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Abstract Apart from time-driven creep or relaxation,

most viscoplastic models (without plastic and viscous

strain separation) generate no or a very limited accumu-

lation of strain or stress due to cyclic loading. Such pseudo-

relaxation (or pseudo-creep) is either absent or dwindles

too fast with increasing OCR. For example, the accumu-

lation of the pore water pressure and eventual liquefaction

due to cyclic loading cannot be adequately reproduced. The

proposed combination of a viscous model and a hypo-

plastic model can circumvent this problem. The novel

visco-hypoplasticity model presented in the paper is based

on an anisotropic preconsolidation surface. It can distin-

guish between the undrained strength upon triaxial vertical

loading and horizontal loading. The strain-induced anisot-

ropy is described using a second-order structure tensor. The

implicit time integration with the consistent Jacobian

matrix is presented. For the tensorial manipulation

including numerous Fréchet derivatives, a special package

has been developed within the algebra program MATH-

EMATICA (registered trade mark of Wolfram Research

Inc.). The results can be conveniently coded using a special

FORTRAN 90 module for tensorial operations. Simula-

tions of element tests from biaxial apparatus and FE cal-

culations are also shown.

Keywords Anisotropy � Clay � Implicit integration �
Viscosity

1 Introduction

In geotechnical engineering, the stress-strain-time behav-

iour of clay-like soils is important for the evaluation of

long-term performance of constructions. Even relatively

small differential settlements occurring late (when the

structure is finished and statically indeterminate) may lead

to a considerable increase in internal forces and affect the

serviceability.

The constitutive models for the time-dependent behav-

iour are developed mainly along the line of viscoplasticity.

In the past decade, hypoplastic constitutive model has been

established as an attractive alternative. Hypoplasticity was

developed primarily for cohesionless soil. Recently,

hypoplastic constitutive models have been extended to

clayey soil and rockfill material [8, 24, 35, 60], and the

model parameters have been determined for a large number

of soils [51]. Moreover, hypoplastic constitutive models

have been used to solve numerous boundary value prob-

lems, e.g. earth retaining wall [61], shallow foundation [52,

58], pile foundation [22], shear band formation [62] and

site response analysis [50].

Here, a model of rheological effects for normally con-

solidated and lightly overconsolidated soft soils into the

hypoplastic framework is discussed. Sophisticated phe-

nomena like delayed-creep or tertiary creep for normally
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consolidated clays and hesitation period are not considered

[10, 54]. Several authors [31, 54] have mentioned the

discrepancy between laboratory and in situ measurements.

This interesting anomaly is outside the scope of the present

paper. Neither effects caused by cementation nor structure

e.g. [10, 32, 54] are considered. The current stress, the void

ratio and the anisotropy structure tensor are used as state

variables. The anisotropic visco-hypoplastic model can

describe creep, relaxation, rate dependence and combina-

tions thereof. Previous works [1, 12, 28] have described the

same phenomena within the critical state framework for

isotropic preconsolidation surface. A similar isotropic

model including an endochronic kernel was proposed by

Oka [48]. A pseudo relaxation, e.g. due to undrained cyclic

loading, can also be obtained with the proposed model.

Similarly, as in the visco-plastic approach proposed [49], a

preconsolidation surface (corresponding to overconsolida-

tion ratio OCR = 1) is defined in the stress space. Contrary

to the well-known elliptical yield surface of the modified

Cam clay (MCC) model, our preconsolidation surface is

anisotropic and need not lie along the hydrostatic axis. The

first indications of deviations of the preconsolidation sur-

face from the isotropic location along the hydrostatic axis

were experimentally observed in the early seventies [29,

37, 38]. The first numerical implementations into elasto-

plasticity were attempted a decade later [5, 6, 7, 48]. Worth

mentioning is also an interesting and original description of

anisotropy by Dean [20] based on a novel specific length

concept. Our structural tensor is constituted by stress and

volumetric strain rate, however.

The preconsolidation surface is used to calculate the

intensity of viscous flow and the direction of flow. The

assumed associated flow rule (AFR) can be considered as a

simplification compared to others [16, 67]. This surface can

be surpassed by the stress path, and the stress portion

protruding outside the preconsolidation surface is termed

‘overstress’. The rate of creep increases with the overstress.

Similarly like [12, 13] and contrarily to [28], for example,

the proposed model allows for viscous creep and also for

the stress states inside the preconsolidation surface

(OCR \ 1) (i.e. a small creep is possible also for negative

overstress). In both cases (OCR \ 1 and OCR [ 1), the

creep rate changes very quickly, say with OCR-20, com-

pared to the reference creep rate Dr which corresponds

roughly to OCR = 1. Outside the preconsolidation surface

(OCR \ 1) the creep rate increases, and inside (OCR [ 1)

it decreases compared to the reference rate. The evolution

of the anisotropy is allowed only for volumetric compres-

sion (for negative rate of the void ratio, _e\0Þ; and its rate

depends on the current stress and OCR. The description of

the model (starting from the 1-d visco-hypoplastic version)

and of its implicit time integration are presented. The

model has been implemented in a FORTRAN 90 code

according to the ABAQUS1 user-material-subroutine con-

ventions. The program has been verified by recalculation of

element tests under various laboratory conditions, such as

biaxial tests and FE calculations of punching tests.

2 Notation

The list of symbols used in this paper is presented in the

Appendix. A fixed orthogonal Cartesian coordinate system

with unit vectors fe1; e2; e3g is used throughout the text. A

repeated (dummy) index in a product indicates summation

over this index taking values of 1, 2 and 3. A tensorial

equation with one or two free indices can be seen as a

system of three or nine scalar equations, respectively. We

use the Kronecker’s symbol dij and the permutation symbol

eijk. Vectors and second-order tensors are distinguished by

bold typeface, for example N;T; v: Fourth-order tensors are

written in sans serif font (e.g. L). The symbol � denotes

multiplication with one dummy index (single contraction),

for instance the scalar product of two vectors can be written

as a � b ¼ akbk: Multiplication with two dummy indices

(double contraction) is denoted with a colon, for example

A : B ¼ trðA � BTÞ ¼ AijBij; wherein tr X ¼ Xkk reads trace

of a tensor. The expression ()ij is an operator extracting the

component (i, j) from the tensorial expression in brackets,

for example ðT � TÞij ¼ TikTkj: The multiplication

AijklmnBkl; with contraction over the middle indices, is

abbreviated as Â:B: We introduce the fourth-order identity

tensor ðJÞijkl ¼ dikdjl and its symmetrizing part Iijkl ¼
1
2
ðdikdjl þ dildjkÞ: The tensor I is singular (yields zero for

every skew symmetric tensor), but for symmetric argument

X; I represents the identity operator, such that X ¼ I : X: A

tensor raised to a power, like Tn; is understood as a

sequence of n - 1 multiplications T � T � . . .T: The

brackets || || denote the Euclidean norm, i.e. jjvjj ¼ ffiffiffiffiffiffiffi

vivi
p

or

jjTjj ¼
ffiffiffiffiffiffiffiffiffiffiffi

T : T
p

: The definition of Mc Cauley brackets reads

\x [ ¼ ðxþ jxjÞ=2: The deviatoric part of a tensor is

denoted by an asterisk, e.g. T� ¼ T� 1
3

1trT; wherein

ð1Þij ¼ dij holds. The Roscoe’s invariants for the axisym-

metric case T2 ¼ T3 and D2 ¼ D3 are then defined as p ¼
�1 : T=3; q ¼ �ðT1 � T3Þ;Dv ¼ �1 : D and Dq ¼

� 2
3
ðD1 � D3Þ: The general definitions q ¼

ffiffi

3
2

q

jjT�jj and

Dq ¼
ffiffi

2
3

q

jjD�jj are equivalent to the ones from the axi-

symmetric case but may differ in sign. Dyadic multipli-

cation is written without �, e.g. ðabÞij ¼ aibj or

ðT1Þijkl ¼ Tijdkl: Proportionality of tensors is denoted by

1 Registered trade mark of a commercial FE program, http://www.

simula.com.
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tilde, e.g. T�D: The components of diagonal matrices

(with zero off-diagonal components) are written as

diag½; ; �; for example 1 ¼ diag½1; 1; 1�: The operator

ðtÞ! ¼ t=jj t jj normalizes the expression t; for example

D
!
¼ D=jjDjj: The hat symbol t̂ ¼ t=trt denotes the tensor

divided by its trace, for example T̂ ¼ T= tr T: The sign

convention of general mechanics with tension positive is

obeyed. The abbreviations t0 ¼ ot
oT and t� ¼ ot

oX
denote the

derivatives of t with respect to tensorial state variables T

and X; respectively. Objective Zaremba-Jaumann rates are

denoted with a superimposed circle (rather than a dot), for

example the Z-J rate of the Cauchy stress is �T:

3 One-dimensional visco-plasticity

In the 1-d oedometric model, the vertical stress is denoted

by T (always negative) and the strain rate as D ¼ _e=ð1þ eÞ:
Let us start from the equations commonly used in evalua-

tion of oedometric tests for the frequently used special

cases of

• constant rate of strain (CRSN) first loading, i.e. with D

= const

• inviscid unloading or reloading

• creep (T = const)

We have, respectively

�� �0 ¼ �k lnðT=T0Þ or D ¼ �k _T=T ; ð1Þ

�� �0 ¼ �j lnðT=T0Þ or D ¼ �j _T=T ; ð2Þ

�� �0 ¼ �w ln
t þ t0

t0
or D ¼ �w

1

t þ t0
; ð3Þ

where � is the vertical (= axial = volumetric) logarithmic

strain (Hencky strain � ¼ lnðh=h0Þ ¼ lnðð1þ eÞ=ð1þ e0ÞÞ
with h and h0 denoting the initial and the current height of

the sample, respectively). These relations need the fol-

lowing material constants: the [15] compression index k,

the swelling index j and the coefficient of secondary

compression w. The quantities �0, T0, t0 are the reference

values of strain, stress and time, respectively. The values T0

and �0 must be taken from the same ‘‘special case’’, i.e.

both must correspond to the primary compression line or to

the same unloading-reloading branch.

