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Abstract In this paper we introduce the branch tensor as

an internal variable able to account for the structural

anisotropy of a granular sample. The distribution of aver-

aged contact forces is assumed to depend not only on the

macroscopic stress and the local orientation, but also on the

value of the fabric tensor. In contrast to previous work,

including the fabric tensor has the crucial advantage that

accounts for all relative positions between interacting

particles, through the average value of the branch tensor.

Based on a classical representation result, we propose an

identification procedure that uses information obtained

from both isotropic and anisotropic configurations.
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1 Introduction

Despite simple physical laws governing the micro-scale

response, granular materials exhibit a complex behavior at

the macroscopic level. Among the well-known character-

istics of granular assemblies are the dilatancy and the

irreversible evolution of micro-structure. The theoretical

framework designed to relate description from the micro-

scopic level to that of the macroscopic one is the

homogenization theory. It is well accepted that relations

between local interaction forces and macroscopic stress are

easy to obtain at any scale through the Weber relation. The

reverse path, i.e., localization of the macroscopic stress, is

a much more complicated procedure and a definite relation

for the representation of averaged contact forces is not yet

available.

Numerical tests performed on granular samples con-

sisting of elongated particles [11] reveal that the

orientational distribution of contact forces does not follow

a similar evolution to that of samples with spherical and

nearly spherical particles. One conclusion is that some

additional internal variables had to be accounted for in

order to include in the localization operator a structural part

of the sample. The simplest choice in this direction is

provided by the average over the sample of the contact

tensor C ¼ hn� ni [9, 12]. Following this line, we found

in [2] that the evolution of the contact tensor is relatively

weak. A possible explanation is that C does not include

enough information about the relative positions of neigh-

boring particles but only information on the contacts

themselves.

The use of fabric tensor-dependent material parameters

falls into a larger class of models called materials with

microstructure. Among the fruitful attempts to extend

classical elastoplasticity in order to include the effects of

the packing structure we cite [3, 7, 10]. The distribution of

contact forces in terms of macroscopic stress was studied in

[6] who noted a strong dependence of the probability dis-

tribution function on the contact orientation and conse-

quently uses conditional probability distribution function in

order to include the relation between the macroscopic

stress and contact forces (relation (8) in this paper) in the

analysis. We adopt here a different point of view and

restrict only to analytical relations between orientational

averaged contact forces and macroscopic stress that satisfy

a priori (8) but include the averaged branch tensor. Its role
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in the present context is twofold: it reflects the packing

structure and enlarges the class of admissible contact force

distribution shapes to cover more than previously proposed

elliptic shapes [5].

This paper introduces in the localization procedure the

branch tensor defined as H ¼ hl� li: This particular

choice has some physical justifications. First, the branch

vector l measures the relative positions of particles

including in a certain sense the microstructure of the

sample. Secondly, in the particular case when explicit

formulae are available in classical homogenization theory,

they show that interaction forces between particles do

actually depend on all relative positions of particles in the

sample. The special case of elongated particles is of

particular interest since structural anisotropy manifests

strongly even in simple biaxial tests.

This paper is organized as follows: for completeness,

Sect. 2 recalls the basic relations between the local

interaction forces and macroscopic stress. The three

variants of Weber relation are well-known, but they

underline the specific role of the branch tensor as a choice

for the description of the local structure of the granular

sample. Section 3 states the basic representation result

used in the following to identify the orientational distri-

bution of contact forces. For the interested reader and

since the representation result is purely technical, we

choose to sketch the proof in an appendix. Section 4

presents the characteristics of the numerical samples we

used. Section 5 describes the identification procedure

which distinguishes between material parameters associ-

ated to the isotropic part of the representation, and thus

identified on the most isotropic configuration, and the

ones associated to the anisotropic part and identified on

the most anisotropic configuration. The best way to figure

this choice is a parallel to classical models of elasto-

plasticity in which case the elastic characteristics are

identified using data within elastic range while plastic

characteristics, such as hardening, are identified using

data from the plastic regime. Finally, we compare our

predictions with distributions obtained from numerical

computations and discuss the predictive character of our

result. We conclude the paper with comments and some

open questions.

2 Contact forces and macroscopic stress

2.1 Weber relation

Consider a collection of granular particles P at static

equilibrium and denote by fFigi¼1...M the external forces

acting on its boundary oP: A well-known relation, called

the Weber formula, defines the macroscopic stress as

R ¼ 1

jPj
XM

i¼1

Fi � OPi: ð1Þ

Here O is an arbitrary point and Pi are points on the

boundary oP where Fi acts. Relation (1) shows that the

macroscopic stress depends only on the forces acting on

the boundary oP: Using equilibrium for each individual

particle, the Weber relation can be also expressed:

• Using all forces acting on all particles in the granular

sample as

R ¼ 1

jPj
X

Pi2P
Fji � OiP

ji ð2Þ

where Fji denotes the force acting from particle1 Pj on

particle Pi at common contact point Pji, and Oi denotes the

center of mass of particle Pi:

• Using the vectors joining the centers of two particles in

contact, usually called branch vectors, as

R ¼ 1

jPj
X

ði; jÞ
Fji � OiOj þ

1

jPj
XM

i¼1

Fi � OjP
ji: ð3Þ

The second term above contains all external forces Fi

acting on a particle Pj; and OjP
ji denotes the vector joining

Oj-the center of mass of particle Pj-to the point Pji where

Fi acts.

