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Abstract A new three-scale model to describe the cou-

pling between electro-chemistry and hydrodynamics in

non-swelling kaolinite clays in steady-state conditions is

proposed. The medium is characterized by three separate

nano-micro and macroscopic length scales. At the pore

(micro)-scale the portrait of the clay consists of micro-

pores saturated by an aqueous solution containing four

monovalent ions (Na+, H+, Cl-, OH-) and charged solid

particles surrounded by thin electrical double layers. The

movement of the ions is governed by the Nernst–Planck

equations and the influence of the double layers upon the

hydrodynamics is modeled by a slip boundary condition in

the tangential velocity governed by the Stokes problem. To

capture the correct form of the interface condition we

invoke the nanoscopic modeling of the thin electrical

double layer based on Poisson–Boltzmann problem with

varying surface charge density ruled by the protonation/

deprotonation reactions which occur at the surface of the

particles. The two-scale nano/micro model is homogenized

to the macroscale leading to a precise derivation of effec-

tive governing equations. The macroscopic model is

discretized by the finite volume method and applied to

numerically simulate desalination of a clay sample induced

by an external electrical field generated by the placement

of electrodes. Numerical results indicate strong pH-

dependence of the electrokinetics.

Keywords Electrical double layer � Electrokinetics �
Homogenization � Kaolinite � Nernst–Planck �
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1 Introduction

Electrokinetic phenomena in electrically charged porous

media have received considerable attention with an enor-

mous variety of applications in different fields of science

and engineering. Among the broad range of applications,

particular emphasis has been given in the current literature

to the modeling of subsurface contamination phenomena.

In this area the correct description of the electrokinetic

couplings involved is of utmost importance in predicting

the effectiveness of some clean up technologies [67]. In

this context, the strong coupling between hydraulic and

charge transport gives rise to electroosmotic flows in

contaminated fine-grained soils and slurries which pose a

significant issue to the environment giving rise to major

technological challenges. Applications of electroosmosis in

geotechnical engineering are widespread involving dewa-

tering of clay mineral waste tailings [63], clean up by

electrokinetic remediation techniques [67] and contaminant

transport mitigation in the sub-surface environment [52]. It

is well known that classical clean up techniques such as

soil flushing, chemical treatment and bioremediation have

been found ineffective when applied to clayey soils with

low permeability [42]. Electrokinetic remediation is a
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promising decontamination technique which exhibits high

efficiency in low-permeable media demonstrated in both

laboratory tests and field scale applications [1, 3]. The

effectiveness of this method, particularly its low operation

cost, degree of control over the movement of the contam-

inants and potential applicability to a wide range of

contaminant types has been extensively discussed in the

current literature [67]. In recent years, a number of labo-

ratory-scale and field-scale studies have shown the

technical feasibility of electrokinetic processes in removing

various contaminants from fine-grained soils [17].

Electro-osmotic technology involves application of an

external electric field across a pair of electrodes placed in a

contaminated soil. As the surface of the colloidal particles

immersed in water is electrically charged due to the iso-

morphous substitutions or broken bonds at particle edges,

the applied electric field plays the role of the driving force

for electro-osmotic flow and also creates strong interac-

tions between the charged colloidal particles and the

aqueous solution. Such complex interactions give rise to

many other macroscopically observed electrochemical

phenomena such as chemico-osmosis, streaming potential,

streaming current, electromigration, electrophoresis and

electroviscous effects (see, e.g., [45, 46]).

During the past few decades a significant amount of

research has been developed towards the derivation of

models capable of capturing coupled electro-chemo-hydro-

mechanical effects in charged porous media (see, e.g., [27,

44]). While the basic principles of electrokinetics have been

studied for many years, great effort has been made to provide

a theoretical description of contaminant migration processes

in soils under electric field as a background for subsequent

mathematical modeling (see, e.g., [5, 56, 57, 59]). Never-

theless, the accuracy of phenomenological studies to

describe electrochemical and physicochemical processes in

porous media is questionable because of the numerous

couplings involving hydrodynamics, transport phenomena,

chemical reactions and electrical effects which bring addi-

tional complexity and may lead to inaccurate predictions

when using oversimplified models [36, 37]. Coupled phe-

nomena in porous media has also been described by the

framework of the mixture theory and thermodynamics of

irreversible processes. In this approach, under near-equilib-

rium isothermal conditions, the interaction between flow,

solute flux and electric charge are linearly coupled with the

conjugated gradients of hydraulic head, concentration and

electric potentials through Onsager’s reciprocity relations

(see, e.g., [35, 38, 69]). This framework aims at enhancing

the thermodynamic foundation of the macroscopic model by

establishing a rational methodology embedded in the second

principle of thermodynamics [28].

Despite the widespread development of the aforemen-

tioned macroscopic models for electrically charged media,

very little information has been available to identify some

of the macroscopic electrokinetic coefficients with the clay

morphology and local electrical double layer (EDL) prop-

erties [43]. Owing to the complexity and variety of

chemical and colloid electrochemical processes taking

place in such complicated geological media, the correct

interpretation of the macroscopic results and constitutive

laws of the effective parameters becomes quite difficult

[58]. As mixture theoretic approaches are directly con-

ducted at the macroscale, the complex microstructural

solid-fluid interactions are overlooked and the magnitude

of the electrokinetic coefficients is obtained based on

experimental evidence. On the other hand it has been

advocated that clay microstructure plays an important role

in many macroscopic observed physicochemical and elec-

tro-chemical phenomena [4, 6, 49]. Whence, establishing

correlations between coupled phenomena at different

scales is a crucial issue and may bring substantial

improvement in the macroscopic predictions of colloidal

systems.

When attempting at bridging electrochemical phenom-

ena at different length scales, multiscale modeling offers an

alternative procedure to the purely macroscopic approa-

ches. This framework has been able to capture, in an

accurate manner, the coexistence of several strong cou-

plings of different physicochemical and electrochemical

nature occurring at disparate space and time scales. His-

torically, attempts at correlating the morphology of

charged porous media with the magnitude of the effective

coefficients began by considering idealized stratified

microstructures (see, e.g., [23, 29]). Subsequently the up-

scaling procedure was generalized to random nano-pore

geometries composed of charged particles saturated by an

electrolyte solution using averaging procedures [30] and

homogenization based on two-scale asymptotic expansions

[43, 47, 48]. Two-scale approaches have provided a more

realistic macroscopic description of the clay clusters

wherein phenomena such as electro-osmosis and electro-

migration naturally appear in the homogenized forms of the

convection-diffusion equations and Darcy’s law. Recently

in [50], for a clay composed of two levels of porosity (nano

and micro pores), the homogenized two-scale electro-

chemo-mechanical model for the clay aggregates derived

in [48] was coupled with the equations governing flow and

solute transport in the bulk solution lying in the micro-pore

system and a three scale model of dual porosity type was

derived wherein the clay clusters act as sources and sinks

of mass to the conservation equations of the bulk phase

water. In particular, under quasi steady state conditions this

approach was capable of reconstructing directly from the

nanoscopic numerical description the constitutive laws of

the partition coefficient and isotherms of adsorption which

govern the immobilization of solutes in the clay clusters.
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The above-mentioned approaches were developed for

aqueous saline solutions composed of two fully dissociated

monovalent ions Na+ and Cl- and constant pH = 7. In

addition, electro-chemical phenomena at the finest scale was

described by a non-equilibrium version of the electrical

double layer theory wherein the net electric potential (total

potential subtracted by the streaming potential) is governed

by the Poisson–Boltzmann problem with a constant surface

charge density arising from the isomorphous substitutions

appearing in the Neumann boundary condition at particle

surface (see [47, 48] for details). The extension of the

multiscale procedure to incorporate partially dissociated H+

and OH- ions in the aqueous solution along with the pH-

dependent protonation/deprotonation chemical reactions

giving rise to a nonlinear behavior of the surface charge

density remains an open issue (see, e.g., [18, 24]). The aim

of this paper is to fill this gap. A first attempt at incorporating

pH effects within the framework of two-scale homogeni-

zation was pursued in [40] considering one-dimensional

flow and transport in a smectitic clay composed of parallel

particles of face-to-face contact with overlapping between

adjacent EDLs. The model proposed herein generalizes this

approach to a three-dimensional kaolinite with three dis-

parate length scales (nano, micro and macro) with matrix

composed of particles surrounded by thin EDLs (Fig. 1).

In order to characterize more precisely the hierarchy of

scales we begin by reviewing kaolinite’s fabric and electro-

chemistry [46, 54]. Kaolinite’s mineralogy is characterized

by phyllosilicate minerals composed of stacked silicate

sheets (Si2O5) linked through oxygen atoms to aluminum

oxide/hydroxide layers (Al(OH)3) also called gibbsite

layers. The result of this 1:1 arrangement is a flat hexag-

onal composite layered particle with attraction forces

between the two sheets which preclude water hydration

consequently mitigating swelling capacity. In contrast to

smectites, wherein the chemistry is dominated by the per-

manent negative surface charge imbalance, a consequence

of the isomorphous substitutions of higher valence ions by

lower valence ions within the interior of the crystal lattice,

the surface charge in kaolinite is dominated by the broken

bonds where protonation/deprotonation chemical reactions

take place at pH-dependent charged sites located at particle

edges [9, 46]. In this picture ion concentrations in the

counterion cloud, including the Stern inner compact layer

adjacent to the solid surface and the outer Gouy diffuse

mobile layer, are ruled by the surface charge and the

electric potential at particle surface (zeta potential) whose

magnitude depend strongly on the protonation/deprotona-

tion reactions and consequently on the pH [18, 66].

