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Abstract In this paper, a solution is presented for evo-

lution of probability density function (PDF) of elastic–

plastic stress–strain relationship for material models with

uncertain parameters. Developments in this paper are based

on already derived general formulation presented in the

companion paper. The solution presented is then special-

ized to a specific Drucker–Prager elastic–plastic material

model. Three numerical problems are used to illustrate the

developed solution. The stress–strain response (1D) is

given as a PDF of stress as a function of strain. The pre-

sentation of the stress–strain response through the PDF

differs significantly from the traditional presentation of

such results, which are represented by a single, unique

curve in stress–strain space. In addition to that the

numerical solutions are verified against closed form solu-

tions where available (elastic). In cases where the closed

form solution does not exist (elastic–plastic), Monte Carlo

simulations are used for verification.

Keywords Elasto-plasticity � Theory of probability

1 Introduction

An elastic–plastic constitutive law can be represented by a

set of linear or non-linear ordinary differential equations

(ODEs), which relate rate (increments) of stress with the

rate of strain through linear or nonlinear material modulus:

drijðtÞ
dt
¼ Dep

ijkl

d�klðtÞ
dt

ð1Þ

where Dijkl
ep could be linear or a non-linear function of

stresses, strains and internal variables. If either the

material modulus or the forcing term (strain rate)

becomes random, this set of linear or nonlinear ODEs

becomes a set of linear or non-linear stochastic differen-

tial equations (SDEs). The uncertainty associated with the

coefficient (stiffness) term is generally attributed to the

inherent variability of the material. Geomaterials are

particularly notorious for their variability, sampling and

testing errors and in general, uncertainty in their proper-

ties. The uncertainty in the forcing term arises when the

material is subjected to uncertain loads (usually dynamic)

like wind, waves or earthquakes. Due to randomness in

the parameter and/or forcing term the response variable of

the elastic–plastic constitutive rate equation (stress) will

then be a random process. There exist several methods to

estimate the probabilistic characteristics of the response

variable [2].

For the case where the material modulus is linear and

deterministic and the forcing is uncertain (Gaussian), the

response is known to be Gaussian and can be estimated by

standard methods [2]. General linear SDE with random

forcing can be solved by cumulant expansion method [10].

One possible way to solve non-linear SDE with random

forcing is to write its equivalent Fokker–Planck–Kol-

mogorov (FPK) form. The advantage of writing the FPK

form is that it is linear and deterministic even though the

original equation is non-linear and stochastic. The general

solution method for FPK equation can be found in any

standard textbook [2, 8]. A solution scheme for FPK

equation with application to structural reliability was pre-

sented by Langtangen [5].
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For the particular case where the forcing is determin-

istic and the material linear elastic (but still uncertain),

Eq. 1 simplifies to a linear set of algebraic equations of

the form,

rij ¼ Del
ijkl�kl ð2Þ

where Dijkl
el is the elastic stochastic moduli tensor and hence

the statistics of the response variable (stress) can be easily

obtained by transformation method of random variable. For

general linear SDEs with random coefficients cumulant

expansion method could be used [10].

While the solution for the stochastic linear elastic stress–

strain problem is readily available, the nonlinear (elastic–

plastic) stochastic problem presents itself as much harder to

solve. This problems involves finding the solution for a

non-linear SDEs with random coefficients. Fortunately

such solution was recently developed by Kavvas [4]. The

developed solution is presented as a generic Eulerian–

Lagrangian form of the Fokker–Planck–Kolmogorov

equation. That probabilistic solution is second order exact

for any stochastic nonlinear ODE or PDE with random

coefficients and random forcing.

The probabilistic solution developed by Kavvas [4] was

used in the companion paper by Jeremić et al. [3] to

develop the probability density function (PDF) of a general

local-average form of elastic–plastic constitutive rate

equation. This Eulerian–Lagrangian FPK equation was

then specialized to the particular cases of point-location

scale linear elastic and Drucker–Prager associative linear

hardening elastic–plastic constitutive rate equations to

show the applicability of the general formulation. In this

paper the solution process of those particular FPK equa-

tions will be presented.

2 Fokker–Planck–Kolmogorov equation for

probabilistic elasticity and elasto-plasticity in 1D

In the companion paper, Jeremić et al. [3] applied the

Eulerian–Lagrangian form of Fokker–Planck–Kolmogorov

(FPK) equation to the description of the probabilistic

behavior of elastic and elastic–plastic (Drucker–Prager

associative linear hardening) 1D constitutive equations

with random material parameters and random strain rate.