It was proved by Caillerie [1] that under suitable

uniformity assumptions the second term in (3) is much

smaller than the first one so that

R ’ 1

jPj
X

ði; jÞ
Fji � lij; ð4Þ

where lij denotes the branch vector OiOj.

2.2 Orientational distribution

If we rewrite the right-hand-side in (4) by sorting the

contacts under ascendent orientation, we obtain
X

ði; jÞ
Fji � lij ¼

X

h"
Fji � lij: ð5Þ

At a fixed orientational resolution k [ N
�, we replace the

individual values of the tensor product above by the

average value computed over all contacts with orientation

n(h) for h in an interval of length 2p/k. If N denotes the

total number of contacts and Na the number of contacts

with normal oriented by h in the interval 2pða� 1Þ=k;½
2pa=k�; we have

1 In this sum external forces should also be accounted for.
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X

h"
Fji � lij ¼ N

Xk

a¼1

Na

N
hFij � lijia: ð6Þ

For the next step we check numerically that forces and

branch vectors are noncorrelated in which case

R ¼ N

jPj
Xk

a¼1

Na

N
hFijia � hlijia ð7Þ

The continuum limit of the right-hand-side above is

R ¼ Nd

jPj

Z2p

0

pðhÞfðR; nÞ � ndh ð8Þ

where d denotes a characteristic length. To deduce (8)

from (7) we need an additional assumption about the ori-

entational average of the branch vector, which is hlia ¼ dn:

Previous work on stress localization [4, 8, 11], consider d

as the averaged particles diameter, choice reconsidered

hereafter.

The physical meaning of relation (8) is the following:

given a macroscopic stress R among all admissible contact

forces distributions only those satisfying (2) may appear in

a granular assembly. From a statistical point of view, when

detailed information about the local arrangement is not

available, the orientational averaged contact forces and the

macroscopic stress may still be related through (8) and this

restricts the class of analytical relations between the con-

tact force distribution and the macroscopic stress.

If we introduce a characteristic length l ¼ jPj=ðpNdÞ
and if we denote by f the mean contact forces weighted by

p(h), relation (8) is identically satisfied by the one-

parameter relation [5, 13]

f ¼ l
1

2
trRnþ 2ð1� lÞðn � ðdevRÞnÞnþ lðdevRÞn

� �
:

ð9Þ

It is straightforward to check that this relation leads to an

ellipsoidal orientational distribution for the contact forces,

well-fitted by numerical results for samples containing

particles with aspect ratio2 close to unity.

The situation is more complicated for samples contain-

ing elongated particles. Numerical results obtained with the

Contact Dynamics software for polygonal particles with an

aspect ratio of 3, show that relation (9) may not be suffi-

cient and one simple way to circumvent this difficulty is to

introduce an internal variable able to account for the

microstructure of the sample. In support to this idea we

note the following three arguments:

(1) The work reported in [2] uses the average contact

tensor C ¼ hn� ni; this choice was guided by earlier

use of the contact tensor in the representation of the

weighted contact forces [5, 8]. In this way the

representation relation is enriched and we fit better

the numerical data but still the anisotropy captured by

the contact tensor evolves slowly.

(2) Classical work in homogenization theory for elastic

interactions [14] provides a localization relation

which formally is identical to (1) but where the

values of pairwise interactions depend not only on the

local material structure but also on all other relative

positions. In the actual setting this remark suggests

the use of the branch tensor instead of contact tensor.

(3) We note that contact orientations do not contain any

particular information on the relative positions of

particles in contact, except in the very special case of

spherical particles. By inspection in (4) one may note

that the macroscopic stress depends on the contact

forces and relative positions but not on the contacts

orientations, so that it seems more natural to include

in the localization operator the branch tensor instead

of the contact tensor.

Based on the above arguments, in the following we shall

assume that the orientational distribution of contact forces

is a function of the macroscopic stress R; the local

orientation n and the average branch tensor hlji � ljii;
subsequently denoted H.

3 Representation result for weighted contact forces

Note that by definition the branch tensor H is symmetric

and fðR;H; nÞ has to satisfy

(R1) The consistency relation (8): for any symmetric

tensors R and H

R ¼ 1

lp

Z2p

0

f ðR;H; nÞ � ndh: ð10Þ

(R2) The frame-indifference assumption: for any

orthogonal transformation Q and any symmetric

tensors R and H

f ðQRQt;QHQt;QnÞ ¼ Qf ðR;H; nÞ: ð11Þ

Usually, the local contact forces are assumed to be linear

with respect to R and no more than affine with respect to H.