The finest level of the hierarchy of length scales is the

nanoscale, wherein the portrait of the soil fabric is an

assembly of particles with thin EDLs surrounding each

particle (Fig. 1). A typical characteristic length associated

with this scale is the Debye’s screening length LD of

O(10-9) m which measures the effective thickness of the

EDL surrounding each particle [34, 54] and assumed much

smaller than the characteristic length of the micropores

LD \\ l (Fig. 2). At this scale chemical reactions take

place at particle surface and are coupled with electrical

phenomena in the electrolyte solution lying in the thin

sharp EDL in the vicinity of the solid. Assuming that the

characteristic time scale of the reactions is much smaller

than the one associated with the hydrodynamics in the

micropores, local thermodynamic equilibrium can be

enforced and consequently the electric potential in the

electrolyte solution is ruled by the Poisson–Boltzmann

problem with a pH-dependent surface charge in the Neu-

mann interface condition [11].

At the microscale (the homogenized nanoscale), whose

typical length scale is the averaged size of the micro pores

(herein considered O(10-6 m)), the highly heterogeneous

solid–fluid surface interactions are represented in an aver-

aged fashion through effective slip boundary conditions on

the fluid velocity with the slip ruled by the magnitude of

the zeta potential according to the Helmholtz–Smolu-

chowski model (see, e.g., [21, 31, 50]). In addition, owing

to the coarser structure of the micro-pores with larger size

void spaces and characteristic length much greater than the

EDL thickness, the equations governing the bulk solution

(Stokes problem and Nernst–Planck equations [59]) are

Fig. 1 Portrait of natural length scales in kaolinite (see, e.g., [15, 46, 51])
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free of EDL effects. This particular feature distinguishes

properties of a bulk fluid from an electrolyte solution and

further implies a pointwise form of the electroneutrality

condition with local equality between co- and counter-ion

concentrations [50, 53].

Assuming local periodicity of the microscopic particle/

micro pore arrangement we then adopt the homogenization

procedure based on formal matched asymptotic expansion

techniques [60] to upscale the microscopic model to the

macroscale, wherein the clay and bulk fluid are envisioned

as overlaying continua with averaged properties defined at

every point of the mixture (Fig. 1). By exploring the clo-

sure problems arising from the homogenization procedure

we provide nanoscopic representations for the effective

coefficients, such as hydraulic and electro-osmotic con-

ductivities in Darcy’s law along with the effective

diffusivities which appear in the macroscopic Nernst–

Planck equations. Among the features of the model we

highlight the three-scale representation of the electroos-

motic conductivity in the modified Darcy’s law which was

obtained herein from a double averaging procedure of the

nanoscopic zeta potential. This allows for a precise

numerical reconstruction of the constitutive law of this

parameter dependent on salinity and pH of the bulk water.

The three-scale model is discretized by the finite volume

method [55] and applied to numerically simulate an electro

osmotic experiment of desalination of a kaolinite sample

under steady state conditions. The numerical results

obtained in the simulations suggest the characterization of

different acid and basic regimes of electrokinetic remedi-

ation. Depending on the range of pH (above or below the

point of zero charge), reverse electroosmotic flow may

occur leading to the appearance of anomalous patterns.

Throughout the manuscript we concentrate our analysis

on steady state flow and transport where our aim is the

accurate three-scale representation of the diffusivities and

conductivities. The extension of our study to transient

phenomena requires a more elaborate description of the

partition coefficients involved in order to capture time-

dependent adsorption of the ions in the EDL and on the

solid surface [8]. This will be accomplished in future work.

The backbone of our research is to illustrate the potential of

our three-scale approach in providing a first step towards

the derivation of reliable effective constitutive laws arising

from bridging nano, micro and macroscopic electrochem-

ical phenomena in chemically active soils.

2 Nanoscale modeling

We begin by presenting the nanoscopic modeling which

governs the electro-chemistry of the kaolinite particles at

the finest scale. Our picture consists of a two-phase system

composed of the solid phase (assumed rigid) which carries

a surface charge density, saturated by a continuum

dielectric aqueous solution containing four monovalent

electrolytes (Na+, H+, Cl-, OH-). We assume absence of

the mineral dissolution processes so that the volume frac-

tion of the solid and fluid phases are constant in time. The

solvent is considered a dilute solution so that ions are

treated as point charges with hydration and steric effects

neglected. We adopt the thin electrical double layer

assumption wherein the Debye length LD, which measures

the effective thickness of the diffuse layer [34], is assumed

small compared to the characteristic length scale of the

micro-pores (see Fig. 2). Under this assumption adjacent

double layers do not overlap and consequently variations in

the electric potential normal to the particle are much more

pronounced than in the tangential one. Consequently, under

local equilibrium conditions, the electric problem is gov-

erned by the Poisson–Boltzmann equation posed in a one-

dimensional domain [34, 54]. In addition to the ionic

concentrations in the electrical double layer (EDL),

adsorption/desorption phenomena owing to protonation/

deprotonation reactions involving the H+ ions also take

place at the surface of the particles. Such chemical reac-

tions have a paramount influence on the magnitude of the

surface charge density and the zeta potential and therefore

must be incorporated in our nanoscopic description [10, 33,

62]. In our nanoscopic development we assume ion

adsorption in the Stern layer negligible so that the surface

charge of the EDL is balanced by the one due to chemical

reactions at particle edges.

2.1 Electrical double layer

Let {F,R,T} be the set composed of Faraday constant,

universal ideal gas constant and absolute temperature and

let u be the electric potential of the EDL along with Ci and

Cib, i = (Na+, H+, Cl-, OH-), the molar concentration of

the ionic species in the EDL and in the bulk fluid,

respectively. Denoting u ¼ Fu=RT the corresponding

dimensionless electric potential, the ionic concentrations in

the EDL and in the bulk fluid are related by the Boltzmann

distribution [20, 54]

Fig. 2 Description of the microscopic and nanoscopic domains
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Ci ¼ Cib exp �uð Þi ¼ ðNaþ;Hþ;Cl�;OH�Þ: ð2:1Þ

Denote Xl
� ¼ ð0; LDÞ the one-dimensional nanoscopic

subdomain in the direction normal to the clay surface

occupied by the electrolyte solution with LD :¼
e�0e�rRT=2F2Cbð Þ1=2

the Debye’s length [34], ee0 the

permittivity of the free space, eer the dielectric constant of

the solvent and Cb the total concentration of cations (or

anions) in the bulk fluid constrained by the

electroneutrality condition [53]

Cb ¼ CNabþ þ CHbþ ¼ CClb� þ COHb� : ð2:2Þ

In the usual fashion let E = -du/dz be the component of

the electric field orthogonal to the surface with z the normal

coordinate with origin located at the solid surface (Fig. 2).

Denoting z = ‘* a point further away from the interface

between the electrolyte solution and bulk fluid (‘* [ LD),

the one-dimensional Gauss-Poisson problem reads as [39]

� dE

dz
¼ d2u

dz2
¼ � q

e�0e�r
in Xl :¼ ð0; ‘�Þ ð2:3Þ

where q :¼ F CNaþ þ CHþ � CCl� � COH�ð Þ is the net

charge density. Using the Boltzmann distribution (2.1)

we have q ¼ FCb exp �uð Þ � exp u½ � ¼ �2FCb sinh u:
Together with (2.3) this yields the Poisson–Boltzmann

equation

d2u
dz2
¼ 2FCb

e�0e�r
sinh u in Xl :¼ ð0; ‘�Þ: ð2:4Þ

The above equation is supplemented by boundary

conditions at particle wall z = 0 and at the distance

z = ‘* away from the interface between the EDL and the

bulk solution. For non-overlapping adjacent EDLs the

electric field at z = ‘* vanishes

du
dz
¼ 0 at z ¼ ‘� ð2:5Þ

whereas at the particle surface the electrical field balances

the surface charge density r

du
dz
¼ � r

e�0e�r
at z ¼ 0: ð2:6Þ

In contrast to the bulk solution, where the electroneutrality

condition (2.2) is fulfilled pointwisely, in the electrolyte

solution next to the kaolinite particles such constraint gives

rise to a compatibility condition between surface and net

charge density. Using (2.3) and (2.5) in (2.6) we have

r ¼ �e�0e�r
du
dz

z¼0 ¼ e�0e�r

Z ‘�

0

d2u
dz2

dz ¼ �
Z ‘�

0

qdz

�

�

�

�

The unidimensional Poisson–Boltzmann problem (2.4)

together with boundary conditions (2.5) and (2.6) govern

the local behavior of electric potential at the nanoscale

around the kaolinite particle. Under the thin double layer

assumptions a direct relation between u and the zeta

potential f: = u(z = 0) can be obtained (see Appendix 1

for details)

u ¼ 4RT

F
arctanh tanh

Ff
4RT

� �

exp � z

LD

� �� �

ð2:7Þ

Further combining (2.6), (2.7) with (7.4) (Appendix 1)

along with the definition of LD we deduce the following

relation between r and f

r ¼ 2e�0e�rRT

FLD

sinh
Ff

2RT

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8e�0e�rRTCb

p

sinh
Ff

2RT

� �

:

ð2:8Þ

The system of algebraic equations (2.7) and (2.8) establish

our nanoscopic model in terms of the unknowns {u, f}

provided r is known. However as the surface charge and

the f-potential vary strongly which the pH of the electro-

lyte solution, the closure of the system is tied-up to the

construction of the such dependence which can be

accomplished by invoking the kinetics of the protonation/

deprotonation reactions presented next (see also [10, 16,

25, 33]).

2.2 Protonation/deprotonation chemical reactions

In our subsequent development we analyze the chemical

reactions of protonation/deprotonation nature which occur

at the surface of the particle in order to quantify the

dependence of r on the pH and salinity of the electrolyte

solution. Hereafter we consider the component of the sur-

face charge density induced by isomorphous substitutions

small compared to one due to broken bonds on the edges of

the solid particles [13, 26, 46]. Moreover, considering

hexagonal form of the kaolinite particles [15, 46] we

assume that the charge excess on the basal hydroxyl and

siloxane planes on the upper and lower planes of the

hexagonal solid particle are small compared to the one

produced on the lateral edges containing aluminol and

silanol groups (Fig. 3) [14, 15].