This engineering description can be generalized to the

following 1-d model [45]

_T ¼ �T
j ðD� DvisÞ

Dvis ¼ �Dr
�T
TB

� �1=Iv

TB ¼ TB0
1þe

1þeB0

� ��1=k
or _TB ¼ � TBD

k

8

>

>

>

>

<

>

>

>

>

:

ð4Þ

where TB ([0) is an equivalent stress. The advantage here

is that arbitrary combinations of the above processes

(including relaxation) can be predicted. Note that the

creep rate Dvis is a function of stress T and void ratio e

only. Imai [25] and Lerouiel [31] have shown the validity

of this so-called hypothesis B in laboratory and in situ,

respectively. The discussion between hypotheses A [36]

and B [25, 31] will not be reiterated here. The material

constants are the viscosity index Iv and the previously

mentioned coefficients k and j. The reference values are

the creep rate (fluidity parameter) Dr = 1%/h, and the

reference states TB0 and eB0 on the primary compression

line (or reference isotach [59]) corresponding to the creep

rate Dr (see Fig. 1) or to the CRSN compression with

D ¼ kDr=ðk� jÞ:
The values e0 and T0 are needed only once to initialize

the incremental process. The parameters of the engineering

description can be shown [42] to be related to the

parameters

t0 ¼
kIv

Dr
OCR1=Iv with OCR ¼ �TB=T; ð5Þ

w ¼ kIv ð6Þ

of the 1-d model. These equations are obtained comparing

Eqs. 1–3 with Eq. 4 for the special cases.

4 Isotropic visco-hypoplasticity

The aforementioned 1-d model was generalized [42] using

hypoplasticity and OCR based on the isotropic preconsol-

idation surface of the modified Cam Clay Model (MCC).

The decomposition of the strain rate into elastic and vis-

cous portions D ¼ De þ Dvis was assumed. All irreversible

deformations were treated collectively as a time-dependent

variable Dvis: The viscous strain rate Dvis ¼ DvisðT; eÞ was

assumed to be a function of the Cauchy stress T and the

void ratio e. The Norton’s power rule [46] for the intensity

of viscous flow and the hypoplastic flow rule for its

λ
1

(TB0,eB0)

(TB,e)

Dr

ln(TB)

ln(1+e)

ref. isotach

λ
1

ln(T )

ln(1+e)

κ
1

Fig. 1 Reference values TB0, eB0 defined on the reference isotach

(corresponding to Dr) and coefficients k and j

Acta Geotechnica (2009) 4:293–314 295

123



direction were adopted. The hypoplastic flow rule

Dvis�mðTÞ and the hypoelastic barotropic stiffness E

were used as follows

�T ¼ E : D� Dvis
� �

with Dvis ¼ mDrOCR�1=Iv : ð7Þ

A hyperelastic stiffness based upon complementary

energy potentials [23] and similar to the model proposed by

[43], is planned in a future version of this model as a

replacement for the current E:

The definition of OCR has been generalized for non-

isotropic stresses based on MCC preconsolidation surface.

An analogous generalization based on the anisotropic

preconsolidation surface will be presented in the next

section, Eq. 39. The expression OCR�1=Iv ; used as the

function for intensity of the creep, can be shown to be

analogous to the one proposed by Adachi and Oka [1, 2,

47]. Readers familiar with the old hypoplastic notation [21,

65] based on two tensorial functions

L̂ ¼ Ê ¼ a2 FM

a

� �2

Iþ T̂T̂

 !

ð8Þ

N̂ ¼ a2 FM

a
T̂þ T̂�
� �

ð9Þ

may find the following interrelations helpful:

E ¼ �trT

3j
L̂ and m ¼ � L̂�1 : N̂

� �!
; ð10Þ

wherein j denotes the swelling coefficient [15] taken from

lnðpÞ � lnð1þ eÞ diagram, Fig. 1. In the above expressions

for E, the coefficients a and FM are defined as

FM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

8
tan2 Wþ 2� tan2 W

2þ
ffiffiffi

2
p

tan W cos 3h

s

� 1

2
ffiffiffi

2
p tan W

ð11Þ

with

a ¼
ffiffiffi

3
p

3� sin ucð Þ
2
ffiffiffi

2
p

sin uc

; tan W ¼
ffiffiffi

3
p
jjT̂�jj; ð12Þ

and h is the Lode’s angle given in Eq. 43. Note that the

‘‘hypoelastic’’ stiffness depends on the critical friction

angle uc.

The small-strain constitutive behaviour described with

the so-called intergranular strain [44] is left out in the

current anisotropic version for brevity. A future version of

the model should consider the small strain stiffness effects

[9,14, 26, 33, 55, 56, 42, 44]. The isotropic visco-hypo-

plasticity is extensively discussed in [42], and it has been

used in numerous FE applications. Here, we concentrate on

the anisotropic preconsolidation surface and on the implicit

time integration strategy only.

5 Anisotropic model

From numerical tests [57], it can be concluded that the

isotropic model [42] requires an anisotropic extension,

especially for a better fit of the biaxial test results on K0

consolidated samples [63]. This can be achieved using

anisotropic functions for OCR and for the unit tensor m

defining the flow rule. A well-known anisotropic effect of

naturally consolidated soils manifests itself in the

undrained shear tests. The undrained shear strength cu turns

out to be significantly greater for triaxial compression than

for extension, and this effect cannot be explained by the

different inclinations of the critical state lines MC ¼ 6 sin uc

3�sin uc

and ME ¼ � 6 sin uc

3þsin uc
; respectively.

The main constitutive equation of the new model takes

the form similar to Eq. 7

�T ¼ E : D� Dvis � DHp
� �

with ð13Þ

Dvis ¼ mDr OCR�1=Iv and DHp ¼ C1mjjDjj ð14Þ

Apart from the anisotropic functions for OCR and for the

flow rule m, Eq. 13 introduces a small-term C1E : mjjDjj
with a material constant C1 & 0.1 or less. Upon 1-d strain

cycles (so called in-phase cycles), the hypoelastic2 linear

term E : D causes no accumulation of stress. The term

C1E : mjjDjj causes accumulation dependent on m and on

the length of the strain path
R

jjDjjdt: One may call it

pseudo-relaxation, but since

DHp ¼ C1mjjDjj ð15Þ

resembles the hypoplastic nonlinear term we prefer to call

DHp the hypoplastic strain and C1E : mjjDjj the hypo-

plastic relaxation. Note that the rates Dvis and DHp are

parallel, and both are functions of the current state

described by stress T and the equivalent stress TB (see the

next subsection). The essential difference between Dvis

and DHp is that the hypoplastic strain is driven by the

magnitude of the deformation, whereas the viscous strain

is driven by time t.

5.1 One-dimensional version of the novel model

The effect of the hypoplastic strain DHp can be examined in

one-dimensional case using DHp ¼ �C1jDj: The aniso-

tropy of the yield surface and of the flow are not relevant,

of course.

2 The hyperelastic stiffness is conservative in the sense that any
closed strain cycle causes a closed stress cycle and vice versa. For

hypoelastic formulations, this is true for in-phase cycles only, e.g.

�ðtÞ ¼ sinðtÞ�ampl: The out-of-phase strain cycles, e.g. with �11 ¼
�ampl

11 sinðtÞ and �22 ¼ �ampl
22 sinðt þ p=3Þ may lead to undesired accu-

mulation of stress. The direction of accumulation depends on the

sense of rotation ( or ).
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From

_T ¼ �T
j ðD� Dvis � DHpÞ

Dvis ¼ �Dr
�T
TB

� �1=Iv

DHp ¼ �C1jDj
TB ¼ TB0

1þe
1þeB0

� ��1=k
or _TB ¼ � TBD

k

8

>

>

>

>

>

<

>

>

>

>

>

:

ð16Þ

one may obtain the following special cases:

• During pure creep _T � 0 from the first equation of

Eq. 16 follows Dþ C1jDj ¼ Dvis and since C1 	 1

holds, we conclude that D and Dvis have the same

sign (both are negative = compressive) and therefore

|D| = -D. We obtain, therefore, a slightly larger value

of the creep rate

D ¼ 1

1� C1

Dvis ð17Þ

compared to D ¼ Dvis in the original model Eq. 4.

• The pure relaxation is obtained substituting D : 0 into

the first equation of Eq. 16. We obtain

_T ¼ ��T

j
Dvis [ 0 ð18Þ

which is identical to the relaxation rate from the ori-

ginal model Eq. 4.

• Let us assume a constant compressive creep rate Dvis ¼
const\0: We examine the implications of _Dvis ¼ 0:

Judging by the second equation of Eq. 16 (for T = 0

and TB = 0, of course), the constant rate of creep

requires

T

TB

� 	�
¼ 0 or _T=T ¼ _TB=TB ð19Þ

In the latter form, we may substitute _TB=TB ¼ �D=k from

the last equation of Eq. 16 and �j _T=T ¼ D� Dvis þ C1jDj
from the first equation of Eq. 16. This leads to

� 1

j
D� Dvis þ C1jDj

 �

¼ �D=k ð20Þ

Assumption D [ 0 would result in Dvis=D ¼ 1� j=kþ
C1 which cannot be satisfied for Dvis\0 because 1�
j=kþ C1 [ 0 holds. Therefore, D must be negative and

hence

D ¼ Dvis 1� j=k� C1½ ��1¼ const\0 ð21Þ

Equation (21) shows that our initial assumption about the

viscous strain Dvis ¼ const\0 implies a compression with

a constant strain rate deformation. The rate of

deformation is slightly different from D ¼ Dvisk=ðk� jÞ
obtained analogously [42] from Eq. 4. The relation

between the stress rate and the strain rate for such case

is obtained by elimination of Dvis in the first equation of

Eq. 16 using Eq. 21.

_T ¼ �T

j
ðDþ C1jDj � DvisÞ with D\0 ð22Þ

_T ¼ �T

j
ð1� C1 � 1� j=k� C1½ �ÞD ð23Þ

_T ¼ �T

k
D ð24Þ

After time integration, this relation can be represented by a

straight line parallel to the reference isotach in the com-

pression diagram in Fig. 1.