A long but straightforward calculation using classical

methods in representation theory3 shows that in the two-

dimensional case: the most general form of a function

2 We use aspect ratio to denote max/ (diam(/)/diam(/ + p/2))

where diam(/) means the diameter of the particle in the /-direction. 3 We provide in the appendix the main details of this result.
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f ðR;H; nÞ obeying relations (10) and (11), linear with

respect to R and affine with respect to H is given by

f ¼ lRnþ
X6

i¼2

aiIi ð12Þ

where ai [ R and the vector-valued invariants IiðR;H; nÞ
are given by

I2 ¼ 2Rnþ ðtrRÞn� 4ðn � RnÞn ð13Þ

I3 ¼ ðtrRÞðtrHÞn� 4ðtrRÞðn �HnÞnþ 8ðn � RnÞHn
� 4HRn ð14Þ

I4 ¼ ðtrRÞðtrHÞn� 4ðtrHÞðn � RnÞnþ 8ðn �HnÞRn
� 4RHn ð15Þ

I5 ¼ ðtrRÞðtrHÞn� 8ðn �HnÞðn � RnÞnþ 2½HRnþ RHn�
ð16Þ

I6 ¼ ðtrRÞðtrHÞn� 16ðn �HnÞðn � RnÞn
þ 4½ðRn �HnÞnþ ðn �HnÞRnþ ðn � RnÞHn�

ð17Þ

We note that using the above definitions one can easily

check that the consistency condition is automatically

verified since for any R; H, and i = 2,..., 6 we have

Z2p

0

Rn� ndh ¼ pR;
Z2p

0

Ii � ndh ¼ 0:

For practical reasons related to the identification procedure,

we remark that the first two terms in (12) provide relation

(9) so that, we split (12) as

f ðR;H; nÞ ¼ gðR; nÞ þ hðR;H; nÞ: ð18Þ

where

gðR; nÞ ¼ lRnþ a2I2ðR; nÞ; ð19Þ

hðR;H; nÞ ¼
X6

i¼3

aiIiðR;H; nÞ: ð20Þ

As H is introduced to account for the structural anisotropy

of the sample, and (12) is a generalization of (9), subse-

quently we call g the isotropic part and ðl; a2Þ the isotropic

parameters. Moreover, we call h the anisotropic part and

(ai)i = 3,..., 6 the anisotropic parameters.

4 Numerical samples and branch tensor

4.1 Numerical samples description

The numerical tests we worked with, previously reported in

[11], were performed on samples containing polygonal

rigid particles and Coulomb friction. They involve two

samples: a first one containing particles with aspect ratio 1

and a second one containing elongated particles with aspect

ratio 3. The tests are classical biaxial tests where the imposed

deformation rate is _e ¼ 5� 10�2 s�1 for the ratio 1 sample

and _e ¼ 10�1 s�1 for the ratio 3 sample. The time step for

numerical integration in all cases is Dt = 5 9 10-5 s.

It is well-known that Coulomb friction at the microscale

provides results with significant numerical noise which

means that for two configurations at equilibrium very close

to each other the fluctuations in the macroscopic stress may

reach 30% as shown on Fig. 1. In order to filter such

behavior we collect data from 21 configurations situated

just before and just after a given state, at fixed time

intervals DT = 100 9 Dt. It follows that, for example,

near a state where the horizontal deformation is 30% for

the ratio 3 sample, we record contact forces, particles

positions and contact positions from 29.95 up to 30.05%,

each 0.005%. We choose as a representative for a hori-

zontal deformation of 30% the configuration for which the

macroscopic stress is closest to the average macroscopic

stress of the 21 states described above.

The ratio 1 sample, denoted in the following by R1-

sample, is a rectangular box (22 cm 9 16.5 cm) containing

4,789 polygonal particles with a diameter dispersion4 of

2.6. The deposit is realized under gravity, the initial vol-

ume fraction is 0.21 and the friction coefficient was fixed to

2.6 2.8 3 3.2 3.4 3.6 3.8 4
1.2

1.3

1.4

1.5

1.6

1.7

1.8

Fig. 1 Absolute values (white squares) of the principal stresses

computed for 21 states around the macroscopic horizontal deforma-

tion 30% in the sample containing elongated particles. Numerical data

show a significant dispersion (*30%) around the eigenvalues of the

averaged stress (black circle) due to dry friction interactions between

particles

4 This dispersion is given on the basis of the diameter of the smallest

disk containing a particle.
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0.3. Contact positions, positions of the particles centers and

the contact forces were recorded at horizontal deformation

corresponding to 5, 10, 20, and 30%, respectively, fol-

lowing the above mentioned procedure. Subsequently,

these configurations will be denoted by R15, R110, R120,

and R130.