Fig. 3 Kaolinite particle geometry with structure composed of

siloxane/hydroxyl planes and broken bond edges
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2.2.1 1-pK Model

For the sake of simplicity we henceforth adopt a model

based on a single protonation/deprotonation chemical

reaction which takes place in a typical octahedral sheet

([M-OH) representative of the reactive groups on the

lateral edges of the solid surface. The extension of the

procedure below to higher order pK-models incorporating

additional protonation reactions at the broken bonds of the

tetrahedral sheets [10, 41] can be pursued adopting the

same methodology. Likewise the underlying assumption of

the EDL theory, we consider a fast characteristic time scale

of the chemistry compared to the one associated with the

hydrodynamics and transport so that local thermodynamic

equilibrium can be enforced. In this context the proton-

ation/deprotonation reaction is represented in the form [10]

ð[ M� OHÞ�
1
2 þ Hþ � ð[ M� OH2Þþ

1
2 ð2:9Þ

where M represents the metallic ion lying in the tetrahedral

(Si4+) or octahedral (Al3+) layers. Under equilibrium we

can adopt the law of mass action and define the equilibrium

constant associated with (2.9) as the ratio between the

molarity product of the reagents and product constituents.

Denoting cj the surface density of the reagent/product

j = M-OH, M-OH2 and CMAX :¼ c
fð[ M�OH2Þþ

1
2g
þ

c
fð[ M�OHÞ�

1
2g

the maximum surface density (mol/m2) and

{j} = cj/CMAX the dimensionless surface concentration of

the j species, we have by definition

K :¼ fð[ M� OH2Þþ
1
2g

fð[ M� OHÞ�
1
2gCHþ

0

ð2:10Þ

where CHþ
0

denotes the H+ concentration at the kaolinite

surface (mol/l). It should be noted that when combining the

above definition with Boltzmann distribution CHþ
0
¼

CHbþ expð�fÞ allows to rewrite the equilibrium constant

in terms of bulk concentration and the dimensionless

f -potential which strongly depends on CHbþ in a non-linear

fashion. From the above definition the excess in surface

charge due to the protonic adsorption cHþ is defined as

r :¼ FzcHþ :¼ Fz c
fð[ M�OH2Þþ

1
2g
� c

fð[ M�OHÞ�
1
2g

� �

ð2:11Þ

where z = 1/2 is the valence. To complete the

characterization of r one needs to postulate a constitutive

law for cHþ which can be obtained by rewriting (2.10) in

the form

c
fð[ M�OH2Þþ

1
2g
¼ Kc

fð[ M�OHÞ�
1
2g

CHþ
0

which together with the definition of the maximum surface

density CMAX gives

c
fð[ M�OHÞ�

1
2g
¼ CMAX

1þ KCHþ
0

c
fð[ M�OH2Þþ

1
2g
¼

CMAXKCHþ
0

1þ KCHþ
0

ð2:12Þ

Using (2.12) in (2.11) we deduce the constitutive laws

cHþ :¼ c
fð[ M�OH2Þþ

1
2g
� c

fð[ M�OHÞ�
1
2g

� �

¼ CMAX

KCHþ
0
� 1

KCHþ
0
þ 1

 !

ð2:13Þ

and

r :¼ FcHþ

2
¼ FCMAX

2

KCHþ
0
� 1

KCHþ
0
þ 1

 !

ð2:14Þ

The above result furnishes the desired constitutive relation

for the surface charge density provided experimental data

are available to evaluate the pair of constants (K, CMAX).

Such information can be incorporated in the model through

the titration experiments described next.

2.2.2 Titration acid/basic experiments

The acid/basic titration experiment [13, 14] consists of a

commonly adopted procedure in analytical chemistry to

determinate an unknown concentration through the

addition of a reacting solution with known concentra-

tion. Within this experimental technique one can

construct the dependence of the protonic adsorption cHþ

as a function of the pH of the bulk fluid for a given

salinity [25, 33].

In our subsequent development we invoke the titration

experiment described in [33] who presented the consti-

tutive dependence cHþ ¼ cHþ CNabþ ;CHbþð Þ for a kaolinite

clay (Fig. 4). We may observe at pH = 5.5 the existence

of an isoelectric point, which coincides with the point of

zero net protonic charge and the pH of immersion of the

kaolinite, under the absence of other sources of surface

charge such as isomorphic substitutions (see [65]). In

the regime pH [ 5.5, referred herein to as ‘‘basic

regime’’, the chemistry is governed by a deprotona-

tion chemical reaction and a negative surface charge

density. Conversely in the acid regime a protonation

reaction takes place leading to anomalous positive sur-

face charge.

In order to compute the pair of constants (K, CMAX) we

proceed by minimizing the distance between the solution of

the algebraic equations (2.1), (2.8) and (2.14) with i = H+

and the experimental data reported in [33]. Denoting K :¼
8e�0e�rRTCbð Þ1=2

and f :¼ Ff=RT the nanoscopic governing

equations are summarized below

158 Acta Geotechnica (2008) 3:153–174

123



CHþ
0
¼ CHbþ exp �f

	 


r ¼ K sin h f=2
	 


r ¼ FCMAX

2

KCHþ
0
� 1

KCHþ
0
þ 1

 !

8

>

>

>

>

<

>

>

>

>

:

ð2:15Þ

For each pair of bulk concentrations ðCNabþ ;CHbþÞ the

above system can be solved for f, r and CHþ
0
: By

eliminating r and CHþ
0

we are left with a single nonlinear

algebraic equation for the f-potential

2KKCHbþ exp �f
	 


sinh
f
2

� �

þ 2K sinh
f
2

� �

� FCMAXKCHbþ exp �f
	 


þ FCMAX ¼ 0 ð2:16Þ

The evaluation of K follows immediately by simply

invoking the constraint r = 0 and f = 0 at pH = 5.5. By

enforcing this constraint in (2.13) and (2.14) this yields

cHþ ¼ 0 which implies c
fð[ M�OH2Þþ

1
2g
¼ c

fð[ M�OHÞ�
1
2g
;

CHþ
0
¼ CHbþ ;KCHbþ ¼ 1 and K = 105.5 l/mol. To compute

CMAX we perform a simple optimization procedure by

choosing trial values (between 1 and 10 sites/nm2) for

CMAX as suggested in [33] to minimize the distance

between the computational results of cHþ ¼ 2r=F and

experimental data of Fig. 4. We then insert the values

CMAX = 3.0, 5.5, 10 sites/nm2 along with CNabþ ¼
0:01 mol/l and solve the algebraic non linear equation

(2.16s) for f as a function of CHbþ using Newton’s method.

For each value of the zeta potential calculated we compute

CHþ
0

from (2.15) and protonic adsorption from (2.13) and

construct numerically the titration curve. In Figs. 5, 6 and

7, we display the numerical results for the protonic

adsorption as a function of the pH for three chosen values

of CMAX. When comparing the plots of cHþ with the ones

obtained in [33] this suggests that the choice CMAX = 3.0

sites/nm2 provides good agreement between the plots.

It is worth noting that such number lies in a narrow

range delimited by values obtained experimentally by

other authors. For instance Leroy and Revil [41] reported

Fig. 4 Experimental acid–basic titration curve of kaolinite (from

[33])
Fig. 5 Computationally obtained titration curve for the choice

CMAX = 3.0 sites/nm2

Fig. 6 Computationally obtained titration curve for the choice

CMAX = 5.0 sites/nm2

Fig. 7 Computationally obtained titration curve for the choice

CMAX = 10.0 sites/nm2
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Cmax = 5.5 sites/nm2 whereas Hoch and Weerasooriya [32]

Cmax = 2 sites/nm2.

By inserting the values K = 105.5 l/mol and

CMAX = 3.0 sites/nm2 in (2.16) we can build-up the con-

stitutive law of the f-potential as a function of pH and

CNabþ : The numerical results are displayed in Figs. 8 and 9.

We observe, a somewhat stronger dependence of the

f-potential on the pH compared to that on the ionic-strength.

The increase in acidification gives rise to the protonation

reaction leading to an increase of f towards positive values

and vice-versa in the basic regime. Given the f-potential we

invoke (2.15(b)) and compute the constitutive response of

surface charge density (see Figs. 10, 11).

To summarize our findings at the nanoscale, the main

result which will be subsequently explored in the

microscopic modeling is the numerical reconstruction of

the constitutive law f ¼ fðCNabþ ;CHbþÞ depicted in

Figs. 8 and 9.

3 Microscopic modeling

Considering the thickness of the EDL small compared to

the characteristic length of the micro-pores, the nanoscopic

model is effectively represented through boundary condi-

tions on the particle/micro-pore interface. Thus, to

construct the microscopic description we postulate gov-

erning equations for flow and transport in the bulk fluid

lying in the micro-pores and up-scale the nanoscopic

results to the microscale to match conditions at the

interface.

We begin by presenting a brief discussion on the electro-

chemical phenomena which take place in the aqueous bulk

solution, more precisely hydrolyze and electrolysis reac-

tions which give rise to the dissociated ions Na+, H+, Cl-,

OH-. Subsequently these phenomena are incorporated in

the hydrodynamics and transport equations of the solutes.

3.1 Ionization reactions

The appearance of ions completely or partially dissociated

in the aqueous solution is explained by the ionization

theory which describes the thermodynamic equilibrium

between ions and non-ionized solvent molecules [19]. For

example, sodium chloride NaCl in water is completelyFig. 8 Strong dependence of the f-potential on pH

Fig. 9 Weak dependence of the f-potential on CNabþ

Fig. 10 Computationally obtained surface charge as a function of pH

Fig. 11 Computationally obtained surface charge as a function of

sodium concentration CNabþ
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dissociated and therefore is commonly referred to as a

strong electrolyte. The corresponding ionization reaction is

represented in the form

NaCl! Naþ þ Cl�

In contrast water molecules are often partially dissociated

due to a weak phenomenon commonly refereed to as auto-

ionization [19]. Such partial dissociation is commonly

described by the chemical reaction

H2O� Hþ þ OH�

The degree of dissociation of the above reaction is dictated

by the ionic product of water, defined by the product of the

molar H+ and OH- concentrations [19].