5.2 Anisotropic preconsolidation surface

and the flow rule

The anisotropy of visco-hypoplastic model follows from

the equation of the preconsolidation surface. In the new

model, the preconsolidation surface has the form of an

inclined ellipse in the p-q space, Fig. 2 or an ellipsoid in

the principal stress space Fig. 4. The tensorial equation of

the preconsolidation surface has the form

FðT;X; pBÞ � M2p2 � 3MpT� : Xþ 3

2
T� : T�

þM2ppB
3

2
X : X� 1

� �

¼ 0:
ð25Þ

The equivalent pressure of the isotropic MCC model is

replaced by the preloading stress

TB ¼ pBð�1þXMXÞ; ð26Þ

see Fig. 2.

Note that a simple rotation of the Cam clay preconsol-

idation ellipse would not satisfy the isochoric flow condi-

tion for critical state [27].

The size of the ellipse is described by the scalar state

variable pB, and the obliquity is described by the deviatoric

p=-(T1+2T3)

q=-(T1-T3)
MC

1

ME

1

pB

TB

pB+

F=0 T 1
ΩMΩ

Fig. 2 Anisotropic preconsolidation surface F = 0 and the definition

of pB? for the current stress T. The axisymmetric stress T and the

axisymmetric structure tensor X can be represented in the common

p-q diagram
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structural tensor X; similar to the model introduced by

Dafalias [18]. Keeping X ¼ 0; we enforce isotropic pre-

consolidation because the main diameter of the ellipse

remains on the hydrostatic axis. The slope of the critical

surface in the p-q diagram is described by M = M(h)

which depends on the critical friction angle and is a

function of the Lode’s angle hðTÞ of stress discussed fur-

ther in this section (in the Drucker–Prager model M would

be a material constant). The condition q2 ¼ M2p2 of criti-

cal state can be expressed in general case as

FcritðTÞ �
3

2
T� : T� �M2p2 ¼ 0 ð27Þ

For triaxial compression, M(h) reaches the maximum

MC ¼ 6 sin uc

3�sin uc
: For triaxial extension, M(h) reaches the

minimum ME ¼ � 6 sin uc

3þsin uc
: Additionally, we introduce MX

which denotes the critical slope for h dictated by the cur-

rent X: In general, M 6¼ MX: The critical state is assumed

to be isotropic, independent of stress T and of deformation

history X; contrarily to [39, 67].

Equation (25) of the preconsolidation surface has been

derived from the general equation of an ellipse

f ð�p; �qÞ � �p2 þ l1�p�qþ l2�q2 þ l3�pþ l4�qþ l5 ¼ 0 ð28Þ

in the space of normalized Roscoe components �p ¼ p=pB

and �q ¼ q=ðMpBÞ: The following requirements have been

imposed:

f ð0; 0Þ ¼ 0 � l5 ¼ 0 ð29Þ
f;�qð0; 0Þ ¼ 0 � l4 ¼ 0 ð30Þ

f ð1;xÞ ¼ 0 � 1þ l1xþ l2x
2 þ l3 ¼ 0 ð31Þ

f;�qð1;xÞ ¼ 0 � l1 ¼ �2l2x ð32Þ

meaning that the ellipse should pass through the points

ð�p; �qÞ ¼ ð0; 0Þ and (1, x) having the outer normal parallel

to the �p-axis there. Moreover, we require

f;�qð�p; �pÞ ¼ 0 for f ð�p; �pÞ ¼ 0 � l2 ¼ 1 ð33Þ

f;�qð�p;��pÞ ¼ 0 for f ð�p;��pÞ ¼ 0 � l2 ¼ 1 ð34Þ

meaning that on crossing with the critical state lines

�p ¼ 
�q the ellipse f ð�p;��pÞ ¼ 0 should have the outer

normal parallel to the �q-axis: These features of the

preconsolidation surface are not always satisfied by

models in the literature, for instance [27, 32]. All these

conditions lead to the preconsolidation surface

f ð�p; �qÞ � �p2 � 2x�p�qþ �q2 � ð1� x2Þ�p ¼ 0 or ð35Þ
�Fðp; q;x; pBÞ � M2p2 � 2Mpxqþ q2

�M2ppBð1� x2Þ ¼ 0;
ð36Þ

wherein the second equation has been obtained using

the definitions of �p and �q and multiplying f with (pB M)2.

The tensorial form Eq. 25 results from the definition of the

Roscoe’s deviatoric invariant: q2 ¼ 3
2

T� : T�;x2 ¼ 3
2
X : X

and qx ¼ 3
2

T� : X.

Analogous conditions imposed onto the preconsolida-

tion surface FðT;X; pBÞ given in Eq. 25 and on its outer

normal

F0 ¼ 3T� � 3pMX� 2M2p� 3MX : T



þM2pB
3

2
X : X� 1

� 	�

1

3
1þ oF

oM
M0

ð37Þ

are satisfied:

• Fð0;X; pBÞ ¼ 0

• F0ð0;X; pBÞ� 1; note that oF=oM ¼ 0 in this case

• FðTB;X; pBÞ ¼ 0; note that M ¼ MX for T ¼ TB:

• F0ðTB;X; pBÞ� 1; note that qF/qM = 0 in this case

• For intersection line of surfaces FcritðTÞ ¼ 0 and

FðT;X; pBÞ ¼ 0 given by Eqs. 25 and 27, respectively,

holds the isochoric flow rule

1 : F0ðTB;X; pBÞ ¼ 0 ð38Þ

One can easily show that the expression in square

brackets in Eq. 37 multiplied with p is . . .½ �p ¼ F � Fcrit; so

the volumetric portion of the outer normal F0 must indeed

vanish if F and Fcrit simultaneously do.

We intend to replace the hyperellipse Eq. 25 by the

alternative formulation Eq. 51 in future. This function not

only guarantees to satisfy the isochoric flow rule in the

critical state exactly but also keeps all principal stresses

negative.

Similar strain-induced anisotropic yield surfaces have

been used in numerous elasto-plastic soil models (e.g. [19,

30, 64]). Contrary to the elastoplastic yield surfaces,

however, the surface Eq. 25 can be surpassed by the stress

path.

The preconsolidation surface Eq. 25 can be shown to be

orthotropic with the orthotropy axis coinciding with the

principal directions of X: If required by experimental data,

the mathematical form of Eq. 25 can be extended in future

according to representation theorems. An example of such

systematic approach for transversally isotropic soils is

given in [11].

The overconsolidation ratio OCR describes the ‘‘dis-

tance’’ from the current stress T to the preconsolidation

surface. Stresses inside the preconsolidation surface corre-

spond to F \ 0 and OCR [ 1. Stresses outside correspond

to F [ 0 and OCR \ 1. In the case F = 0 or equivalently

OCR = 1, stresses lie on the preconsolidation surface, and

the intensity of creep jjDvisjj takes referential value

jjDvisjj ¼ Dr which is evident from Eq. 14 for OCR=1. The

corresponding creep rate is jjDjj ¼ Dr=ð1� C1Þ � Dr:

The rate of the viscous strain rate Dvis depends strongly

on the distance between the current stress and the pre-

consolidation surface. The intensity of the viscous strain
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rate Dvis becomes very high outside this surface and very

low inside it. The generalized definition of the overcon-

solidation ratio is

OCR ¼ pB=pBþ ð39Þ

in which pB? is found as the parameter analogous to pB

describing an ellipse having the same inclination X as the

preconsolidation surface, but passing through the current

stress T rather than through the equivalent stress TB which

corresponds to the current void ratio. In other words, we

determine pB? from

pBþ ¼
M2p2 � 3MpT� : Xþ 3

2
T� : T�

M2p 1� 3
2
X : X


 � ð40Þ

using the current values T�; p and X (see Figs. 2, 3).

The evolution equation of TB will be described via pB

and X ¼ T�B=pB: A representation of the preconsolidation

surface and X in the principal stresses space is shown in

Figs. 4 and 5. In general, X and T are not coaxial.

The critical state surface is assumed to be described by

the Matsuoka-Nakai [34] condition

fM�N � tr T trðT�1Þ � / ¼ 0;with ð41Þ

/ ¼ 9� sin2 uc

1� sin2 uc

; ð42Þ

where uc is the critical friction angle. In order to make the

critical stress obliquity M = q/p (with p ¼ � 1
3

tr T and

q ¼
ffiffi

3
2

q

jjT�jjÞ consistent with the Matsuoka–Nakai

criterion Eq. 41, M must depend on the Lode’s angle h
determined from

cos 3hð Þ ¼ �
ffiffiffi

6
p
ðT�
!
� T�
!
Þ : T�
!
¼ �3

ffiffiffi

6
p

det T�
!

ð43Þ

and T�
!
¼ ðT�Þ!: Unfortunately, the relation M(h) is not

straightforward. In some literature, (as in [29]), its deter-

mination is delegated to the numerical implementation. This
may slow down the calculation. Given the Lode’s angle h, the

condition q = M p can be shown to be equivalent to Eq. 41 if

M is the smaller positive root of the following equation

2

27
/ cos 3hð ÞM3 þ 1

3
3� /ð ÞM2 þ /� 9 ¼ 0: ð44Þ

This cubic equation may be solved for M analytically.

