitude of h is greatly affected by the pile location

especially when the piles are placed in the lower-middle

part of the slope. As a result, it is important to determine

whether the piles can provide enough stabilizing force

when they are located close to the toe of the slope. At

this location, the value of h is very small due to the

smaller height of the slope. Figure 5 plots the required

and provided forces to achieve the required safety factors

against pile locations. In all the cases examined, there is

a point of intersection for the two lines, which means the

force provided by the piles is below the needed force

when the piles are located between the slope toe and the

intersection point. Consequently, the piles must be placed

in the upper part of the intersection point to obtain the

required safety factor.

In the design of piled slopes, the pile length should be

carefully considered. According to Poulos [18], the total

length of the piles may be preliminarily assumed as

Lp & 2 h. For both safe and economical considerations, it

can be concluded from Figs. 4 and 5 that the point of

intersection is the most suitable pile position because the

pile length is the shortest at this point.

It can also be seen from Fig. 5 that the most suitable pile

positions are different for a given slope when the required

safety factors are different. The larger the required safety

factor, the higher in the slope should the piles be installed.

It should be noted that these results are obtained under the

condition that the pile diameter and spacing remain

unchanged. The force that can be provided by the piles is

determined by h, pile diameter, pile spacing, and soil

properties. Actually, the diameter and spacing are also very

important parameters in the design of piles to reinforce

unstable slopes.

The analyses of the most suitable pile location show that

the maximum retaining force that a row of piles can pro-

vide should be considered in the design, and that the most

suitable pile position change with the required safety

factor.

4.3 Pile position with maximum safety factor

Assuming that the piles are long enough, the safety factors

are calculated considering the force that can be provided by

the piles. This relationship is given in Fig. 6. It can be seen

that the safety factor increases with XF until the piles are

placed close to the top of the slope. The safety factor takes

its maximum value when XF/Lx is about 0.75. This result is

very close with that of Hassiotis et al. [7] for the same

slope. The height of the portion of the pile above the

sliding surface h and the corresponding stabilizing force

provided by piles Fp are both plotted against XF/Lx in

Fig. 7. The length of pile above the failure surface and the

stabilizing force provided by the piles take the maximum

Fig. 3 Pile location versus Fp for required safety factor = 1.3, 1.4,

and 1.5
Fig. 4 Pile location versus h for required safety factor = 1.3, 1.4,

and 1.5
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value when the piles are placed in the upper-middle part of

the slope. This can be the explanation to the influence of

pile position on the safety factor. Evidently, the piles need

to be placed close to upper-middle part of the slope to

achieve a high value of safety factor.

It can be seen from above analyses that for sufficiently

long piles, the position where the safety factor takes the

maximum value lies in the upper-middle part of the slope

where the resisting force is the greatest.

5 Conclusions

This paper deals with the optimal location of piles within

slopes reinforced with a row of piles. The upper bound

theorem of limit analysis was used in the slope stability

analysis, and the plastic state theory developed by Ito and

Matsui was employed to determine the stabilizing force

provided by the piles. A simple example slope is given to

illustrate the validity of the method. The influence of pile

position on stabilizing effects was analyzed. Based on the

numerical results, the following conclusions were reached:

1. If the maximum force that a row of piles can provide is

large enough, the most effective pile positions are near

the toe of the slope where the stabilizing force needed

to increase the safety factor to the desired value takes

the minimum value.

2. The most suitable place for stabilizing piles should be

determined by both the force needed and provided.

The most suitable pile position changes with the

required safety factors.

3. For piles that are long enough, the position where

safety factor takes maximum value lies in the upper-

middle part of the slope where the force supply is

greatest.
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Fig. 5 Pile location versus needed and provided Fp to obtain the required safety factor of 1.3, 1.4, and 1.5
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h (solid line) and Fp (dashed line)
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Appendix

f1 ¼
ð3 tan ut cos hh þ sin hhÞ exp½3ðhh � h0Þ tan ut�

3ð1þ 9 tan2 utÞ

� 3 tan ut cos h0 þ sin h0

3ð1þ 9 tan2 utÞ

f2 ¼
1

6

L

r0

2 cos h0 �
L

r0

cos a

� 	
sinðh0 þ aÞ

f3 ¼
exp½ðhh � h0Þ tan ut�

6
sinðhh � h0Þ �

L

r0

sinðhh þ aÞ
� �

� cos h0 �
L

r0

cos aþ cos hh � exp½ðhh � h0Þ tan ut�
� �

f4 ¼
H

r0

� 	2
sinðb� b0Þ
2 sin b sin b0

� cos h0 �
L

r0

cos a� H

3r0

½cot bþ cot b0�
� 	

f5 ¼
1

2 tan u
fexp½2ðhh � h0Þ tan ut� � 1g

where b is slope angle, tan ut = tan u/F, and L is the

distance between the failure surface at the top of the slope

and the edge of the slope. It is given by

L ¼ r0 sinðhh � h0Þ
sinðhh þ b00Þ �

r0 sinðhh þ b00Þ
sinðhh þ b00Þ sinðb0 � b00Þ

fsinðhh þ b00Þ exp½ðhh � h0Þ tan /t� � sinðh0 þ b00Þg

H

r0

¼ sin b0

sinðb0 � b00Þ
� sinðhh þ b00Þ exp½ðhh � h0Þ tan ut� � sinðh0 þ b00Þf g
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