The ratio 3 sample, or shortly R3-sample, is a rectan-

gular box (11 cm 9 11 cm) containing 1,937 polygonal

particles with a diameter dispersion of 2.85. The deposit is

realized under gravity so, as a consequence, the initial state

is highly anisotropic. The initial volume fraction is 0.29

and the friction coefficient was fixed to 0.3. Contact posi-

tions, positions of the particles centers and the contact

forces were recorded at horizontal deformation corre-

sponding to 5, 10, 20, 30, 36 and 39%, respectively, and for

convenience we shall denote these configurations by R310,

R320, R330, R336 and R339.

An illustration of the sample in the initial state is pre-

sented in Fig. 2.

The values of the stress tensors5 for fixed deformations

above are given in the Table 1. The biaxial tests realized on

both samples give, for each configuration

• the set of normal and tangential components of the

contact forces,

• the positions of each contact point and contact

orientations,

• the positions of centers of mass for each particle.

These data are sorted and averaged as explained in

Sect. 2.2. The numerical results to be fitted by the

representation formula are the k values of the orientational

averaged contact forces (f n
exp, f t

exp) obtained with an

orientational resolution fixed here to k = 36.

4.2 Justification for the choice of H ¼ hl� li

The motivation for a representation formula more com-

plex than relation (9) is based on the following remark:

for quite identical stress tensors values, the shape of the

(f n
exp, f t

exp) data is quite different for the R1-sample and

for the R3-sample as shown Fig. 3. The elongated par-

ticles of the R3-sample seem to influence in a significant

way the numerical results shape. In order to improve the

representation formula we choose to use an internal

variable H able to account for the aspect ratio. As noted

in Sect. 2.2 the branch vector can do this, while the

contact vector can not.

To support this remark, we represent in Fig. 4 all the

considered configurations in the H-eigenvalues plane. On

this figure, each point is representative of a given config-

uration Rij and the so-called isotropic line is defined as the

set of points corresponding to isotropic configurations:

H reflects an isotropic configuration

, H ¼ kId; k 2 R
�:

ð21Þ

The ability of H to reflect the structural anisotropy of a

granular sample is clearly emphasized on this figure: the

range occupied by the representative points of the R3-

sample is significantly larger that the one occupied by the

representative points of the R1-sample. The physical evi-

dence that the R3-sample may exhibit a real structural

anisotropy (in the sense of (21)) much more important than

the R1-sample is thus well reflected by this choice of the

internal variable H.

σ2

V

Fig. 2 Initial state for the aspect ratio 3 sample

Table 1 Values of the macroscopic stress (in Pa) computed using (7)

for each sample

State R State R

R15 �20909 467

467 �10668

� �
– –

R110
�25664 �498

�498 �11441

� �
R310

�23234 �344

�344 �11382

� �

R120
�29318 �99

�99 �12248

� �
R320

�27698 455

455 �12832

� �

R130
�32766 �407

�407 �14031

� �
R330

�33871 �311

�311 �14854

� �

– – R336
�39055 �234

�234 �16781

� �

– – R339
�39820 �595

�595 �17816

� �

5 For the rest of the paper, we shall use the classical convention in

solid mechanics: a compression stress is negative.
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5 Identification procedure and results

In a previous work on modeling contact forces distribution

in granular samples containing elongated particles [2], we

adopt an identification procedure based on all the data for a

given granular sample. The main drawback of this idea is

the fact that it uses data for all configurations, so that its

predictive character is missing. Accordingly, hereafter we

present a different method which exhibits a predictive

character.

In this work our goal is twofold:

• we propose a representation formula that cover a large

class of shapes using an additional internal variable

and,

• we want to insure a predictive character of the

representation using a suitable identification procedure.

To this end, this section presents both the description of

the identification procedure used to fit the numerical

simulations results and the analysis of the isotropic and the

anisotropic parameters contribution in the representation

formula.

5.1 Quality index

Once the identification is performed, the theoretical ori-

entational contact forces distribution, f ðR;H; nÞ ¼ ðfn; ftÞ;
has to be compared to the experimental data, fexp = (f n

exp,

f t
exp), as those presented on Fig. 3. To achieve this we

define a quality index, denoted q, able to evaluate a relative

distance between the theoretical distribution and the

experimental data through

q ¼ kfðR;H;nÞ � f expk
kf expk

¼ ðfn � f exp
n Þ

2 þ ðft � f exp
t Þ2

ðf exp
n Þ2 þ ðf exp

t Þ2

" #1=2

:

ð22Þ

In the following, the quality index will be used to estimate

the improvement due to both isotropic and anisotropic

parameters.