KW :¼ CHbþCOHb� ¼ 10�14(mol/l)2 ð3:1Þ

3.2 Electrolysis reactions

The application of a continuum electric current through the

anode and cathode placed in the kaolinite gives rise to

electrolysis chemical reactions at the electrodes. At the

anode, water oxidation takes place producing hydrogen

ions H+ and oxygen gas O2 whereas at the cathode a

reduction chemical reaction occurs giving rise to hydroxyl

ions OH- and hydrogen gas H2. These reactions are rep-

resented in the form [3, 67]

• Anode (+):

2H2O� 4e� ! O2 " þ4Hþ

• Cathode (-):

2H2O� 2e� ! H2 " þ2OH�:

An important consequence of the production of ions at the

electrodes is the appearance of acid and basic fronts toward

the anode and cathode respectively [1, 3, 17]. Owing to the

higher diffusivity of the H+ ions compared to the OH-,

the acid front is the dominant diffusive phenomenon. In the

subsequent development we incorporate the above-

mentioned phenomena in the microscopic governing

equations.

3.3 Microscopic governing equations

Let X ¼ Xs [ Xf � <3 be the microscopic domain occu-

pied by a biphasic porous media composed of solid

particles and micro-pores filled by a bulk fluid (Fig. 2). The

solid phase occupies the domain Xs and is formed by

kaolinite particles carrying the nonlinear surface charge

density r. The subdomain Xf is occupied by the bulk

solution containing four ionic monovalent solutes (Na+,

H+, Cl-, OH-). In our subsequent analysis we consider

steady-state flow and transport with the aqueous solution

movement and ion transport governed by the classical

theory of viscous fluids and Nernst-Planck equations,

respectively [59].

3.3.1 Hydrodynamics

Assuming the bulk fluid an aqueous Newtonian incom-

pressible solution, neglecting gravity and convection/

inertial effects, the hydrodynamics is governed by the

classical Stokes problem

r � v ¼ 0

lfMv�rp ¼ 0 in Xf

ð3:2Þ

where v is the fluid velocity, p the pressure and lf the water

viscosity.

3.3.2 Ion transport

In addition to the advection induced by the velocity v, ion

diffusion is due to the sum of Fickian and electromigration

components which govern the spreading of the ionic spe-

cies under concentrations and electric potential gradients,

respectively [61, 64]. Recalling the steady-state assump-

tion, the ion concentrations in the bulk solution are

governed by the Nernst–Planck equation [59]

r � CNabþvð Þ � r � DNaþ rCNabþ þ CNabþr/
	 
� �

¼ 0

r � CHbþvð Þ � r � DHþ rCHbþ þ CHbþr/
	 
� �

þ _m ¼ 0

r � CClb�vð Þ � r � DCl� rCClb� � CClb�r/
	 
� �

¼ 0

r � COHb�vð Þ � r � DOH� rCOHb� � COHb�r/
	 
� �

þ _m ¼ 0 in Xf ð3:3Þ

where Di are the binary water–ion diffusion coefficients

ði ¼ Naþ;Hþ;Cl�;OH�Þ;/ :¼ F/=RT the dimensionless

microscopic electrical potential which arise from the

introduction of the electrodes and _m a source term which

quantifies the mass production of H+ and OH- due to the

water hydrolysis.

The set of microscopic governing equations, formulated

in terms of the unknowns fv; p;/;CNabþ ;CHbþ ;CClb� ;

COHb� ; _mg; is given by (3.2) and (3.3) along with the

electroneutrality condition (2.2) and the ionic product of

water (3.1).

3.3.3 Formulation in primary unknowns

In the analysis that follows we formulate the microscopic

governing equations in primary unknowns which we select

as velocity, pressure, electric potential and cation concen-

trations. We then proceed by eliminating the anion

concentrations and the source term _m: By subtracting

(3.3(d)) from (3.3(b)) and using (3.1) we obtain
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r � HCHbþvð Þ � r � bDH rCHbþ þ CHbþr/
	 


h i

¼ 0

with bDH :¼ DHþ þ
DOH�KW

C2
Hbþ

and H :¼ 1� KW

C2
Hbþ

:

The above nonlinear steady form of the Nernst–Planck

equation will be henceforth refereed to as the pH-equation.

Since there are no source terms in (3.3(a)), the sodium

transport equation remains invariant in the reduction of

variables. Thus, it remains to derive an equation for the

electric potential / which follows by invoking conservation

of charge. To derive this result we begin by defining the

electric current If

If :¼ F ~JNaþ þ ~JHþ � ~JCl� � ~JOH�
	 


where ~Ji :¼ Cibv� Di rCib � Cibr/
	 


ði ¼ Naþ;Hþ;Cl�;OH�Þ

denotes the total convective/diffusive ionic flux of each

solute. By subtracting the Nernst–Planck relations (3.3) for

the anions from the cations and using the above definition

together with the electroneutrality condition (2.2) and the

ionic product of water (3.1) we obtain conservation of charge

r � If ¼ 0

If ¼ ArCNabþ þ BrCHbþ þ Cr/

with the new coefficients given by

A :¼ F DNaþ � DCl�ð Þ

B :¼ F DHþ � DCl� þ
DOH� � DCl�ð ÞKW

C2
Hbþ

� �

C :¼ F DNaþ þ DCl�ð ÞCNabþ þ DHþ þ DCl�ð ÞCHbþ

�

þ DOH� � DCl�ð ÞKW

CHbþ

�

3.3.4 Boundary conditions

The above system of microscopic equations is supple-

mented by boundary conditions on the particle/micropore

interface Cfs (Fig. 2). Recalling the thin double layer

assumption LD � l, where l is a characteristic length of the

pores, the EDL is treated as a boundary layer in the vicinity

of the particles and modeled microscopically by a slip

condition in the tangential velocity component. Denoting n

and s the normal and tangential vectors to the interface Cfs,

the boundary conditions for the velocity in the Stokes

problem read as

v � s ¼ Vslip

v � n ¼ 0 on Cfs

where Vslip is a scalar field defined at the interface which

governs the jump in the tangential velocity component. The

slip velocity is nothing but the transversal averaging across

the thin diffuse layer of the nanoscopic elecroosmotic

tangential velocity governed by the modified Stokes

problem including the additional body force term of

Coulomb type [48]. For thin double layers such up-

scaling procedure gives rise to the well known Helmholtz-

Smoluchowski slip [21, 31, 50] wherein Vslip is governed by

the electroosmotic component of Darcy’s law with the

electroosmotic permeability KE dictated by the magnitude of

the f-potential (see Appendix 2 for details). We then have

Vslip ¼ v � s¼�KEr/ � s with KE ¼�
e�0e�rf
lf

on Cfs:

ð3:4Þ

The complete characterization of the slip velocity is

accomplished by invoking the constitutive law f ¼
fðCNabþ ;CHbþÞ reconstructed from the nanoscopic model-

ing (Figs. 8, 9).

Under steady state conditions and recalling the

assumption of absence of mineral dissolution reaction the

transient flux related to ion adsorption on the particle sur-

face vanishes [8] and therefore homogeneous Neumann

conditions for the ionic fluxes are enforced

�Di rCib þ Cibr/
	 


� n ¼ 0 ði ¼ Naþ;Hþ;Cl�;OH�Þ
on Cfs

Finally, after eliminating the anion concentrations, the

above boundary conditions are rephrased in primary

unknowns

� bDH rCHbþ þ CHbþr/
	 


� n ¼ 0 on Cfs

and

ArCNabþ þ BrCHbþ þ Cr/
	 


� n ¼ 0 on Cfs

3.4 Summary of the two scale model

The two-scale nanoscopic/microscopic steady-state model

consists in: Given the constants flf ;KW ;DNaþ ;

DHþDCl� ;DOH� ;F;R; T ;Ag the functions fH; bDH ;Bg
depending on CHbþ ; and the coefficient C depending on

both CNabþ and CHbþ ; find the microscopic fields

fv; p;CNabþ ;CHbþ ;/; If ; JNaþ ; JHþg satisfying

r � v ¼ 0

lfMv�rp ¼ 0

r � CNabþvð Þ þ r � JNaþ ¼ 0

r � HCHbþvð Þ þ r � JHþ ¼ 0

r � If ¼ 0 in Xf

JNaþ ¼ �DNaþ rCNabþ þ CNabþr/
	 


JHþ ¼ � bDH rCHbþ þ CHbþr/
	 


If ¼ ArCNabþ þ BrCHbþ þ Cr/

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:
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supplemented by boundary conditions

v � s ¼ e�0e�rf
lf
r/ � s

v � n ¼ 0

JNaþ � n ¼ 0 on Cfs

JHþ � n ¼ 0

If � n ¼ 0

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

with the constitutive response of zeta potential f ¼
fðCNabþ ;CHbþÞ solution of the nanoscopic relations (2.16)

reconstructed numerically in Figs. 8 and 9.