For the special case cos(3h) = 0 or h = 30�, the Eq. 44

becomes quadratic, and we take the positive root

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
/� 9

/� 3

s

ð45Þ

We take this value also for T� 1: Otherwise, the smaller

positive root is

M ¼ 3/� 9

/ cosð3hÞ
1

2
� cos

b
3
þ p

3
Hðcosð3hÞÞ

� �� �

ð46Þ

wherein H() is the Heaviside function and

MC

1

ME

1

pB+

F+=0 T

m

p

q

Fig. 3 Direction of the flow m(T) for the current stress T and the

current structure tensor X

Fig. 4 Representation of the preconsolidation surface Eq. 25 and the

critical surface Eq. 27), both with M(h) according to Matsuoka-Nakai,

in the principal stresses space. We assume that X and T are coaxial in

this graphic. Generally, it need not be the case, see Eq. 53

Fig. 5 View of Fig. 4 from a point on the isotropic axis

Acta Geotechnica (2009) 4:293–314 299

123



b ¼ arccos sign cosð3hÞ½ � b

ð�3þ /Þ3

( )

with ð47Þ

b ¼ �27þ 27/� 9/2 þ 18 cos2ð3hÞ/2 þ /3

� 2 cos2ð3hÞ/3 ð48Þ

The analytical expression Eq. 47 is relatively

complicated, and M changes slowly with T. Therefore, in

the Newton iteration procedures that follow, we will assume

M0 � 0 ð49Þ

The cost of computation of M0 is expected to be high

compared to some marginal increase in the convergence

rates.

The flow rule m needs to be defined for an arbitrary

stress T and not just for stresses on the yield surface as it is

the case in elastoplasticity. For this purpose, we propose

the following procedure. First, the preconsolidation pres-

sure pB? is found from FðT;X; pBþÞ ¼ 0 for the current T

and X: Next, an auxiliary surface (dashed ellipse in Fig. 2)

FþðTÞ ¼ FðT;X; pBþÞ ¼ 0 is constructed. Finally, the

direction of flow follows from

m ¼ F0þ

!
¼ oFþ

oT

�

�

�

�

!

pBþ

ð50Þ

wherein pB? and X are constant, and the analytical

expression for the Fréchet derivative F0þ
!

is given in Eq. 72

in Sect. 6.2. In other words, we construct a hypothetical

preconsolidation surface (dashed ellipse in Fig. 2) passing

through the current stress T and affine to the current pre-

consolidation surface (solid-line ellipse in Fig. 2). Then,

we calculate m as a unit outer normal to this surface (the

associated flow rule with respect to FþðTÞ ¼ 0Þ:
Small deviations from AFR are allowed for [40], and

such a non-associated flow rule (NAFR) may be necessary

in a future version of the model in order to satisfy the

condition of isochoric flow direction in the critical state.

As an unpleasant consequence of the consistency of the

critical stress ratio M(h) with the Matsuoka–Nakai crite-

rion, the preconsolidation surface becomes slightly con-

cave near the isotropic axis, see Fig. 4 and tensile stresses

(tr T\0 but one of the principal stresses may become

positive) can be reached at very low pressures.

In order to remove these shortcomings, an alternative

preconsolidation surface

GðT;X; pBÞ � tr T�Xð Þtr T�X½ ��1
� �

� / ¼ 0
ð51Þ

with

/ ¼ /max 1� p

pB

� 	

þ 9
p

pB
ð52Þ

and /max [ 9 is currently being studied (e.g. see Fig. 6).

Such surfaces are smooth, have no concavity and are

bounded to the compressive stresses.

5.3 Evolution of state variables X and pB

The evolution equations of the preconsolidation stress TB

are provided separately for pB and for X: The evolution of

the structural deviatoric tensor X
�

is proposed to be

�X ¼ C2 C3ð�T̂�Þ � 1

3
M X

� 	

OCR�1=Iv

� h�tr Dih�tr mi
ð53Þ

We do not follow the idea [20, 41] that relates the evolution

of the anisotropy tensor X to the plastic strain deformation

alone, because it implies evolution of X for critical state

flow. The length of such process cannot influence the

structure. In our opinion, the evolution of X is possible

upon contractant strain paths only, i.e. only for tr D\0; and

for subcritical stress states (tr m\0Þ: The rate of this

evolution increases rapidly with decreasing OCR. Since

Fig. 6 Preconsolidation surface Eq. 52 based on the Matsuoka-Nakai function with /(p)
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Iv & 0.05, the evolution of X is practically absent at

OCR [ 1.5. In this case, the multiplier OCR�1=Iv � 3�10�4

makes �X almost negligible. The direction of �X is dictated

by the difference between the current stress deviator T� and

X (both appropriately scaled). The scalar multipliers at X

and T� are chosen to reproduce the asymptotic behaviour

upon radial compression tests, i.e. those with tr D\0 and

T̂� ¼ const: The asymptotic value of the structural tensor

is in such case X ¼ �ð3C3

M T̂�Þ: The material parameter

C3 can be easily found making the direction of flow m

compatible with the uniaxial (oedometric) compression

TK0
� diag½�1;�K0;�K0� (with K0 = 1 - sinu),

Fig. 7. The direction of flow should be uniaxial, i.e.

m ¼ diag½�1; 0; 0� (at least in the asymptotic case).

Hence, C3 can be expressed in terms of K0 and MC ¼
6 sin uc=ð3� sin ucÞ as follows

C3 ¼
ð2K0 þ 1ÞM3

C

9ðK0 � 1Þ þ
ðK0 þ 2ÞMC

2K0 þ 1
ð54Þ

The rate of evolution of X can be controlled by the

material constant C2. This constant can be calibrated from

triaxial results that follow a long proportional compression

path with T̂ ¼ const and tr D\0; say following a K0-line.

Next, we unload the sample until the stress path reaches the

hydrostatic axis (Fig. 8). Finally, we load the sample again

in such way that the stress path follows the hydrostatic axis.

Upon this hydrostatic compression, we record the devia-

toric strain rate observing how much total volumetric

strain is necessary for X to take a new asymptotic position.

The rotation of X can be demonstrated experimentally as a

rotation of m corresponding to the direction of irreversible

strain. Such rotation has been observed [3] keeping the

stress obliquity T̂ ¼ 1
3

1 constant, Fig. 8.

In a biaxial apparatus, the calibration of the parameter

C2 can be done using a similar principle. Once the sample

has reached a proportional stress ratio, say a K0 state, a new

proportional compression strain path, with a different strain

ratio, is applied until a new stress ratio is obtained (at least

asymptotically). Such an experiment was carried out by

[63] and is shown in Fig. 9. In absence of anisotropic

effects (no rotation of preconsolidation surface, i.e.

X ¼ 0 ¼ constÞ; i.e for C2 = 0, stress paths for propor-

tional compression are poorly reproduced.

The preconsolidation pressure pB is a one-to-one func-

tion of the void ratio e and it satisfies the equation of the

isotropic reference isotach

ln
1þ e

1þ e0

� 	

¼ �k ln
pB

pB0

� 	

ð55Þ

This equation describes the virgin isotropic compression

line obtained at the referential rate

D ¼ � k
k� j

1
!

Dr ð56Þ

Any state (e, p) upon this referential first compression

process can be chosen to be the reference state (e0, pB0).

Equation (55) is parallel to the oedometric first

compression line [15] commonly used in elastoplastic

models. The rate form

MC
1

pB+

F+=0

m=diag(-1,0,0)

p

q

K0-li
ne

Fig. 7 Direction of flow m for uniaxial compression

p

q

K0-lin
e

m
m

Fig. 8 The rate of rotation �X of the preconsolidation surface can be

indirectly measured via rotation of the flow rule m upon an isotropic

stress path (Z. Mróz, personal communication, [3])
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I

Fig. 9 Calibration of C2 using a Biaxial test with a K0-compression

(strain controlled compression type IV with D1 = -0.5%/h, D2 =

D3 = 0), followed by a compression type I (with D1 = -0.354%/h,

D2 = -0.354%/h and D3 = 0), see Fig. 18 and Table 2
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_pB ¼ �
pB

k
tr D ð57Þ

follows directly from time differentiation of Eq. 55 using

_e ¼ ð1þ eÞtr D: Equation (57) is analogous to the well-

known volumetric hardening; however, the total volumetric

strain rate tr D is used instead of the plastic one tr Dpl:

Therefore, contrary to elasto-plastic formulations, our _pB

becomes negative during isotropic unloading, Fig. 10. In

elasto-plastic models, such unloading would be considered

as an ‘‘elastic’’ process, and the preconsolidation would

remain constant.

The evolution of the void ratio e is calculated from _e ¼
ð1þ eÞtr D: Note, however, that we treat the preconsoli-

dation pressure pB, and not e, as a primary state variable,

although they are interrelated one-to-one via Eq. 55. The

unique dependence pB(e) postulated in Eq. 55 means, in

particular, that radial compressive stress paths with con-

stant obliquity q/p and carried out at the same strain rate,

say jjDjj ¼ Dr generate identical preconsolidation pressure

pB(e). In comparison with the isotropic model, the

compression lines in lnðpÞ � lnð1þ eÞ diagram obtained

from the anisotropic model for different stress ratios q/p

should be closer to each other, Fig. 11.

5.4 Discussion of the model

It is well-known that for a given isochoric direction of

deformation the strain rate affects the undrained strength of

clayey soils [understood as cu ¼ 1
2
ðTmax � TminÞ�; but it

does not affect the maximum effective stress ratio

(understood as Tmax=TminÞ: In undrained triaxial tests, one

can observe this effect plotting the stress paths in the p-q

diagram, Fig. 12. This figure illustrates two deformation

paths a and b carried out in the same direction Da�Db; but

at different rates jjDajj[ jjDbjj: Both strain rates are

undrained, tr Da ¼ tr Db ¼ 0; and both are kept unchanged

during the deformation process.

The asymptotic stationary stress state corresponds to
�T ¼ 0: In this subsection, we demonstrate that both the

isotropic and the anisotropic models can reproduce this

behaviour and that the additional hypoplastic term

C1mjjDjj from Eqs. 13 and 14 does not spoil it.

In the isotropic model Eq. 7 without DHp; the stationa-

rity condition �T ¼ 0 implies D ¼ DrmOCR�1=Iv for both

strain rates, and since these rates are proportional, the

ensuing asymptotic states Tasy
a and Tasy

b must correspond to

the same flow direction m; but to different values of the

overconsolidation ratios OCRa \ OCRb (Da is faster than

DbÞ: Since mðTÞ is a homogeneous stress function, i.e.

mðvTÞ ¼ vmðTÞ for any v[ 0, the asymptotic states must

be proportional Tasy
a �Tasy

b : For a given (and constant)

preconsolidation pressure common for both deformation

rates inequality OCRa \ OCRb implies jjTasy
a jj[ jjT

asy
b jj;

and hence the deviatoric portion of Tasy
a must be larger too.