5.2 Identification procedure

5.2.1 Preliminarily remarks on the meaning of d

As mentioned in Sect. 2.2, previous studies [4, 8, 11],

define d in (8) as the averaged particle diameter,

depending on the considered elongation ratio Ra, and

defined as:

d ¼ 1

2
1þ 1

Ra

� �
d�; ð23Þ

where d* is the diameter of the smallest disk centered at the

particle’s mass center and containing all vertices of the

polygonal particle. According to this definition, d ¼
0:36 cm for the R1–sample and d ¼ 0:32 cm for the R3–

sample. Considering d as fixed for a given sample and

using the formula (9) for the theoretical distribution, the

only remaining parameter to be identified is a2 ¼ ll: A

classical least squares method performed on the following

quadratic objective function,

dðR; nÞ ¼ ðfnðR; nÞ � f exp
n Þ

2 þ ðftðR; nÞ � f exp
t Þ

2; ð24Þ

returns quality index values near q = 74%! This result

shows that d can not be defined as the averaged particles

diameter. We have to note that d appears in the continuum

limit of (7) when the term hlijia is written as

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Fig. 4 Configurations of the R1-sample and R3-sample in the space

of the H-eigenvalues to show the ability of H to represent the

structural anisotropy. The most anisotropic states for the R3-sample,

R35 and R310, reflect the initial deposit under gravity, which for

elongated particles produces anisotropic microstructures

- 7000 - 6000 - 5000 - 4000 - 3000
- 1000

- 500

0

500

1000

Fig. 3 Shapes of the (f n
exp,f t

exp) data corresponding to the configu-

rations R110 (open circles) and R310 (filled squares) having stress

tensors of the same order of magnitude
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hlijia ¼ dðhaÞnðhaÞ ð25Þ

and all we can expect6 is d less than mean diameter. Instead

of fixing d to the averaged particles diameter we choose to

consider l defined through:

Npd

jPj ¼
1

l
ð26Þ

as a parameter to be identified, as well as a2. This point of

view leads to significant improvement of the quality index

values as shown in what follows.

5.2.2 Description of the identification procedure

As the internal variable H has been introduced to account for

the structural anisotropy of the samples, we propose to

identify the set of isotropic parameters ðl; a2Þ on the most

isotropic configuration and the set of anisotropic parameters

(ai)i = 3,..., 6 on the most anisotropic configuration. The above

remark leads to the following identification procedure:

Step 1: Definition of a criterion able to find the most

isotropic configuration and the most anisotropic one

among the set of all the configurations for a given

sample. For this, we use the representation of the

different configurations in the H-eigenvalues plane, as in

Fig. 4. Indeed, by definition (21), the distance from a

representative point to the isotropic line measures the

anisotropy of the associated configuration. It can thus be

conclude that, according to the chosen internal variable,

R15 and R120 are the most isotropic and the most

anisotropic configurations of the R1-sample, respec-

tively. Likewise, R339 and R310
7 are the most isotropic

and the most anisotropic configurations of the R3-

sample, respectively.

Step 2: Identification of the two isotropic parameters

ðl; a2Þ:Denoting by Riso the stress tensor associated to the

most isotropic configuration, the objective function is:

dðl; a2Þ ¼ ðgnðRiso; nÞ � f exp
n Þ

2 þ ðgtðRiso; nÞ � f exp
t Þ

2:

ð27Þ

As the objective function is quadratic the least squares

method returns a unique set of isotropic parameters

subsequently denoted by ðliso
; aiso

2 Þ such that the isotropic

part of the identified distribution is for all stress tensor R
and for all unit vector n:

gisoðR; nÞ ¼ l
iso

Rnþ aiso
2 I2: ð28Þ

When the searched distribution looks like formula (9) these

parameters are sufficient to predict the distribution for the

configurations (R110, R120, R130) and (R310, R320, R330,

R336) respectively, using

f ðR; nÞ ¼ gisoðR; nÞ:

Step 3: Identification of the four parameters (ai)i=3,..., 6

describing the anisotropic part using the most anisotropic

configuration for each sample. Denoting by Ran and Han

the stress tensor and the texture tensor associated to the

most anisotropic configuration, respectively, the objective

function is:

dða3; a4; a5; a6Þ ¼ ðgiso
n ðRan; nÞ þ hnðRan;Han; nÞ � f exp

n Þ
2

þ ðgiso
t ðRan; nÞ þ htðRan;Han; nÞ � f exp

t Þ
2:

ð29Þ

Once again, as the objective function is quadratic the least

squares method returns a unique solution set for the

identified anisotropic parameters denoted by (ai
an)i = 3,..., 6

such that the anisotropic identified part of the distribution

is:

hanðR;H; nÞ ¼
X6

i¼3

aan
i Ii: ð30Þ

Finally

f ðR;H; nÞ ¼ gisoðR; nÞ þ hanðR;H; nÞ: ð31Þ

will be used to predict the distribution for all configura-

tions, even if not used in the identification procedure.