4 Homogenization

In this section we apply the asymptotic homogenization

theory [60] to upscale the microscopic model to the mac-

roscale. The kaolinite is then idealized as a bounded

domain characterized by a periodic structure and two

characteristics length scales; the characteristic microscopic

scale l of the order of the size of the micropores and the

macroscopic length scale L of the overall dimension of the

medium. Within the framework of homogenization intro-

duce the perturbation parameter e = l/L and adopt the

assumption of scale separation e � 1. The family of per-

turbed models, referred herein to as e-models, consist of

properly scaled equations posed in the macroscopic domain

Xe, considered the union of disjoint fluid and solid sub-

domains Xe
f and Xe

s along with scaled boundary conditions

on the interface Ce
fs. The perturbed domain Xe is recon-

structed by replication of a micro cell Ye. In a similar

fashion the sub-domains Xe
f and Xe

s along with the inter-

face Ce
fs are given by the union of adjacent cell sub-

domains Ye
f and Ye

s and qYe
fs interfaces respectively. Each

cell is congruent to a standard unitary parallelepiped period

Y composed of sub-domains Yf and Ys with common

boundary qYfs. Our starting point e = 1 corresponds to our

microscopic model. The basic problem consists of inves-

tigating the asymptotics as e! 0 and obtain the

homogenized limit as the scale of the heterogeneity tends

to zero.

Following the classical homogenization analysis of the

Stokes problem, the fluid viscosity is scaled by e2 [7]. In

order to estimate the Peclet number we consider typical

data of an electrosmosis experiment (see, e.g., [2]). For

DHþ ¼ 9:31	 10�9m2=s; L ¼ 0:8 m and electroomostic

Darcy’s velocity VD = 2.5 9 10-9 m/s we have Pe ¼
VDL=DHþ ¼ 0:2 
 Oð1Þ: Making use of the above esti-

mates the e-model reads as

r � ve ¼ 0

e2lfMve �rpe ¼ 0

r � Ce
Nabþve

	 


þr � Je
Naþ ¼ 0

r � HeCe
Hbþve

	 


þr � Je
Hþ ¼ 0

r � Ie
f ¼ 0 in Xf

Je
Naþ ¼ �DNaþ rCe

Nabþ þ Ce
Nabþr/

e
� �

Je
Hþ ¼ � bD

e
H rCe

Hbþ þ Ce
Hbþr/

e
� �

Ie
f ¼ ArCe

Nabþ þ BerCe
Hbþ þ Cer/

e

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð4:1Þ

and

ve � s ¼ e�0e�rf
e

lf

r/e � s

ve � n ¼ 0

Je
Naþ � n ¼ 0 on Cfs

Je
Hþ � n ¼ 0

Ie
f � n ¼ 0

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð4:2Þ

4.1 Matched asymptotic expansions

To upscale the microscopic model to the macroscale we

adopt the formal homogenization procedure based on per-

turbation expansions [7, 60]. Within this framework each

property is considered dependent on both global and local

length scales in the form f = f(x,y), where x and y denote

the macroscopic and microscopic coordinates, respectively.

Up to a translation x and y are related by y = x/e. By the

chain rule the differential operator is replaced by r = rx

+ e-1ry. The usual procedure to obtain the homogenized

problem consists in postulating asymptotic expansions for

the unknowns

f eðx; yÞ ¼
X

1

k¼0

ekf kðx; yÞ

with the functions fi = fi(x, y) (i = 0, 1, 2, ...) y-periodic.

In the subsequent notation we adopt the superscript ‘‘0’’ to

designate the function Y ¼ fH; bDH ;B;C; f;Vslipg
calculated at CNabþ ¼ C0

Nabþ and CHbþ ¼ C0
Hbþ and the

superscript ‘‘1’’ to denote the first-order component of

the Taylor series expansion of YðCNabÞ ðor YðCHbþÞÞ;
given by Y1 ¼ oY=oCNabþ jC0

Nabþ
CNabþ � C0

Nabþ
	 


¼
eoY=oCNabþ jC0

Nabþ
C1

Nabþ : Inserting the ansatz into the

microscopic governing equations (4.1)–(4.2) and

collecting the successive power of e we obtain successive

equations at different orders:

ry � DNaþ ryC0
Nabþ þ C0

Nabþry/
0

� �h i

¼ 0 ð4:3Þ

ry � bD
0

H ryC0
Hbþ þ C0

Hbþry/
0

� �h i

¼ 0 ð4:4Þ
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ry � AryC0
Nabþ þ B0ryC0

Hbþ þ C0ry/
0

� �

¼ 0 ð4:5Þ

ry � v0 ¼ 0 ð4:6Þ

ryp0 ¼ 0 ð4:7Þ

ry � C0
Nabþv0

	 


þrx � DNaþ ryC0
Nabþ þ C0

Nabþry/
0

� �h i

þry � J0
Naþ ¼ 0 ð4:8Þ

ry � H0C0
Hbþv0

	 


þrx � bD
0

H ryC0
Hbþ þ C0

Hbþry/
0

� �h i

þry � J0
Hþ ¼ 0 ð4:9Þ

rx � AryC0
Nabþ þ B0ryC0

Hbþ þ C0ry/
0

� �

þry � I0
f ¼ 0

ð4:10Þ

J0
Naþ ¼ �DNaþ rxC0

Nabþ þ ryC1
Nabþ

	 
�

þC0
Nabþ rx/

0 þry/
1

� �

þ C1
Nabþry/

0
i

ð4:11Þ

J0
Hþ ¼ � bD

0

H rxC0
Hbþ þryC1

Hbþ
	 


þC0
Hbþ rx/

0þry/
1

� �h

þC1
Hbþry/

0
i

� bD1

H ryC0
Hbþ þC0

Hbþry/
0

� �

ð4:12Þ

I0
f ¼ A rxC0

Nabþ þ ryC1
Nabþ

	 


þ B0 rxC0
Hbþ þ ryC1

Hbþ
	 


þ C0 rx/
0 þry/

1
� �

þ B1ryC0
Hbþ þ C1ry/

0

ð4:13Þ

rx � v0 þry � v1 ¼ 0 ð4:14Þ

lfMyyv0 �ryp1 ¼ rxp0 ð4:15Þ

rx � C0
Nabþv0

	 


þry � C0
Nabþv1 þ C1

Nabþv0
	 


þrx � J0
Naþ þ ry � J1

Naþ ¼ 0
ð4:16Þ

rx � H0C0
Hbþv0

	 


þry � H0 C0
Hbþv1 þ C1

Hbþv0
	 
�

þH1C0
Hbþv0

�

þrx � J0
Hþ þ ry � J1

Hþ ¼ 0
ð4:17Þ

rx � I0
f þry � I1

f ¼ 0 ð4:18Þ

whereas the successive orders of the interface conditions

read as

DNaþ ryC0
Nabþ þ C0

Nabþry/
0

� �h i

� n ¼ 0 ð4:19Þ

bD
0

H ryC0
Hbþ þ C0

Hbþry/
0

� �h i

� n ¼ 0 ð4:20Þ

AryC0
Nabþ þ B0ryC0

Hbþ þ C0ry/
0

� �

� n ¼ 0 ð4:21Þ

v0 � n ¼ 0 ð4:22Þ

v1 � n ¼ 0 ð4:23Þ

v0 � s ¼ V0
slip ¼

e�0e�r

lf

f0 rx/
0 þry/

1
	 


þ f1ry/
0

� �

� s

ð4:24Þ

J0
Naþ � n ¼ 0 ð4:25Þ

J0
Hþ � n ¼ 0 ð4:26Þ

I0
f � n ¼ 0 ð4:27Þ

J1
Naþ � n ¼ 0 ð4:28Þ

J1
Hþ � n ¼ 0 ð4:29Þ

I1
f � n ¼ 0 ð4:30Þ

4.2 Non-oscillatory variables

We begin by collecting our set of slow y-independent

variables. From (4.7) we have ryp0 x; y; tð Þ ¼ 0 which

implies p0 x; y; tð Þ ¼ p0 x; tð Þ: In addition, Eqs. (4.3)–(4.5)

together with the Neumann boundary conditions (4.19)–

(4.21) may be rewritten in the form

ry � M0ryW
0

	 


¼ 0 in Yf

M0ryW
0 � n ¼ 0 on oYfs

(

where W0 :¼ fC0
Nabþ ;C

0
Hbþ ;/

0g and M0 the matrix

M0 :¼

DNaþ 0 DNaþC0
Nabþ

0 bD
0

H
bD

0

HC0
Hbþ

A B0 C0

2

6

6

6

4

3

7

7

7

5

ð4:31Þ

The solution of the above homogeneous Neumann prob-

lem is simply C0
Nabþ x; y; tð Þ ¼ C0

Nabþ x; tð Þ;C0
Hbþ x; y; tð Þ ¼

C0
Hbþ x; tð Þ and /

0
x; y; tð Þ ¼ /

0
x; tð Þ: Moreover, by invok-

ing the definitions of the coefficients we also have

Y0ðx; y; tÞ :¼ fH0; bD
0

H ;B
0;C0; f0;V0

slipg ¼ Y0ðx; tÞ: Thus

our set of non-oscillatory variables is fp0;C0
Nabþ ;C

0
Hbþ ;

/
0
;H0; bD

0

H; f
0;B0;C0;V0

slipg:

4.3 Microscopic closure problems

Since fC0
Nabþ ;C

0
Hbþ ;/

0;H0; bD
0

Hg are independent of the

fast variable all terms containing their gradient with respect

to y vanish. Thus, to establish the local closure problems

for W1 ¼ fC1
Nabþ ;C

1
Hbþ ;/

1g we note that using the local

incompressibility condition (4.6), only the last terms in

(4.8), (4.9) and (4.10) survive. When combined with the

constitutive laws (4.11)–(4.13) and boundary conditions

(4.25)–(4.27) this yields the local Neumann problems
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ry � M0ryW
1

	 