The term C1mjjDjj in Eq. 13 does not spoil the pro-

portionality of the asymptotic stresses discussed earlier for

the isotropic model. Once again, we compare the asymp-

totic stresses of the same two deformation paths assuming a

p

q

T B

λ
1

ln(p)

ln
(1
+e

)

κ 1
p

B

pB

pp

pp

Fig. 10 Left: Evolution of the anisotropy X during natural (uniaxial)

consolidation. Isotropic state X ¼ 0 is assumed as the initial

condition. The evolution of the X can be seen via the preconsoli-

dation stress TB: Right: Reduction in the preconsolidation pressure pB

upon unloading ( _e [ 0Þ is allowed for in hypoplasticity. In elasto-

plastic models, reduction in the preconsolidation pressure is possible

only during plastic dilatant flow
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+
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Fig. 11 Monotonic compression lines with constant strain rate jjDjj ¼
Dr and constant stress ratios q/p. The unique pB(e) relationship does

not imply that the compression lines ln p� lnð1þ eÞ become unique

in the anisotropic model (right), although their distance is closer

compared to the isotropic model (left)
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T
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m
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m

Fig. 12 The stationary stresses resulting from proportional isochoric

strain rates are proportional. Faster loading leads to a stationary stress

of a larger magnitude
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common initial stress and a common preconsolidation TB:

Note that TB remains constant during any isochoric

deformation. Indeed, according to Eqs. 53 and 57, neither

X nor pB may change while tr D ¼ 0:

In the anisotropic model Eq. 13 with DHp 6¼ 0; the sta-

tionarity condition �T ¼ 0 leads to

D�mDrOCR�1=Iv �mC1jjDjj ¼ 0 ð58Þ

from which we may conclude that the required common

flow rule is m ¼ D
!

a ¼ D
!

b: Recall that Da and Db are pro-

portional. Hence, using the homogeneity of the flow rule

(for a given and constant TBÞ with respect to stress, we infer

that the asymptotic stresses are proportional Tasy
a �Tasy

b :

The asymptotic stresses Tasy
a and Tasy

b lie on the critical

surface. Again, due to OCRa\OCRb the stress magnitudes

are different, jjTasy
a jj[ jjT

asy
b jj: Larger strain rates imply

larger stress magnitudes and therefore larger cu, Fig. 13.

In agreement with the critical state soil mechanics, the

critical state condition corresponds to tr D ¼ tr m ¼ 0: For a

given preconsolidation stress TB and for strain rates jjDjj ¼
const; it describes a unique surface in the stress space. No

unique critical void ratio e(p) is postulated in this model,

however. This is so due to the anisotropy and the rate

dependence. The critical stress ratios (q/p)crit correspond to

the Matsuoka-Nakai surface and are not influenced by TB:

In this sense, the critical stress ratio can be regarded as

isotropic. The preconsolidation surface and the flow direc-

tion depend strongly on TB; and hence they are anisotropic.

Since TB may evolve we may speak of induced anisotropy.

After a natural oedometric preconsolidation, the

undrained strength cuE for triaxial extension can be even

twice smaller than the strength cuC upon triaxial com-

pression. In the isotropic models (with X ¼ 0Þ; the relation

(at the same void ratio e = const and at the same defor-

mation rate jjDjjÞ between these strengths would be

cuE=cuC ¼ ME=MC ¼ const:

Starting from the normally consolidated initial K0-stress

state (preceded by an oedometric consolidation), the

deformation needed to reach the critical state upon an

undrained triaxial extension is substantially larger than

upon the undrained triaxial compression. In the simulation

presented in Figs. 14 and 15, the deviatoric strain required

to reach the critical state under triaxial extension is about 3

times larger than the one upon triaxial compression. This

feature can be reproduced by the model in accordance with

experiments, [63]. The observation that the active earth
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tive stress paths are shown in Fig. 14
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pressure is mobilized much faster than the passive one may

be expected to be correctly reproduced in FE simulations.

Small closed stress cycles generate an additional accu-

mulation of the deformation independently of creep. This

effect is considered using C1 [ 0 and was absent in the

previous model as demonstrated in Fig. 16.

6 Implicit integration of finite increments

The constitutive models supposed to be used in FE pro-

grams deal with finite increments of stress and strain rather

than their rates. Implicit integration (Euler backward) of

anisotropic soil models has also been recommended for

elastoplasticity [4], using the close-projection method. Let

us consider a time increment from tn to tn?1. Given the

state fTn;Xn; pBng at the beginning of the increment, the

strain increment D� and the time increment Dt ¼ tnþ1 � tn;

we must determine the values Tnþ1; Xnþ1 and pBn?1 at the

end of the increment (including the nonlinearities within

this single increment).

The main difficulty in the incremental formulation of the

constitutive model compared to the rate form Eqs. 7, 53

and 57 follows from the fact that the stiffness E; the pre-

consolidation pressure pB, the anisotropic tensor X and the

viscous strain rate Dvis used in Eqs. 7, 53 and 57 as ‘‘given’’

do not remain constant upon the increment. According to

the definitions Eqs. 39, 50 and 10, they change with stress,

and this change of stress is unknown itself. For reasons of

numerical stability of the time integration, the changes in

the state variables upon the increment should be taken into

account. From this point of view, it is safe to take the final

values of state variables, i.e. the ones at the end of incre-

ment (further denoted with the index tnþ1Þ rather than the

known ones tn from the beginning of the increment. The

advantage of such implicit (Euler backward) time inte-

gration over the explicit (Euler forward) integration was

already pointed out by Zienkiewicz [68] and Cormeau [17],

and can be here demonstrated comparing two implemen-

tations of the 1-d viscoplastic model. We combine Eq. 4

into a single expression for stress increment.

Tnþ1 � Tn ¼
�Tn

j
De

1þ en
� DrDt

�Tn

TB0

� 	 1
Iv 1þ en

1þ eB0

� 	 1
Ivk

" #

ð59Þ

The strain rate D is given as _e=ð1þ eÞ: All rates are written

as increments. In the explicit time integration, one uses the

stiffness and the viscous rate at the beginning of the

increment. Therefore, all quantities appearing on the right-

hand side are known (they pertain to time t), and the

calculation of Tn?1 can be performed directly. In the

analogous equation with implicit integration

Tnþ1 � Tn ¼
�Tnþ1

j

� De

1þ enþ1

� DrDt
�Tnþ1

TB0

� 	 1
Iv

� 1þ enþ1

1þ eB0

� 	 1
Ivk

" #

ð60Þ

the unknown stress Tn?1 appears on both sides of equation. In

some cases such equations can be resolved for Tn?1 analyti-

cally, but more often the solution has to be found iteratively.

Equation (59) leads to instabilities even at relatively small

void ratio increments De = -0.003, see Fig. 17, whereas

Eq. 60 works also with larger increments De = -0.01. Note

that implicit integration improves stability but not the

accuracy of the integration. Therefore, excessively large

increments are not recommended. The ramp function in the

creep rate with McCauley brackets may cause numerical

difficulties, cf. discussion between integration algorithms for

Perzyna-type and Duvuant-Lions-type creep models, [53].

In the 3-d model, analogously to Eq. 60, the final values

of state variables should satisfy the following implicit

evolution equations:

Tnþ1 � Tn � Enþ1 : D�� Enþ1

: mnþ1 � DrOCR
�1=Iv

nþ1 Dt þ C1jjD�jj
� �

ð61Þ

Xnþ1 �Xn � �C2 C3T̂�nþ1 þ
1

3
MXnþ1

� 	

� OCR
�1=Iv

nþ1 h�trD�i ð62Þ

pBnþ1 � pBn ¼�
pBnþ1

k
trD� ð63Þ

where tnþ1 denotes the (unknown) value of t at the end of

the increment. These equations are nonlinear with respect

to the final values of state variables, and we have to solve

these equations iteratively. Note that the strain increment is

given and remains constant in this iteration.

6.1 Implicit solution for a given stain increment D�

The essential issue in incremental calculation of viscoplastic

equations is the nonlinearity within a single increment.

80 100 120
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0.99

-T

∆e =  - 0.003

1
-T

ee ∆e =  - 0.01

100 150 20050

0.95

0.90

0.85

0.80

Fig. 17 Numerical results of oedometric compression calculated with

k = 0.1, j = 0.01, TB0 = 100, eB0 = 1, Dr = -0.01, Iv = 0.05

starting from initial conditions T = -50 and e = 1 (corresponds to

OCR = 2). The loading (compression) is applied in large increments

De = -0.01 (implicit) or in small increments De = -0.003 (explicit)

with Dt = 1 per increment. Despite smaller increments, the explicit

integration leads to instabilities
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The values of Tnþ1;Xnþ1 and pBn?1 appear on both

sides of Eqs. (61–63) being hidden in the expressions E; m

and OCR on the right-hand side. These equations will need

to be solved for the unknown tensors Tnþ1 and Xnþ1: The

third equation is also implicit, but it is sufficiently simple

(linear with respect to pBn?1) to be directly solved:

pBnþ1 ¼ 1þ 1

k
trD�

� ��1

pBn: ð64Þ

We start the process of iterative search for Tnþ1 and Xnþ1

by choosing the elastic predictor as an initial guess. In

other words, we choose Tnþ1 ¼ Tn þ DTel and Xnþ1 ¼ Xn

with DTel ¼ En : D�: Next, this initial guess will be

improved adding corrections cT and cX to Tnþ1 and

Xnþ1; respectively. The corrections are obtained keeping

the strain increment D� unchanged and minimizing the

errors rT ; rX resulting from usage of approximate values of

Tnþ1 and Xnþ1 in the evolution equations upon the

increment. From now on, we drop the n?1 index, so that

T and X denote the most recent approximations of Tnþ1

and Xnþ1: The following 12 independent components of

errors3 (due to symmetry Xij ¼ Xji and Tij ¼ TjiÞ may

appear:

rT ¼ T� Tn � E : D�

þE : m DrOCR�1=IvDt þ C1jjD�jj
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

rX ¼ X�Xn þ C2 C3T̂� þ 1
3

MX
� �

�OCR�1=Iv �trD�h i:

8

>

>

>

>

>

<

>

>

>

>

>

:

ð65Þ

Formally, we may see these errors as functions of T and X

and our intention is that these errors vanish after

corrections, i.e.

rTðTþ cT ;Xþ cXÞ ¼ 0
rXðTþ cT ;Xþ cXÞ ¼ 0

�

ð66Þ

In the Newtonian iterative solution, one approximates the

above equations using the first terms of Taylor expansion

rTðTþ cT ;Xþ cXÞ � rTðT;XÞ þ r0T : cT

þr�T : cX � 0
rXðTþ cT ;Xþ cXÞ � rXðT;XÞ þ r0X : cT

þr�X : cX � 0

8

>

>

<

>

>

:

ð67Þ

wherein dash and circle denote the Fréchet derivatives with

respect to T and X; see the next subsection. All derivatives

are calculated using the most recent updated variables T;X

and with the final value of pB. For the Newton iteration

process we may construct the system of equations

�rT ¼ r0T : cT þ r�T : cX

�rX ¼ r0X : cT þ r�X : cX:

�

ð68Þ

Having solved this system numerically for cT and cX; we

add these corrections to the respective total values T, X:

The procedure requires the inversion of an unsymmetric

12 9 12 matrix containing the derivatives of the discrep-

ancies. This iteration process continues until the norms of

rT and rX are lower than some tolerance values.

An analogous iteration at constant D� is known as the

Return Mapping Iteration (RMI) in elasto-plastic models. It

should not be mixed up with the equilibrium iteration (EI)

in which the strain increment is varied until the equilibrium

of stresses with external loads is reached.

6.2 Fréchet derivatives

The calculation of derivatives that appear in Eq. 68 can be

tedious, and therefore we found them using an algebra pro-

gram MATHEMATICA [66] with the package nova.m devel-

oped by the first author4. In the RMI process, we need various

tensorial derivatives and the chain rules thereof. Starting with

the stiffness tensor E, we calculate its stress derivative as

E0 ¼ �1

3j
Ê 1þ�tr T

3j
Ê0 ð69Þ

with

Ê0ijklmn ¼ a2 TrrIijmnTkl þ TrrTijIklmn

ðTrrÞ3

 

� 2TijTkldmn

ðTrrÞ3
þ 2

FM

a
IijklF

0
M mn

!

:

ð70Þ

We assume F0M � 0 for simplicity. The stiffness E is

independent of X and hence E� ¼ 0 holds. The flow rule m

is obtained for the updated stress T from FþðT; pBþ;XÞ ¼
0 keeping the updated X constant, i.e.

mðT;XÞ ¼ F0þ

!
ð71Þ

with

F0þ ¼ 3T� � 3pM X

þ 1

3
M2pBþ �

1

2
M2pBþ X : X� 2

3
M2pþM X : T

� �

1

ð72Þ

3 exactly 11 because Xii = 0.

4 nova.m can be downloaded from http://www.rz.uni-karlsruhe.

de/*gn99/. The expression
oTij

oTkl
ð¼ IijklÞ can be calculated with

In 1½ �:¼Needs 00Tensor‘nova‘00½ �;In 2½ �:¼fD T i;j½ �;T k;l½ �½ �
Out 2½ �:¼ðn Delta½ � i;l½ �n Delta½ � j;k½ �þn Delta½ � i;k½ �n Delta½ � j;l½ �Þ=2

The MATHEMATICA expressions enter directly in the code using a FOR-

TRAN-90 tensorial module. For example, the derivative of stress dis-

crepancy with respect to stress r�T Eq. 86 can be coded in a single line

drTdO ¼ ðE:xx:ððm:out:dAdOÞ þ dmdO � AÞÞ !r�T ¼ E : ðmA� þm�AÞ
where the double contraction and the dyadic product are directly

evaluated using the operators.xx. and.out., respectively.
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The total change in m with stress should take into account

the variability of pB? with stress which can be calculated

from

pBþ ¼ � M2p
3

2
X : X� 1

� 	� ��1

� M2p2 � 3MpX : Tþ 3

2
T� : T�

� �

ð73Þ

as

p0Bþ ¼
2M2 � 3

p2 T : T� 9
h i

1þ 18MX� 18
p T

3M2ð3X : X� 2Þ ð74Þ

The correct stress derivative of m written as a function

mðT;X; pBþÞ is therefore found from the chain rule

m0 ¼ om

oT
þ om

opBþ
p0Bþ

¼ 1

jjF0þjj
J� F0þ

!
F0þ

!� �

: F00þ þ
oF0þ
opBþ

p0Bþ

� �

ð75Þ

wherein

oF0þ
opBþ

¼ 1

3
M2 � 1

2
M2X : X

� �

1 ð76Þ

For the calculation of m0, we also need

F00þ ¼
2

9
M2 � 1

� �

11þ 3IþMX1þM1X ð77Þ

Analogously, the partial derivative of the flow direction m

written as a function mðT;X; pBþÞ with respect to X

should take into account the variation of pB? with respect

to X; i.e.

m� ¼ om

oX
þ om

opBþ
p�Bþ

¼ 1

jjF0þjj
J� F0þ

!
F0þ

!� �

: F0�þ þ
oF0þ
opBþ

p�Bþ

� � ð78Þ

wherein

F0�þ ¼ �M2pBþ1XþM1T� 3MpI ð79Þ

and

p�Bþ ¼h1 h2Tþ h3Xð Þ with

h1 ¼ M2ð2� 3X : XÞ2
h i�1

h2 ¼18MX : X� 12M

h3 ¼� 36MX : T� 54pþ 12M2pþ 18

p
T : T

ð80Þ

The derivatives of the overconsolidation ratio OCR ¼
pB=pBþ with respect to T and X are

OCR0 ¼ �pB

ðpBþÞ2
p0Bþ and OCR� ¼ �pB

ðpBþÞ2
p�Bþ ð81Þ

It is convenient to define the scalar A that describes the

intensity of hypoplastic and the viscous strain rate:

A ¼ DrOCR�1=IvDt þ C1jjD�jj ð82Þ

Its derivatives, with respect to T and X are

A0 ¼ �Dr

Iv
OCR� 1=Ivþ1ð ÞDt OCR0 ð83Þ

A� ¼ �Dr

Iv
OCR� 1=Ivþ1ð ÞDt OCR� ð84Þ

Using the above partial derivatives the error in the stress

equation can be expressed as

rT ¼ T� Tn � E : D�þ E

: m DrOCR�1=IvDt þ C1jjD�jj
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

ð85Þ

and its derivatives with respect to T and X are

r0T ¼ I� E0̂:D�þ E0̂:mAþ E : mA0 þm0Að Þ ð86Þ

r�T ¼ E : mA� þm�Að Þ ð87Þ

The error in the evolution equation of X is

rX¼X�XnþC2 C3T̂�þ1

3
MX

� 	

OCR�1=Iv �trD�h i ð88Þ

and its derivatives with respect to T;X and pB are

r0X ¼ C2OCR�1=Iv �trD�h i
h i

� C3

I� T̂1

tr T
� 1

IvOCR
C3T̂� þ 1

3
MX

� 	

OCR0

 !

ð89Þ

r�X ¼ Iþ C2OCR�1=Iv �trD�h i
h i

� 1

3
MI� 1

IvOCR
C3T̂� þ 1

3
MX

� 	

OCR�
� 	

ð90Þ

The errors rT ; rX from Eqs. 85 and 88 as well as their

derivatives r0T ; r
�
T ; r
0
X; r

�
X from Eqs. 86, 87, 89 and Eq. 90

enter Eq. 68. This system can be converted to the matrix

form

r0T r�T
r0X r�X

� �

� cT

cX

� �

¼ �rT

�rX

� �

ð91Þ

from which the corrections cT and cX can be calculated.

Derivatives r0T ; r
�
T ; r
0
X; r

�
X appearing in Eq. 91 have been

converted analogously in the way a 3 9 3 9 3 9 3 stiff-

ness tensor would be converted to a 6 9 6 stiffness matrix.

The errors rT ; rX are both converted to ‘‘vectors’’ with six

components analogously in the way a 3 9 3 stress tensor

would be converted to a stress ‘‘vector’’. The six-compo-

nent correction ‘‘vectors’’ resulting from Eq. 91 must be

converted back to 3 9 3 tensors cT ; cX: However, doing
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this back conversion, we must treat the corrections like

strains, i.e. their mixed components must be halved! A

conversion of second-order tensors to 9-component ‘‘vec-

tors’’ and fourth order tensors to 9 9 9 matrices is not a

good idea, because the resulting 18 9 18 matrix in Eq. 91

would be not only larger but also singular. Note that the

rows corresponding to mixed components, e.g. t12 and

t21; would be in this case identical.