5.3 Results and interpretations

5.3.1 Identification results

Following the above discussed identification procedure, we

found the isotropic and anisotropic parameters listed in

Table 2. To discuss the approximation level we summarize

the quality indexes for different cases in Tables 3 and 4. In

both tables:

(1) The line PrIso represents the quality indexes, qPrIso,

of the so–called Predicted distributions using only the

Isotropic parameters. It means that, whatever the

considered configuration characterized by a stress

tensor R; the quality indexes are computed using only

the isotropic part of the distribution, gisoðR; nÞ; with

the isotropic parameters, l
iso

and a2
iso, identified on

R15 and R339 for the R1-sample and the R3-sample,

respectively.

6 In the continuum limit d is dependent of h but the first term of its

Fourier series is what we denote here d:
7 Actually, Fig. 4 exhibits R35 to be the most anisotropic configu-

ration; this configuration will nevertheless not be used in the

following because it is the only configuration that corresponds to

the dilatancy phase of the material behavior.
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(2) Likewise, the line PrAn represents the quality

indexes, qPrAn, of the so-called Predicted distribu-

tions using simultaneously the isotropic and the

Anisotropic parameters. This means that, whatever

the considered configuration characterized by a stress

tensor R and an internal variable H, the quality

indexes are computed using the distribution

gisoðR; nÞ þ hanðR;H; nÞ;

with the isotropic parameters, l
iso

and a2
iso, identified

as above, and with additional anisotropic parameters

(ai
an)i = 3,..., 6 identified on R120 for the R1-sample and

on R310 for the R3-sample, respectively. This line

contains the result of the identification procedure

proposed in Sect. 5.2.

(3) The line BAn represents the quality indexes of the so-

called Best distributions using simultaneously the

isotropic and the Anisotropic parameters. This means

that both the isotropic and the anisotropic parameters

are identified on each configuration. This leads to the

best quality index, qBAn, that can ever be obtained

according to the least squares method.

(4) The line Gap1 represents the relative gap between the

quality indexes of the predicted distribution PrIso

and the best distribution BAn:

Gap1 ¼
qPrIso � qBAn

qBAn
: ð32Þ

(5) The line Gap2 represents the relative gap between the

quality indexes of the predicted distribution PrAn

and the best distribution BAn:

Gap2 ¼
qPrAn � qBAn

qBAn
: ð33Þ

5.3.2 Meaning of d

The numerical values of l
iso

in Tables 3 and 4 lead,

according to relation (23), to the following values for d :

d ¼ 0:092 cm for the R1-sample;
d ¼ 0:080 cm for the R3-sample:

�
ð34Þ

As noted at the beginning of Sect. 5.2, using the averaged

diameter for d overestimates the normal and tangential

components of the averaged contact forces and moreover

provides a poor quality index whose order of magnitude is

74%. Alternatively, when we identify l and subsequently

calculate the corresponding d we find a value quarter of the

averaged particles diameter. The correct interpretation of

this result relies on the use of the average in relation (26)

which, as noted after (25) is lower than the average

diameter of particles due to orientational dispersion of the

branch vectors.

5.3.3 Predictive character of the identification procedure

The best distribution is used as a measure to quantify the

predictive character of our identification procedure via the

Gap indexes. As Tables 3 and 4 show clearly the predicted

distributions lead always to quality indexes that are very

closed to the ones of the best distributions.

5.3.4 Improvement due to the use

of the internal variable H

The first non trivial result concerning the internal variable

H and the proposed identification procedure is the fol-

lowing stability property: we found that the identification

Table 3 Quality indexes for the identified and predicted distributions

of the R1–sample

R15 R110 R120 R130

PrIso (%) 7.95 12.26 15.92 15

PrAn (%) 7.90 11.84 15.17 14.66

BAn (%) 7.57 10.95 14.41 13.85

Gap1 (%) 5.02 11.96 10.48 8.30

Gap2 (%) 4.36 8.13 5.27 5.83

Table 4 Quality indexes for the identified and predicted distributions

of the R3-sample

R310 R320 R330 R336 R339

PrIso (%) 13.46 14.80 13.41 13.27 11.08

PrAn (%) 12.52 14.16 13.12 13.24 11.31

BAn (%) 11.76 13.30 12.40 12.70 10.80

Gap1 (%) 14.46 11.28 8.40 4.49 2.59

Gap2 (%) 6.46 6.47 5.81 4.25 4.72

Table 2 Values of the identified parameters of the theoretical

distribution

R1-sample R3-sample

l
iso

(cm) 0.263 0.247

a2
iso (cm) -0.058 -0.031

a3
an (cm-1) 1.565 0.165

a4
an (cm-1) -0.224 -0.049

a5
an (cm-1) 1.507 -0.086

a6
an (cm-1) -0.625 0.145

The most isotropic configuration and the most anisotropic one were

defined using the distance to the isotropic line as explained in Step 1

of the identification procedure
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of f ðR;H; nÞ generally exhibits better quality indexes than

the identification of f ðR; nÞ: This is not obvious a priori

since improving the quality of a given configuration using

the anisotropic part of the representation formula could

have increased the error for other configurations.