¼ 0 in Yf

�M0ryW
1 � n ¼M0rxW

0 � n on oYfs



Recalling that the components of the matrix M0 in (4.31)

are y-independent, by linearity the solution can be

represented in the form

C1
Nabþ x; y; tð Þ ¼ f yð Þ � rxC0

Nabþ x; tð Þ þ eCNaþ x; tð Þ
C1

Hbþ x; y; tð Þ ¼ f yð Þ � rxC0
Hbþ x; tð Þ þ eCHþ x; tð ÞÞ

/
1

x; y; tð Þ ¼ f yð Þ � rx/
0

x; tð Þ þ e/ x; tð Þ

ð4:32Þ

with the characteristic tortuosity vectorial function f = f(y)

satisfying the canonical Neumann problem

Myyf yð Þ ¼ 0 in Y
ryf yð Þn ¼ �n on oYfs



: ð4:33Þ

4.4 Macroscopic transport equation

To derive the macroscopic steady-state Nernst–Planck

equation for the Na+ and H+ transport we begin by intro-

ducing the volume averaging operator over the periodic

cell

hvi :¼ 1

jY j

Z

Yf

vdy:

By averaging (4.16) and (4.17) we obtain

hrx � C0
Nabþv0

	 


i þ hry � C0
Nabþv1 þ C1

Nabþv0
	 


i

þ hrx � J0
Naþ þ ry � JNaþ

1i ¼ 0

hrx � H0C0
Hbþv0

	 


i þ hry � H0 C0
Hbþv1 þ C1

Hbþv0
	 
�

þH1C0
Hbþv0

�

i þ hrx � J0
Hþ þ ry � J1

Hþi ¼ 0

Recalling that fC0
Nabþ ;C

0
Hbþ ;/

0
;H0; bD

0

Hg are y-

independent defining V0
D :¼ hv0i the macroscopic

Darcy’s velocity, using Gauss theorem and boundary

conditions (4.22), (4.23), (4.28) and (4.29) we have

rx � C0
NabþV0

D

	 


þrx � hJ0
Naþi ¼ 0

rx � H0C0
HbþV0

D

	 


þrx � hJ0
Hþi ¼ 0:

Using the constitutive laws for the fluxes (4.11) and (4.12)

along with the closure relations in (4.32) we obtain the

macroscopic results

rx � C0
NabþV0

D

	 


¼ rx � Deff
Naþ
rxC0

Nabþ þ C0
Nabþrx/

0
� �h i

rx � H0C0
HbþV0

D

	 


¼ rx � bDeff
Hþ rxC0

Hbþ þ C0
Hbþrx/

0
� �h i

with the effective diffusivities defined by

Deff
Naþ :¼ DNaþhIþryf yð Þi
bD

eff

Hþ :¼ bDHhIþryf yð Þi

4.5 Macroscopic conservation of charge

The effective charge conservation equation can be obtained

in a straightforward fashion. By averaging (4.18) and using

boundary condition (4.30) we obtain

hrx � I0
f þry � I1

f i ¼ hrx � I0
f i þ

1

jY j

Z

Yf

ry � I1
f dy

¼ rx � hI0
f i þ

1

jY j

Z

oYfs

I1
f � n dy ¼ 0

which furnishes

rx � hI0
f i ¼ 0:

Denoting Ieff
f :¼ hI0

f i the effective current, by combining

(4.32) for the concentration and potential fluctuations with

(4.13) we obtain the macroscopic constitutive law

Ieff
f ¼ AeffrxC0

Nabþ þ BeffrxC0
Hbþ þ Ceffrx/

0

with the effective parameters given as

Aeff :¼ AhIþryf yð Þi Beff :¼ B0hIþryf yð Þi
Ceff :¼ C0hIþryf yð Þi

4.6 Macroscopic Darcy law

To derive the macroscopic form of Darcy’s law we begin

by using the closure relation for the electric potential

(4.32(c)) in (4.24) to obtain for the slip velocity

V0
slip ¼

e�0e�rf
0

lf

Iþryf
	 


rx/
0 � s:

Combining the above result with the mass balance (4.6)

and the momentum equation (4.15) we obtain the local

Stokes problem formulated in the pair (v0, p1)

lfMyyv0 �ryp1 ¼ rxp0

ry � v0 ¼ 0 in Yf

v0 � n ¼ 0

v0 � s ¼ e�0e�rf
0

lf

Iþryf
	 


rx/
0 � s on oYfs

8

>

>

>

>

<

>

>

>

>

:

To derive Darcy’s law we proceed in a similar fashion to [47]

and decompose velocity and pressure fluctuation into their

hydraulic and electroosmotic components v0 ¼ v0
P þ v0

E and

p1 = pP
1 + pE

1 with each one satisfying the local cell problems

lfMyyv0
P �ryp1

P ¼ rxp0

ry � v0
P ¼ 0 in Yf

v0
P ¼ 0 on oYfs

8

<

:

ð4:34Þ

and
lfMyyv0

E �ryp1
E ¼ 0

ry � v0
E ¼ 0 in Yf

v0
E � n ¼ 0

v0
E � s ¼

e�0e�rf
0

lf

Iþryf
	 


rx/
0 � s on oYfs

8

>

>

>

>

<

>

>

>

>

:

: ð4:35Þ
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The local system (4.34) for fv0
P; p

1
Pg is nothing but the

classical closure problem which gives rise to the hydraulic

conductivity [7]. Denoting {ej} (j = 1, 2, 3) an orthonor-

mal basis, define the tensorial periodic function jP and the

vectorial field pP; with vectorial components j
j
P and scalars

pP
j respectively satisfying the canonical problems

lfMyyj
j
P �ryp

j
P ¼ �ej ðj ¼ 1; 2; 3Þ

ry � jj
P ¼ 0 in Yf

j
j
P ¼ 0 on oYfs

ð4:36Þ

By exploring linearity between (4.34) and (4.36) we obtain

v0
P ¼ �jPrxp0 ð4:37Þ

Unlike (4.34), the cell problem for vE
0 is ruled by the slip

boundary condition. By invoking the closure problem for

the tortuosity function f one may observe that (4.35) admits

a solution of the type

v0
E ¼ �j0

Erx/
0 with j0

E ¼ �
e�0e�rf

0

lf

Iþryf
	 


:

ð4:38Þ

By adding (4.37) and (4.38) yields the following

constitutive law for the total microscopic velocity

v0 ¼ �j0
Erx/

0 � jPrxp0

After averaging we obtain the macroscopic Darcy’s law

V0
D ¼ hv0i ¼ �Keff

P rxp0 �Keff
E rx/

0 ð4:39Þ

with the effective conductivities defined as

Keff
P :¼ hjPi Keff

E :¼ �e�0e�rf
0

lf

hIþryfi: ð4:40Þ

The macroscopic coefficients KP
eff and KE

eff are nothing

but the macroscopic hydraulic and electroosmotic con-

ductivities [47, 48]. It should be noted that since the

closure relation for KE
eff contains the zeta potential, by

combining the nanoscopic constitutive law (2.16) for f0

with (4.40(b)) we can build-up numerically the depen-

dency Keff
E ¼ Keff

E ðC0
Nabþ ;C

0
HbþÞ: This result is of utmost

importance as it bridges nanoscopic/microscopic and

macroscopic results. Unlike the electroosmotic perme-

ability which depends on the pair fC0
Nabþ ;C

0
Hbþg; the

hydraulic permeability KP
eff is only dictated by the cell

geometry and fluid viscosity.

4.7 Macroscopic mass balance

The macroscopic mass conservation can easily be obtained

by averaging (4.14) using the divergence theorem along

with boundary condition (4.23) to obtain

rx � V0
D ¼ rx � hv0i ¼ �hry � v1i ¼ � 1

jY j

Z

Yf

ry � v1dy

¼ � 1

jY j

Z

oYfs

v1 � ndy ¼ 0

which when combined with (4.39) furnishes

rx � V0
D ¼ rx � Keff

E rx/
0 þKeff

P rxp0
	 


¼ 0

4.8 Summary of the three scale model

We are now ready to formulate our three-scale steady-state

problem. Let X be the macroscopic domain occupied by the

kaolinite saturated by an aqueous solution containing four

monovalent ions {Na+, H+, OH-, Cl-}. Given the set of con-

stants fF;ee0;eer; lf ;DNaþ ;DHþ ;DCl� ;DOH� ;KWg; the pair of

characteristics functions ff; jPg; solution of (4.33) and (4.36),

the pair of functions fH0; bD
0

Hg depending on C0
Hbþ ; and f0

depending on fC0
Hbþ ;C

0
Nabþg solution of the nanoscopic prob-

lem (2.16), find the macroscopic unknowns fC0
Nabþ ;C

0
Hbþ ; p

0;

/0;V0
D; J

eff
Naþ ; J

eff
Hþ ; I

eff
f g; functions of (x,t), satisfying

rx � V0
D ¼ 0

V0
D ¼ �Keff

E rx/
0 �Keff

P rxp0

rx � C0
NabþV0

D

	 


þrx � Jeff
Naþ ¼ 0

rx � H0C0
HbþV0

D

	 


þrx � Jeff
Hþ ¼ 0

rx � Ieff
f ¼ 0

Jeff
Naþ ¼ �Deff

Naþ rxC0
Nabþ þ C0

Nabþrx/
0

� �

Jeff
Hþ ¼ �bD

eff

Hþ rxC0
Hbþ þ C0

Hbþrx/
0

� �

Ieff
f ¼ AeffrxC0

Nabþ þ BeffrxC0
Hbþ þ Ceffrx/

0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð4:41Þ

with the effective parameters fKeff
E ;Keff

P ;Deff
Naþ ;

bD
eff

Hþ ;

Aeff ;Beff ;Ceffg solution of the microscopic closure

problems posed in the unit cell

Keff
E ¼ �

e�0e�rf
0

lf

hIþryf yð Þi

Keff
P ¼ hjPi

Deff
Naþ ¼ DNaþhIþryf yð Þi
bD

eff

Hþ :¼ bD
0

HhIþryf yð Þi
Aeff ¼ FhIþryf yð Þi DNaþ � DCl�ð Þ

Beff ¼ FhIþryf yð Þi DHþ � DCl� þ
DOH� � DCl�ð ÞKW

C02

Hbþ

" #

Ceff ¼ FhIþryf yð Þi
�

DNaþ þ DCl�ð ÞC0
Nabþ :

þ DHþ þ DCl�ð ÞC0
Hbþ þ

DOH� � DCl�ð ÞKW

C0
Hbþ

�

:

ð4:42Þ
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In the above three-scale representation of the medium the

geometry of the micropores is described by the character-

istic functions ðf; jPÞ whereas the electro-chemistry at the

nanoscale is propagated to the macroscale through the

relation between the effective coefficients KE
eff and

the nanoscopic f0-potential depending on fC0
Nabþ ;C

0
Hbþg:

Finally, after computing C0
Nabþ and C0

Hbþ we can solve for

the anion concentrations C0
Clb� and C0

OHb� within a post-

processing approach considering (3.1) and the electroneu-

trality condition (2.2) at O(e0).