6.3 The Jacobian dDT=dD�

The Jacobian H ¼ dDT=dD� is required for the efficient

equilibrium iteration on the FE-level, in particular when

the full Newton iteration strategy is used (as in ABAQUS/

Standard). In the implicit integration scheme, the tensor H,

should be calculated using the state variables T;X and pB

at the end of the increment and at the end of the RMI. In

order to find H we write out the equation for stress incre-

ment in the form

DT ¼ E : D�
zfflfflffl}|fflfflffl{

A

�E : mOCR�1=Iv

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{

B

DrDt � E : mjjD�jj
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

C

C1

ð92Þ

It is convenient to distinguish the following subexpressions:

AðT;D�Þ; BðT;X; pB; e;D�Þ and CðT;X; pB; e;D�Þ so that

the Jacobian can be written as

H ¼ dA

dD�
� DrDt

dB

dD�
� C1

dC

dD�
ð93Þ

The derivatives of A, B and C with respect to D� can be

computed via the derivatives with respect to T and X: For

simplicity, however, we disregard the derivative

dX=dD� � 0 while calculating H. Since the stress T is

one of the arguments of the functions A, B, C, it is

convenient to use the unknown as yet Jacobian H itself in

the chain-rule calculations via T, namely dt=dD� ¼ t0 :

Hþ . . . : With these simplifications, we obtain

dA

dD�
¼ Eþ E0̂:D�

� �

: H ð94Þ

dB

dD�
¼ � 1

Iv
OCR�1=Iv�1E : m

dOCR

dD�
þ OCR�1=IvE :

dm

dD�

þ OCR�1=Iv E0̂:m
� �

: H ð95Þ

dC

dD�
¼ E : mD�

!
þ jjD�jjE :

dm

dD�
þ jjD�jj E0̂:m

� �

: H ð96Þ

Note that dDT=dD� ¼ dT=dD� because DT ¼ T� Tn and

the initial stress Tn is constant. Moreover, for the sake of

simplicity, we assume oM=oT � 0: Hence the following

approximations are obtained

dOCR

dD�
� oOCR

opB

opB

oD�
þ oOCR

oT

oT

oD�

¼ � 1

k
OCR1þ OCR0 : H ð97Þ

dm

dD�
� om

oT

oT

oD�
¼ m0 : H ð98Þ

The substitution of Eqs. 97 and 98 into Eq. 95 results in

dB

dD�
¼ K : Hþ N ð99Þ

wherein

N ¼ 1

kIv
OCR�1=IvE : m 1 ð100Þ

OCR1=IvK ¼ � 1

IvOCR
E : mð ÞOCR0 þ E : m0 þ E0 :̂ m

ð101Þ

Substituting Eq. 98 into Eq. 96 we obtain

oC

oD�
¼ R : Hþ S ð102Þ

wherein

R ¼ jjD�jj E : m0 þ E0 :̂ m
� �

ð103Þ

S ¼ E : mD�
!

ð104Þ

The Eq. 93 can now be written as

I� E0 :̂ D�þ C1Rþ DrDtK

 �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

W

: H ¼ E� C1S� DrDtN
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Z

ð105Þ

and resolved for the Jacobian H

H ¼W�1 : Z ð106Þ

Very few equilibrium iterations are necessary in the

numerical calculation with ABAQUS using this approxima-

tion of the Jacobian despite relatively large time steps.

7 Comparison with experimental results

The presented model has been implemented using the

constitutive FORTRAN 90 routine UMAT written in accor-

dance with the conventions of the FE Program ABAQUS

Standard. The same routine can be also linked with

INCREMENTALDRIVER
5 to perform calculations of element

tests with stress or strain or mixed control of cartesian

components or combinations thereof.

5 INCREMENTALDRIVER is a program written by the first author to test

constitutive routines. Its open source code can be downloaded from

http://www.rz.uni-karlsruhe.de/*gn99/.
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In order to verify the model, the results of biaxial tests

[63] on remoulded kaolin clay were simulated. The pre-

dictions were calculated with the set of material parameters

shown in Table 1. Other properties of the material are:

liquid limit wL = 48%, plastic limit wP = 18%, clay

fraction 59% and organic content 5.6%.

7.1 Undrained shearing tests

Two sets of strain controlled tests were considered (see

Fig. 18). In both cases, the kaolin powder was mixed with

water and 1-d consolidated (with D1 = -0.5%/h and

D2 = D3 = 0) in a biaxial apparatus. In all tests, the initial

state was nearly the same, i.e. T1 = -24 kPa, T2 = -8

kPa, T3 = -10 kPa and e = 1.396. In the simulations, the

initial value of the structure tensor X is set to zero prior to

the 1-d consolidation. For the first set of experiments, the

sample was consolidated until T1 = -672 kPa. Then,

isochoric shearing was applied in compression (with

D1 = -0.354%/h, D2 = 0.354%/h and D3 = 0) and in

extension (with D1 = 0.354%/h, D2 = -0.354%/h and

D3 = 0). The corresponding stress paths and stress–strain

curves are presented in Figs. 19 and 20, respectively.

Predictions of the new model with and without hypoplastic

strain and anisotropy are also shown in Figs. 19 and 20. In

the second series of experiments, the sample was uniaxially

consolidated to T1 = -800 kPa and uniaxially unloaded

(with D1 = 0.5%/h and D2 = D3 = 0) until a nearly iso-

tropic stress state was reached. To such overconsolidated

samples, an isochoric deformation was applied in com-

pression and extension. The comparisons between pre-

dicted and measured data are presented in Figs. 21 and 22.

The results of the numeric calculations are generally in

agreement with the laboratory data. The stress paths are

well predicted by the model. The predicted shear strength

of the overconsolidated samples in compression was higher

than in the experiment, Fig. 22, because of the assumed

homogeneity of the deformation. In the real experiment,

‘‘isochoric’’ shearing in the overcritical regime may lead to

localization of deformation, and some local volume

increase (or even cavitation in fast tests) may take place.

The zero change in volume can be imposed to the whole

sample but not locally.

7.2 Relaxation test

The relaxation of stress at three different stress levels under

constant deformation was investigated. The kaolin powder

Table 1 Material parameters of kaolin clay for the anisotropic visco-

hypoplastic model

e100 k j Iv Dr

(s-1)

uc

(�)

C1 C2 C3

0.94 0.09 0.025 0.031 1.3�10 -6 20 0.1 500 0.62

T1,D1

T2,D2

T3,D3=0

comp

ext

comp

ext
K0

K0

unload

(a) (b) (c)

Fig. 18 a Biaxial (plain strain) boundary conditions. b Strain path for

the first set of tests. c Strain path for the second set of tests
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Fig. 19 Predicted and measured stress path for undrained shear

compression and extension after K0 consolidation
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Fig. 20 Predicted and measured stress-strain curves for undrained

shear compression and extension after K0 consolidation, see Fig. 18b
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Fig. 21 Predicted and measured stress path for undrained shear

compression and extension after K0 consolidation and unloading. The

differences on the overcritical side may be caused by strain localization
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was mixed with water and 1-d consolidated in the biaxial

apparatus until a significant stress level was achieved. This

stress state (T1 = -22 kPa, T2 = T3 = -8 kPa) and void

ratio e = 1.4 are considered as the initial state. In the

simulation the tensor X is set to zero at the initial state. In a

first step, the sample was consolidated (with D1 = 0.5%/h

and D2 ¼ D3 ¼ 0) up to T1 = -108 kPa. In a second step,

the deformation was kept constant (D1 ¼ D2 ¼ D3 ¼ 0Þ
during 6 h, and the changes on stress were recorded. The

whole test was strain controlled. This two steps were suc-

cessively applied (with the same strain rates and relaxation

times). The prediction of the model and the results from

laboratory are presented in Fig. 23. A good accordance

between prediction and measurement are observed not only

during the K0-consolidation steps, but also at the three

relaxation phases (see Fig. 24).

7.3 Proportional strain paths

Monotonic compression was performed using 4 different

proportional strain paths, see Table 2 (note that D3 = 0).

After large deformation, proportional stress responses were
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Fig. 22 Predicted and measured stress–strain curves for undrained

shear compression and extension after K0 consolidation and unload-

ing, see Fig. 18c
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Fig. 23 Predicted and measured relaxation of stress component T1

with time after initial K0-consolidation at different stress levels
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Fig. 24 Predicted and measured relaxation of stress component T1

(of Fig. 23) at phases A, B and C (zoomed)

Table 2 Strain paths for monotonic compression [Di in (%/h)]

Path I II III IV

D1 -0.354 -0.447 -0.483 -0.5

D2 -0.354 -0.224 -0.129 0.0

a(�) 0 15 30 60
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Fig. 25 Asymptotic values of K2=1 ¼ T2=T1 after large proportional

strain paths with constant strain rates (see Table 2) versus the strain

invariant a ¼
ffiffiffi

6
p

D�
!
� D�
!

: D�
!
: In this case, K0 ¼ K2=1 ¼ 0:68 is

obtained after applying path IV
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Fig. 26 Asymptotic values of K3=1 ¼ T3=T1 after large proportional

strain paths with constant strain rates (see Table 2) versus the strain

invariant a. K0 ¼ K3=1 ¼ 0:68 is obtained after applying path IV
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obtained. The initial stress state and void ratio are similar to

the tests of Sects. 1 and 2. The initial value of X is also set to

zero. The predictions of the stress ratios K2=1 ¼ T2=T1 and

K3=1 ¼ T3=T1 for strain ratios different from the oedometric

one are close to the measurements, see Figs. 25 and 26. As

the material parameter C3 was obtained from measured

values of K0, the calculated stress ratios for oedometric

compression (path IV in Table 2, Figs. 25 and 26) are

considered back-calculations. Predictions using C2 = 0 (no

allowance of preconsolidation surface rotations, i.e. no

anisotropy if X ¼ 0 at the beginning of the process) provide

larger K-values compared with laboratory data.

8 FE-calculation of a strip foundation

The classical plane strain problem with a rigid strip foun-

dation is examined using the UMAT routine within the

commercial FE program ABAQUS. The width of the foun-

dation is 1.0m. The size of the discretized subsoil,

boundary conditions and the body forces are presented in

Fig. 27. A 0.2 m punching was applied within 100 seconds.

The loading is defined as a vertical displacement of the

nodes under the foundation. The contact between soil and

foundation is perfectly rough, i.e. the nodes under the

foundation cannot move horizontally. Since the subsoil

boundary conditions and body forces are symmetric with

respect to the vertical axis of the foundation, we have used

this symmetry in the discretization. The soil parameters

given in Table 1 have been used.