It should be noted that the reference for any comparison

are the quality indexes obtained with the best distributions.

Indeed, these distributions allow to quantify the improve-

ment due to the use of the internal variable H. As shown in

Figs. 5 and 6 the improvement due to the use of the internal

variable H can reach 50% for the most anisotropic con-

figurations. In fact, more anisotropic configuration, higher

improvement. Likewise, more isotropic configuration,

nearest the quality indexes qPrIso, qPrAn, and qBAn. More-

over, by comparaison between numerical values of Gap1

and Gap2 in Tables 3 and 4 one may note that using the

anisotropic part in the representation formula not only

improves the overall quality for (almost) all configurations

considered, but also gives a more uniform relative distance

between the predicted distribution and the best one. This is

the consequence of the identification procedure based on

most isotropic and most anisotropic configurations.

A natural question concerns the quality indexes qBAn

which, as shown in Tables 3 and 4, are not better than 7.57

and 10.80% for the R1-sample and the R3-sample,

respectively. This probably relies on the fact that the nor-

mal and the tangential components of contact forces are not

of the same order of magnitude while they have to be fitted

both by the same representation formula. The best quality

obtained is probably limited by the norm of the difference

between the two components; this point should be inves-

tigated further. A possible solution to overcome the

differences in the orders of magnitude is to put a suitable

weight on the tangential component in order to obtain

normalized orders of magnitude for both normal and tan-

gential components, but a choice of a physically

meaningful weight is still an open problem. Related to this,

we underline the choice of the graphical representation for

the distributions: while Figs. 7 and 8 are easy to interpret in

terms of quality of the distributions, one must be more

careful when interpreting Fig. 9 which represents the same

data, from R310 sample. All these pictures represent theo-

retical f and experimental values (both weighted by p(h)) of

normal and tangential contact forces distributions in dif-

ferent configurations. Visually, in Fig. 9 the continuous

line seems closer to the numerical values (points) than the

dashed line. However, by inspection in Table 4 the quality

index of the latter is better than the quality index of the

former.

7

8

9
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11

12

13

14

15

16
(%)

Fig. 5 Evolution of the quality indexes during the deformation

process of the R1-sample: qPrIso (line with circles), qPrAn (line with
squares), qBAn (line with triangles)
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Fig. 6 Evolution of the quality indexes during the deformation

process of the R3-sample: qPrIso (line with circles), qPrAn (line with
squares), qBAn (line with triangles)
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Fig. 7 Theoretical and experimental normal contact forces distribu-

tions for the configuration R310 with respect to h, the orientation of

the unit normal vector at the contact. The points represent the

experimental data, the continuous line represents the theoretical

distribution gn
iso, and the dashed line represents the theoretical

distribution gn
iso + hn

an. The distribution involving all the parameters

seems better than the one involving just the isotropic parameters
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6 Conclusions and open questions

In this paper, we investigate the role of the branch tensor

H ¼ hl� li as a possible candidate for an internal variable

able to account for the anisotropic character of the

microstructure in a granular sample containing elongated

particles. The branch tensor is a natural candidate because:

(i) it contains nonlocal information about the relative

positions between particles; (ii) it is used in the homoge-

nization operator (Weber relation) and (iii) it is included in

the localization operator in some simple cases (classical

discrete homogenization) when explicit localization for-

mulæ are available.

Introduction of a supplemental internal variable in the

localization operator leads to a more complex formula for

localization operator and the need for a new identification

procedure. We propose an identification procedure which

dissociate the isotropic and the anisotropic parts of the

localization operator. The continuum limit of the discrete

Weber relation (after rearrangement) introduces naturally a

characteristic length, above denoted l; and previously

related to the averaged particles diameter. We choose to

regard the characteristic length as a supplemental material

parameter associated to the isotropic part. This point of

view and the proposed identification procedure lead to a

localization formula having the following properties:

• It gives a predictive result for the localization operator,

i.e., based on two states along the deformation process

the procedure is able to accurately predict for a given

macroscopic stress and granular texture H the orienta-

tional distribution of contact forces.

• It improves the isotropic localization operator for all

states along the deformation process, including the

anisotropic part identified on the most anisotropic state.

• It improves drastically, from 74 to 15%, the quality of

the localization operator using l as a material parameter.

Despite a constant improvement of the quality of the

localization operator, which as expected, is more significant

for strong anisotropic states, the overall improvement is

penalized by the different orders of magnitude between the

normal and tangential components of the contact forces.
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Appendix. Technical details of the result in (12)

This result is obtained in three steps using a classical

representation result for isotropic functions due to Wang

[15].