5 Computational results

To illustrate the potential of the proposed three-scale

approach in providing accurate numerical predictions of

pH-dependent electrokinetic steady flows we simulate a

one-dimensional problem of an electro-osmosis experiment

for desalinization of a kaolinite sample. For simplicity we

consider stratified microstructure of the clay with geometry

composed of parallel particles of thickness 2d separated by

a fixed distance 2H (Fig. 12). In this form of microstructure

the slow and fast coordinates x = (x,�,�) and y = (�,y,�) are

parallel and orthogonal to the particle surface, respectively.

Furthermore, since flow and ion transport occur only in the

x-direction we only keep track of the axial components of

the fluxes fJeff
Naþ ; J

eff
Hþ ; I

eff
f ;V0

Dg and the tensors fKeff
E ;

Keff
P ;Deff

Na;
bD

eff

Hþ ;A
eff ;Beff ;Ceffg denoted herein without

boldface. Under these assumptions the macroscopic model

reduces to the system of ordinary equations

V0
D ¼ �Keff

E

d/0

dx
� Keff

P

dp0

dx
ð5:1Þ

dV0
D

dx
¼ 0 ð5:2Þ

d

dx
C0

NabþV0
D

	 


þ dJeff
Na

dx
¼ 0 ð5:3Þ

d

dx
H0C0

HbþV0
D

	 


þ dJeff
H

dx
¼ 0 ð5:4Þ

dIeff
f

dx
¼ 0 ð5:5Þ

Jeff
Na ¼ �Deff

Na

dC0
Nabþ

dx
þ C0

Nabþ
d/

0

dx

 !

ð5:6Þ

Jeff
H ¼ �Deff

H

dC0
Hbþ

dx
þ C0

Hbþ
d/

0

dx

 !

ð5:7Þ

Ieff
f ¼ Aeff dC0

Nabþ

dx
þ Beff dC0

Hbþ

dx
þ Ceff d/

0

dx
ð5:8Þ

Denoting {jP, f} the axial and transversal components of

fjP; fg the simplified version of the microscopic cell

problems for the tortuosity (4.33) and hydraulic con-

ductivity (4.36) for a stratified microstructure are

given by

d2f

dy2
¼ 0

df

dy
¼ 0 at y ¼ �H

8

>

>

>

<

>

>

>

:

ð5:9Þ

and

lf

d2jP

dy2
� dp

dx
¼ �1

djP

dy
¼ 0

dp
dy
¼ 0

jP ¼ 0 at y ¼ �H

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

: ð5:10Þ

The local problem (5.9) implies that f is y-independent and

therefore the tortuosity df/dy vanishes. The classical

solution of (5.10) is simply p = cte and jP parabolic

in y. Furthermore, in the stratified microstructure of parallel

particles the cell averaging is nothing but the transversal

averaging and therefore, after upscaling the local parabolic

profile for jP we obtain the local representation of

hydraulic conductivity [48]

Keff
P ¼

H3

3 H þ dð Þlf

ð5:11Þ

In addition, denoting n = H/(H + d) the porosity we have

the following representations for the other effective

parameters in (4.42)

Keff
E ¼ �

n~�0~�rf
0

lf

ð5:12Þ

Deff
Na ¼ nDNaþ ð5:13Þ

bD
eff

H ¼ n DHþ þ
DOH�KW

C02

Hbþ

 !

ð5:14Þ

Aeff ¼ nF DNaþ � DCl�ð Þ ð5:15Þ

Beff ¼ nF DHþ � DCl� þ
DOH� � DCl�ð ÞKW

C02

Hbþ

" #

ð5:16Þ

Ceff ¼ nF

�

DNaþ þ DCl�ð ÞC0
Nabþ þ DHþ þ DCl�ð ÞC0

Hbþ

þ DOH� � DCl�ð ÞKW

C0
Hbþ

�
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5.1 Numerical examples

The macroscopic system of ODE’s (5.1)–(5.8) is discret-

ized by the finite volume method [55] and applied to

numerically simulate the one-dimensional electroosmosis

experiment depicted in Fig. 13. In this example an anode

and a cathode are placed at the positions x = 0 and x = L

respectively wherein for simplicity the electric potential,

pressure, salinity and pH are controlled and modeled by

Dirichlet boundary conditions in these potentials (Fig. 13).

We remark that more realistic boundary conditions of

Danckwerts type have been postulated incorporating the

chemistry of the reactions at the electrodes [5]. Since our

aim now is the validation of the three-scale approach

we save this generalization for a later occasion. In our

subsequent simulation we adopt the values DNaþ ¼
1:334	10�9; DHþ ¼ 9:311	10�9; DCl� ¼ 2:032	10�9;

DOH� ¼ 5:273	10�9m2=s for the diffusivities.

5.1.1 Numerical examples with constant pH

We begin by illustrating the influence of magnitude of the

pH on the electroosmotic flow. In this first example we

neglect the variability of the pH and concentrate our study

on the different patterns dictated by pH values higher,

lower and equal to 5.5 corresponding to the isoelectric

point. Our simulations are then performed for three values

of the pH: equal to the isoelectric point pH = 5.5; in the

basic and acid regimes pH = 7.0 and pH = 4.0 respec-

tively. In Fig. 14 we display the axial dependence of the

sodium concentration parameterized by the three values of

the pH. At the isoelectric point pH = 5.5 the f-potential

vanishes and consequently from (5.12) the electroosmotic

permeability is zero. Moreover, in the absence of a pressure

gradient, Darcy’s velocity and convective effects vanish

leading to a purely diffusive behavior of the salt concen-

tration. In the basic regime pH = 7.0 the f-potential is

negative (see Fig. 9) and consequently from (5.12) we have

KE
eff [ 0 leading to electroosmotic flow induced by the

Darcy’s velocity in the same direction of the applied

electric field towards the cathode. Such electroosmotic

coupling gives rise to a non-linear behavior of the Na+

concentration. Conversely, in the acid regime pH = 4.0 the

f-potential is positive and from the closure relation (5.12)

we have KE
eff \ 0 leading to electroosmotic flow in the

opposite direction of the electric field. Such competition

implies in a strong concentration gradient in the vicinity of

the anode (see Fig. 14). The concentration profiles exhib-

iting boundary layers resemble in form de ones reported by

Yeung and Datla [68] and Narasimhan and Ranjan [52].

We now consider the axial distribution of the electric

potential in each one of the regimes. From Fig. 15 we may

observe at the isoelectric point a non-linear behavior of the

electric potential induced by the nonlinear coefficient Ceff

in (5.5) and (5.8) which appears in order to fulfill charge

conservation. In the basic (pH = 7.0) and acid (pH = 4.0)

regimes the non-linear behavior of the electric potential is

restricted to the vicinities of the cathode and anode

respectively combined with a linear behavior away from the

electrodes. Similar profiles with sharp layers close to

the electrodes were reported in Beddiar et al. [12]. Given

the electric potential profile, the pressure field displayed in

Fig. 16 develops to fulfill the incompressibility condition

(5.2) and Darcy’s law (5.1). At the isoelectric point, since

the electroosmotic permeability and Darcy’s velocity

vanish we obtain constant pressure profile. In the basic

regime the positive electroosmotic permeability together

with incompressibility constraint (5.2) implies in a non-

linear pressure gradient which develops in order to balance

the electroosmotic component. Conversely, in the acid

regime the negative electroosmotic permeability gives rise

to a counter electroosmotic flow and consequently to a

reflexion in the pressure field. The form of the pressure

profiles, in particular their reflexion property observed for

different pHs, have been previously reported in the litera-

ture (see, e.g., [22]).

Fig. 12 Stratified arrangement of face-to-face particles

Fig. 13 Boundary conditions
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Finally, in Fig. 17 we display the axial behavior of the

f-potential for the three chosen values of the pH. As

mentioned before at pH = 5.5 the f-potential vanishes

whereas at the basic/acid regimes it becomes negative and

positive respectively. We also observe a weak dependence

of the f-potential with the sodium concentration shown by

the absence of significant spatial variation.

5.1.2 Numerical examples with spatial variability of pH

We now perform similar numerical experiments of the

previous subsection but now allowing for spatial variability

of the pH to whom we enforce Dirichlet boundary condi-

tions of same magnitude at the electrodes.

In Fig. 18 we portrait the axial distribution of the Na+

concentration. In the basic regime (pH = 7.0 at the elec-

trodes) the negative f-potential produces a strong

convection in the vicinity of the cathode leading to an

increase of the Peclet number and giving rise to a flat profile

coupled with a sharp boundary layer near the cathode. At

pH = 4.0 we observe the same effect occurring near the

anode due to the inversion of the electroosmotic flow con-

sequently leading to the desalination of the clay.