The undrained conditions were simulated using the bulk

modulus of water Kw = 500 MPa and adding the stiffness

of water

Hw ¼ Kw 1 1 ð107Þ

to the material stiffness H (Jacobian). The total stress was

used in ABAQUS, and the effective stress was used internally

in the umat. The bulk stiffness of water was multiplied by

the volume strain increments to update the pore water

pressure pw. The water pressure was stored in memory as

an internal state variable at each integration point. The FE

9m

7.5 m
0.5m

s=0.2m

Q=15kPa

γ '=10kN/m3

x1

x2

Fig. 27 Boundary conditions, body forces and geometry

Fig. 28 The discretization with the FE mesh. The size of elements is

particularly small in the vicinity of the edge of foundation, as shown

in the zoomed fragment below K  = 0.658
0
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Fig. 29 Different initial conditions T0 and OCR0 for X ¼ 0: The

calculated bearing capacity T22 ¼ ð2þ pÞcuComp is expressed in terms

of undrained strength cu for triaxial compression of vertically taken

soil samples
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Fig. 30 Different initial conditions T0 and OCR0 for X ¼ Xasymp:
The calculated bearing capacity T22 ¼ 0:7ð2þ pÞcuComp is expressed

in terms of undrained strength cu for triaxial compression of vertically

taken soil samples
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mesh is shown in Fig. 28. The CPE4 elements of ABAQUS

have been used. Despite full integration, the volumetric

locking (due to water stiffness or due to isochoric plastic

flow) was eliminated by usage of a special volume strain

operator that provided a constant volumetric strain in all

four Gauss integration points within an element. The

consolidation elements of ABAQUS e.g. CPE4P or CPE8P

were not used.

At first, the geometric nonlinearity (ABAQUS uses

Hughes-Winget algorithm) was used, but due to consider-

able distortion of elements (a 0.2 m punching was applied)

the calculation was slowed down to over 1 h on a con-

ventional PC. In order to enable fast comparisons, the

geometric nonlinearity was switched off and as a result the

0.2 m punching took only a quarter of an hour.

The initial conditions for stress T preconsolidation

pressure pB and anisotropy X were all varied. The vertical

stress component was given by the buoyant unit weight of

soil c0 ¼ 10kN/m3 and additionally increased by an equally

distributed surcharge of 15 kPa, Fig. 27. The horizontal

stress was calculated using the coefficient of earth pressure

at rest K0 = 1 - sinuc, K0 = 1.0, and K0 = 1.3. The

anisotropic structure tensor was either switched off X ¼ 0

or taken in the value X ¼ X
asymp
0 which results from uni-

axial vertical deformation along x2, since diag[0, -1, 0] is

used in the model as the direction of sedimentation. The

latter choice corresponds to natural K0 - consolidation. The

preconsolidation pressure pB was calculated multiplying

pB? from Eq. 40 (a function of T and XÞ with OCR = 1 or

with OCR = 4. The combinations of the initial conditions

and the resulting bearing capacities obtained from the FE

calculation are given in Figs. 29, 30 and 31.

In each case, a limit load was reached. The vertical dis-

placement necessary to reach the asymptotic reaction force

under the foundation varied from 0.06 to 0.16 m. It is inter-

esting to observe that the limit load related to the undrained

strength cuComp at the depth of 1m corresponds approxi-

mately to the limit analysis solution T22 ¼ ð2þ pÞcuComp

by Prandtl for the isotropic preconsolidation and to about

77% of this value for the anisotropic preconsolidation.

9 Concluding remarks

The anisotropic visco-hypoplastic model presented here

preserves the merits of the isotropic visco-hypoplasticity

(the description of creep, relaxation and rate dependence),

improves the response to cyclic loading and, of course,

provides an anisotropic enhancement which can be

observed in the response to triaxial (or biaxial) compres-

sion and extension paths after anisotropic K0 consolidation.

The rotation of the preconsolidation surface controlled by

the state variable X provides also a better estimation of K0

during an oedometric compression.
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List of symbols

The following symbols are used in this paper

A Auxiliary variable for the intensity of

viscous and hypoplastic strain rates

A, B, C Auxiliary subexpresssions for the

definition of Jacobian H
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Fig. 31 Load-settlement curves for different initial conditions T0 and TB according to Fig. 29 (left) and Fig. 30 (right)
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a Hypoplastic constant

b Auxiliary term in M(h) function

C1 Material constant for hypoplastic strain

C2 Material constant for evolution of

anisotropy

C3 Material constant limiting anisotropy

cT Stress correction tensor (RMI)

cu Undrained shear strength

cuComp Undrained shear strength for triaxial

compression

cX Correction on anisotropy tensor (RMI)

D 1-d strain rate (extension [ 0)

Dvis 1-d viscous strain rate

Dv Roscoe’s volumetric strain rate

Dq Roscoe’s deviatoric strain rate

Dr Reference creep rate

D Strain rate tensor

D� Deviatoric strain rate tensor

De Elastic strain rate tensor

DHp Hypoplastic strain rate tensor

Dvis Viscous strain rate tensor

E Hypoelastic stiffness tensor

Ê Dimensionless hypoelastic stiffness

tensor

e Void ratio

e0 Reference void ratio

e100 Reference void ratio preconsolidation

pB = 100 kPa

_e Void ratio rate

eB0 Void ratio on the reference isotach

(1-d model)

F Preconsolidation surface

F? Surface affine to F passing through

current stress

Fcrit Critical state surface

FM Function of the Lode angle used in

hypoplasticity

G Alternative definition of the

preconsolidation surface

H() Heaviside function

H Jacobian tensor

Hw Stiffness tensor of water

h Current height of the sample

h0 Initial height of the sample

h1, h2, h3 Auxiliary variables for p0
Bþ

I Fourth order symmetric identity tensor

Iv Viscosity index

J Fourth order identity tensor

Kw Bulk modulus of water

K0 Coefficient of earth pressure at-rest

K2/1, K3/1 Stress ratios

K;N;R;S;W;Z Auxiliary fourth order tensors for the

definition of the Jacobian H

L̂ Dimensionless hypoelastic stiffness

used in hypoplasticity

M Slope of the critical state line

(a function of h)

MC Slope of the critical state line for triaxial

compression

ME Slope of the critical state line for triaxial

extension

MX Critical state slope for the current X

m Flow rule (a function of T and X)

N̂ Dimensionless hypoplastic relaxation

tensor

OCR Overconsolidation ratio

p Roscoe’s mean effective stress

p ¼ �tr T=3

�p; �q p, q Scaled so that MCC ellipse

becomes a circle with a unit diameter

pB Equivalent (preconsolidation) pressure

pB? pseudo equivalent (preconsolidation)

pressure

pw Pore water pressure

Q Surcharge uniform pressure for

calculation of the strip foundation

q Roscoe’s deviatoric stress q ¼
ffiffi

3
2

q

jjT�jj
rT Stress error tensor

rX Anisotropy error tensor

s Settlement of a footing

T 1-d stress (compression negative)
_T 1-d stress rate

t Time

T0 1-d reference value of stress

TB 1-d equivalent stress(TB [ 0)
_TB 1-d equivalent stress rate

TB0 Equivalent 1-d stress on the reference

isotach

Tmax Maximum principal stress

Tmin Minimum principal stress

t0 Reference time

T Cauchy effective stress tensor

T� Deviatoric stress tensor

TB Equivalent stress tensor
_T Stress rate tensor
�T Zaremba-Jaumann stress rate

T̂ Dimensionless stress tensor

T̂ ¼ T=tr T

TK0 Uniaxial compression stress

x1, x2 Horizontal and vertical coordinates

wL Liquid limit

wP Plastic limit
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a strain invariant from [62]

a ¼
ffiffiffi

6
p

D�
!
� D�
!

: D�
!

b Auxiliary term in M(h) function

c0 Buoyant unit weight

dij Kroenecker symbol

Dt Increment of t
� 1-d logarithmic strain

�0 1-d reference value of logarithmic strain

h Lode’s angle

k Compression index

j Swelling index

li Coefficients of the general equation of

an ellipse

/ Matsuoka-Nakai’s constant term

/ ¼ 9�sin2 uc

1�sin2 uc

/(p) Matsuoka-Nakai analogous term for the

alternative preconsolidation surface

/max Constant of the alternative

pre- consolidation surface

uc Critical friction angle

v Positive scalar homogeneity

W Angle between the current stress state

and the isotropic axis

w Coefficient of secondary compression

X Anisotropy tensor

x Anisotropy of the ellipse in �p� �q space

1 Second order identity tensor
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46(1):115–131

10. Betten J (2008) Creep mechanics. Springer, Berlin

11. Boehler JP, Sawczuk A (1977) On yielding of oriented solids.

Acta Mech 27:185–206

12. Borja RI (1992) Generalized creep and stress relaxation model for

clays. J Geotech Eng Div ASCE 118(11):1765–1786

13. Borja RI, Kavazanjian E (1985) A constitutive model for the

stress–strain-time behaviour of wet clays. Géotechnique

35(3):283–298

14. Burland JB, Georgiannou VN (1991) Small strain stiffness under

generalized stress changes. In: Proceedings of the 10th European

conference soil mechanics and foundation engineering, Florence,

vol 1, pp 41–44

15. Butterfield R (1979) A natural compression law for soils. Géo-
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27. Kavvadas M (1983) A kinematic hardening constitutive model

for clays. In: Proceedings of 2nd international conference con-

stitutive laws in engineering materials, Tucson, pp 263–270

28. Kutter BL, Sathialingam N (1992) Elastic-viscoplastic modelling

of rate-dependent behaviour of clays. Géotechnique 42(3):427–441
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Géotechnique 42(4):541–576

56. Stallebrass E (1990) Modelling of the effect of recent stress

history on the deformation of overconsolidated soils. PhD thesis,

The City University

57. Sturm H (2004) Modelling of biaxial tests on remoulded saturated

clay with a visco-hzpoplastic constitutive law, 2004. Diplomar-

beit, Institut für Boden und Felsmechanik, Universität Karlsruhe

58. Sturm H (2009) Numerical investigation of the stabilisation

behaviour of shallow foundations under alternate loading. Acta

Geotech. doi: 10.1007/s11440-09-0102-7

59. Suklje L (1969) Rheological aspects of soil mechanics. Wiley,

London

60. Weifner T, Kolymbas D (2007) A hypoplastic model for clay and

sand. Acta Geotech 2(2):103–112

61. Tejchman J, Bauer E, Tantono SF (2007) Influence of initial

density of cohesionless soil on evolution of passive earth pres-

sure. Acta Geotech 2(1):53–63
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