(a) General form for f

Using the general result in [15] we find that the general

form of an isotropic function is a linear combination of

vector-valued invariants below

n; Rn; Hn; RHn; HRn; R2n; H2n ð35Þ

with coefficients depending on the following combinations

0 0.5 1 1.5 2 2.5 3

- 1000

- 500

0

500

1000

Fig. 8 Theoretical and experimental tangential contact forces distri-

butions for the configuration R310 with respect to h. The points

represent the experimental data, the continuous line represents the

theoretical distribution gt
iso, and the dashed line represents the

theoretical distribution gt
iso + ht

an. The distribution involving all the

parameters seems worse than the one involving just the isotropic

parameters. It should be noted that the quality of a given analytic

relation is defined in (22) in terms of both approximations of normal

and tangential components, which cannot be dissociated
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Fig. 9 Shapes of the theoretical distributions for the configuration

R310: numerical simulation results (f n
exp,f t

exp) (points), (gn
iso,gt

iso)

(continuous line), and (gn
iso + hn

an,gt
iso + ht

an) (dashed line). The latter

theoretical distribution exhibits better quality index than the former
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trðHÞ; n � Rn; n �Hn; trðRÞ; trðHRÞ; Rn �Hn

trðR2Þ; trðR3Þ; trðH2Þ; trðH3Þ; trðH2RÞ;
trðHR2Þ; trðH2R2Þ; n � R2n; n �H2n:

ð36Þ

By inspection in (36) only the first line contains terms at

most linear in R and H. Moreover, products between

scalar-valued and vector-valued invariants lead to a general

form for f as

f ðR;H; nÞ ¼
X19

i¼1

aif iðR;H; nÞ ð37Þ

where ai [ R and the list of vector-valued invariants fi is

given by:

f 1 ¼ n; f 10 ¼ Hn;

f 2 ¼ trðRÞn; f 11 ¼ trðRÞHn;

f 3 ¼ trðRÞtrðHÞn; f 12 ¼ ðn � RnÞHn;

f 4 ¼ trðRÞðn �HnÞn; f 13 ¼ Rn;

f 5 ¼ ðn � RnÞn; f 14 ¼ trðHÞRn;

f 6 ¼ trðHÞðn � RnÞn; f 15 ¼ ðn �HnÞRn;

f 7 ¼ ðn � RnÞðn �HnÞn; f 16 ¼ RHn;

f 8 ¼ trðRHÞn; f 17 ¼ HRn;

f 9 ¼ ðHn � RnÞn; f 18 ¼ trðHÞn;
f 19 ¼ ðHn � nÞn:

ð38Þ

(b) Restrictions due to consistency relation

In (37) the ai are restricted by the consistency condition

(8); identification for symmetric part gives

a1 ¼ 0;

a5 ¼ �4a2

a9 ¼ �4a8 �
1

2
a7 � a6 � a4 � 4a3;

a12 ¼ �4a11 �
1

2
a7 � a6 � 3a4 � 4a3;

a13 ¼ 1þ 2a2;

a15 ¼ �4a14 � 4a3 � a4 � 3a6 �
1

2
a7;

a17 ¼ �a16 þ 2a14 þ 2a11 þ 2a8 þ
1

2
a7

þ 3a6 þ 3a4 þ 8a3;

a18 ¼
1

2
a10;

a19 ¼ �2a10:

ð39Þ

and identification of the skew-symmetric part leads to

a16 ¼ 2a14 þ a8 þ
1

4
a7 þ 2a6 þ a4 þ 4a3: ð40Þ

We shall denote by gi the factors in f of ai. Relations (39)

and (40) reduce the number of coefficients ai to nine, for

i [ I = {2,3,4,6,7,8,10,11,14}.

(c) Linear independence of remaining invariants

Using gi we are lead to

f ¼ Rnþ
X

i2I

aigi: ð41Þ

The following results are straightforward

• If

a2g2 þ a3g3 þ a4g4 þ a6g6 þ a7g7 þ a10g10 ¼ 0

for any R and any H then a2 = a3 = a4 = a6 = a7 =

a10 = 0.

• We have for any R and H:

�g3 þ g4 þ g6 þ g8 ¼ 0; g4 ¼ g11; g6 ¼ g14:

• One can easily check that

I2 :¼ g2 ¼ 2Rnþ ðtrRÞn� 4ðn � ðRnÞÞn;

and

g10 ¼ 2Hnþ ðtrHÞn� 4ðn � ðHnÞÞn;

while the four remaining invariants can be combined to

give

I3 :¼ g3 � 4g4; I4 :¼ g3 � 4g6;

I5 :¼ g3 � 8g7; I6 :¼ g3 � 16g7;

thus leading finally to (12)–(17).
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