In Fig. 19 we plot the distribution of the pH. We may

observe that despite the control of the pH at the electrodes,

the influence of the convection induced by the electroos-

motic velocity together with electromigration effects in (5.4)

Fig. 14 Sodium concentration profiles for different pH values

Fig. 15 Electric potential profiles for different pH values

Fig. 17 Zeta potential profiles for different pH values

Fig. 16 Pressure profiles for different pH values

Fig. 18 Sodium concentration profiles for equal pH values prescribed

at the electrodes
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and (5.7) lead to an increase of the pH in the interior of the

domain and to a consequent basification of the sample

regardless of the value imposed on the boundaries. In Fig. 20

we depict the electric potential profile. The behavior is quite

similar to the constant pH case with deviations from the

linear profile occurring only in the vicinity of the cathode/

anode in the basic/acid regimes, respectively.

In Fig. 21 we display the axial behavior of the

f-potential. Compared to the constant pH case, since

df=dCHbþ\0 (Fig. 8) we may observe that the increase in

pH previously reported in Fig. 19 away from the electrodes

leads to a decrease of the f-potential. This implies in a

increase of KE in the basic regime and vice-versa in the

acid regime. Finally, in Fig. 22 we display the pressure

field. The shape of the profiles are quite similar to the

constant pH case indeed showing deviations from the linear

behavior in the interior of the sample previously reported in

Fig. 16. Such deviations are induced by the variability of

the electroosmotic permeability due to gradients in the

f-potential and pH.

Lastly we depict the solution for the same aforemen-

tioned external gradients in salinity and electric potential

indeed also imposing an external pH-gradient by enforcing

pH = 4 and pH = 7 at the anode and cathode respectively.

In this general case the sodium concentration and electric

potential profiles behave in a similar fashion to the previ-

ous case (Figs. 23, 24). The behavior of the pH is

advective-dominated with a sharp layer in the vicinity of

the cathode (Fig. 25). It should be noted that since acidity

(pH \ 5.5) prevails in almost the entirely domain we have

f[ 0 and KE \ 0 with implies in electroosmotic flow

towards the anode. However as the nonlinear advection

coefficient h is negative, the H+-ions are convected in the

opposite direction (towards the negatively charged cath-

ode) of the Na+. In addition, we may observe a smooth

layer in the vicinity of the anode due to the decrease in r/
in that region (Fig. 24) with consequent reduction of the

electromigration diffusive effect towards the cathode

causing a decrease in H+ concentration and increase in pH.

This effect is manifested by the flat profile of the pH with

Fig. 19 pH profiles for equal pH values prescribed at the electrodes

Fig. 20 Electric potential profiles for equal pH values prescribed at

the electrodes Fig. 22 Pressure profiles for same pH values prescribed at the

electrodes

Fig. 21 Zeta potential profile for for equal pH values prescribed at

the electrodes

170 Acta Geotechnica (2008) 3:153–174

123



value greater than the one imposed on the anode. The

pressure plot is displayed in Fig. 26. To ensure incom-

pressibility with VD constant the profile oscillates around

the values imposed on the boundaries with inversion of

pressure gradient near the electrodes. In particular the

inversion of rp near the cathode forces the hydraulic

component of the Darcy’s velocity to counterbalance the

electroosmotic component ensuring net flow toward the

anode (recall that KE [ 0 for pH [ 5.5).

6 Conclusion

In this paper we provided a first attempt at bridging nano-

micro and macroscopic electro-chemical phenomena in

kaolinite under steady-state conditions. By incorporating

at the nanoscale a protonation reaction coupled with the

Poisson-Boltzmann model we were able to derive a

microscopic slip boundary condition on the fluid velocity

at the particle interface. By upscaling this slip condition

in conjunction with the microscopic equations governing

flow and solute transport in the bulk fluid in the mi-

cropores the homogenized electro-chemical model was

rigorously derived at the macroscale. Among the three-

scale results obtained herein we highlight the constitutive

response of the electroosmotic permeability as a function

of the ionic strength and pH which was rigorously

reconstructed from a double averaging of the nanoscopic

behavior of the f-potential. The three-scale model was

applied to numerically simulate the classical electroos-

motic experiment of a kaolinite sample with stratified

microstructure. Different regimes of electroosmotic flow

were built-up depending on pH of the bulk solution.

Further work in progress to expand the three-scale model

to transient phenomena including the development of

complex constitutive relations for the partition coefficients

and to incorporate more realistic Danckwerts’ boundary

conditions at the electrodes.
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7 Appendix 1: Analytical solution of the one-

dimensional Poisson–Boltzmann equation

To derive the analytical solution (2.7) of the Poisson-

Boltzmann equation we begin by rewriting (2.4) in

dimensionless form

d2u

dz2
¼ sinh uð Þ ð7:1Þ

where z :¼ z=LD: By multiplying (7.1) by 2du=dz and

using the chain rule yields

d

dz

du
dz

� �2

¼ 2
d

dz
cosh uð Þ½ � ð7:2Þ

Integrating (7.2) from an arbitrary z inside the EDL to the

point ‘� ¼ ‘�=LD in the bulk solution gives

Z ‘�

z

d

dz

du
dz

� �2

dz ¼ 2

Z ‘�

z

d

dz
cosh uð Þð Þdz

Using the thin double layer assumption, the electric

potential and electric field vanish at point ‘� away from

the particle surface. Hence, the above expression can be

rewriten in the form

du
dz

� �2

¼ 2 cosh u� 1ð Þ ð7:3Þ

Using the relation sinh u=2ð Þ ¼ cosh u� 1ð Þ=2½ �1=2
this

yields

du
dz
¼ �2sinh

u
2

� �

ð7:4Þ

which can be rephrased in the form

�dz ¼ du
2 sinhðu=2Þ ¼

du
expðu=2Þ � expð�u=2Þ

Integrating from z ¼ 0 at particle surface to z and denoting

u z ¼ 0ð Þ ¼ f the dimensionless f-potential we obtain

�
Z

z

0

dz ¼
Z

u

u0

du
exp u=2Þ � expð�u=2ð Þ ð7:5Þ

To solve the above problem we adopt the change of

variables

t ¼ exp
u
2

� �

and dt ¼ exp
u
2

� �

du
2
() du ¼ 2dt

t

ð7:6Þ

which gives

�z ¼
Z exp

u
2

	 


exp
u0
2

	 


2dt

t t � 1

t

� � ¼
Z exp

u
2

	 


exp
u0
2

	 


2dt

t2 � 1

Using the relation 2
t2�1
¼ 1

t�1ð Þ � 1
tþ1ð Þ we obtain

�z ¼
Z exp

u
2

	 


exp
u0
2

	 


dt

t � 1
�
Z exp

u
2

	 


exp
u0
2

	 


dt

t þ 1

¼ ln jt � 1jð Þ exp
u
2

	 


exp
u0
2

	 
 � ln jt þ 1jð Þ
�

�

�

�

�

�

�

�

exp
u
2

	 


exp
u0
2

	 


and

�z ¼ ln exp
u
2

� �

� 1

�

�

�

�

�

�

�

�

� �

� ln exp
f
2

� �

� 1

�

�

�

�

�

�

�

�

� �

� ln exp
u
2

� �

þ 1

�

�

�

�

�

�

�

�

� �

þ ln exp
f
2

� �

þ 1

�

�

�

�

�

�

�

�

� �

ð7:7Þ

which yields

exp zð Þ ¼ tanh
u
4

� ��

�

�

�

�

�

�

�

tanh
f
4

� ��

�

�

�

�

�

�

�

�1

Hence, we can express the electric potential in the EDL as

a function of the zeta potential f and Debye length LD in

the form

u ¼ 4RT

F
arctan h tanh

Ff
4RT

� �

exp � z

LD

� �� �

ð7:8Þ

8 Appendix 2: Helmholtz–Smoluchowski equation

We now show the derivation of the slip condition (3.4). Let

Xl = (0, ‘*) 9 (0,l) be the two dimensional rectangular

domain occupied by the electrolyte solution in the vicinity

of each particle with l a characteristic length of particle

width (Fig. 27). Denoting {z,y} the cartezian coordinate

system normal and tangential to the particle surface and

u = u(z) the tangential component of the fluid velocity

unlike the bulk fluid, in the electrolyte solution, the Stokes

problem is supplemented by an additional body force of

Coulomb type qr/ [47]. In the rectangular coordinate

system the tangential component of the modified Stokes

problem reads as [48]

Fig. 27 Description of the nanoscale domain
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lf

d2u

dz2
� dp

dy
� q

d/
dy
¼ 0

du

dz
¼ 0

u ¼ 0 at z ¼ 0

8

>

>

>

<

>

>

>

:

ð8:1Þ

Recalling the constitutive law for the net charge density

q ¼ �2FCb sinh u; using the Poisson–Boltzmann problem

(2.4) we have, in the absence of a pressure gradient

d2u

dz2
¼ �e�0e�r

lf

d2u
dz2

d/
dy

du

dz
¼ 0

u ¼ 0 at z ¼ 0

8

>

>

>

>

<

>

>

>

>

:

ð8:2Þ

Integrating from an arbitrary point z to z = ‘*, where

du/dz = du/dz = 0 yields

du

dz
¼ �e�0e�r

lf

du
dz

d/
dy

ð8:3Þ

Hence, integrating from z = 0 to z and using the no-slip

condition at z = 0 gives

uðzÞ ¼ ee ee0

lf

d/
dy

f� uðzÞð Þ:

Now define the microscopic slip as the averaged the

velocity across the nanocell,

Vslip :¼ 1

‘�

Z ‘�

0

udz ¼ ee ee0

‘�lf

d/
dy

Z ‘�

0

f� uðzÞð Þdz:

When the thickness of the EDL is small compared to the

size of the nanocell (LD \ ‘*), the Helmholtz-

Smoluchowski model can be recovered. Noting that

u(z) = 0 in the domain occupied by the bulk fluid

LD \ z \ ‘*, under the thin EDL assumption the second

term containing the averaging of u is small compared to

the magnitude of the f-potential. This approximation yields

Vslip ¼
ee ee0f
lf

d/
dy
¼ ee ee0f

lf

r/ � s
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