By focusing attention on the randomness of material

properties only [i.e., assuming the forcing function (strain

rate) as deterministic], partial differential equation (PDE)

describing the evolution of probability density function

(PDF) of stress can be simplified. In particular, for 1D case,

and for linear elastic material (but still with probabilistic

material properties, in this case shear modulus G) one can

write the following PDE

oPðr12ðtÞÞ
ot

¼� G
d�12

dt

� �
oPðr12ðtÞÞ

or12

þ
Z t

0

dsCov0 G
d�12

dt
; G

d�12

dt

� �� �
o2Pðr12ðtÞÞ

or2
12

ð3Þ

Similarly, for elastic–plastic state, again by neglecting

the randomness in strain rate, one can write the PDE for

evolution of PDF of stress in 1D as

oPðr12ðtÞÞ
ot

¼ � GepðtÞð Þ d�12

dt

� �
oPðr12ðtÞÞ

or12

þ
Z t

0

ds Cov0 GepðtÞ d�12

dt
; Gepðt � sÞ d�12

dt

� �� �

� o2Pðr12ðtÞÞ
or2

12

ð4Þ

where Gep(a) is the probabilistic elastic–plastic tangent

stiffness (given in Jeremić et al. [3])

GepðaÞ ¼ G� G2

Gþ 9Ka2 þ 1ffiffi
3
p I1ðaÞa0

ð5Þ

where in (5), a assumes values t or t – s. With appropriate

initial and boundary conditions as described in Jeremić

et al. [3], one can solve Eqs. (3) and (4) for evolution of

PDF of shear stress with shear strain.

3 Example problem statements

The applicability of proposed FPK equations [Eqs. (3) and

(4)] in describing probabilistic elasto-plastic behavior, is

verified using the following three example problems.

Problem I Assume the material is linear elastic, proba-

bilistic, with probabilistic shear modulus (G) given by a

normal distribution at a point-location scale with mean of

2.5 MPa and standard deviation of 0.707 MPa. The aim is

to calculated the evolution of PDF of shear stress (r12) with

shear strain (e12) for a displacement-controlled test with

deterministic shear strain increment. The other parameters

are considered deterministic and are as follows: Poisson’s

ratio m = 0.2, and confining pressure I1 = 0.03 MPa.

Problem II Assume elastic–plastic material model, com-

posed of linear elastic component and Drucker–Prager

associative isotropic linear hardening elastic–plastic com-

ponent. The probabilistic shear modulus (G) is given through

a normal distribution at a point-location scale with mean of

2.5 MPa and standard deviation of 0.707 MPa. The aim is to

calculate the evolution of the PDF of shear stress (r12) with

shear strain (e12) for a displacement-controlled test with

deterministic shear strain increment. The other parameters
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are considered deterministic and are as follows: Poisson’s

ratio m = 0.2, confining pressure I1 = 0.03 MPa, yield

parameter1 a = 0.071, plastic slope2 a0 = 5.5.

Problem III Assume elastic–plastic material model, with

linear elastic component and Drucker–Prager associative

isotropic linear hardening elastic–plastic component. The

probabilistic yield parameter (a) is given through a normal

distribution at a point-location scale with mean of 0.52 and

standard deviation of 0.1. The aim is to calculate the

evolution of the PDF of shear stress (r12) with shear strain

(e12) for a displacement-controlled test with deterministic

shear strain increment. The other parameters are considered

deterministic and are as follows: shear modulus G = 2.5

MPa, Poisson’s ratio m = 0.2, confining pressure I1 =

0.03 MPa, and the plastic slope a0 = 5.5.

The above three problems will be solved using the

proposed FPK equation approach. In addition to that, the

solution will verified using either variable transformation

method, for linear elastic case or repetitive Monte Carlo

type simulations for elastic–plastic case.

4 Numerical scheme for solving Fokker–Planck–

Kolmogorov equation

For probabilistic elastic and elastic–plastic constitutive rate

equations, the PDEs [Eqs. (3) and (4)] which describe the

evolution of probability densities of r12 have the following

general form:

oP

ot
¼ �Nð1Þ

oP

or12

þ Nð2Þ
o2P

or2
12

ð6Þ

with an appropriate initial condition, which depends on the

type of problem, and boundary conditions in the form

fð�1; tÞ ¼ fð1; tÞ ¼ 0 ð7Þ

where N(1) and N(2) are called advection and diffusion

coefficients, respectively. The above PDE system [Eqs. (6)

and (7) with appropriate initial condition] were solved

numerically by method of lines Wolfram [11] using com-

mercially available software Mathematica Wolfram

Research Inc [12]. The stress (state) variable r12 theoreti-

cally spans space from –? to +?. However, for

simulation (and practical) purposes, this theoretical domain

is reduced to between –0.1 and +0.1 MPa. This reduction is

based on the material properties of the example problems

and span the practical range of shear stress, r12. The

Fokker–Planck–Kolmogorov PDE was semi-discretized

(Fig. 1) in stress (r12) domain by finite difference tech-

nique to obtain a set of linear simultaneous ODE systems.

This set of linear simultaneous ODEs is solved using

central difference technique. By referring to Fig. 1 a semi-

discretized form of Eq. (6) can be written at any interme-

diate node i as,

oPi

ot
¼ Pi�1

Nð1Þ
2Dr12

þ
Nð2Þ

Dr2
12

� 	
� Pi

2Nð2Þ

Dr2
12

� 	

þ Piþ1 �
Nð1Þ

2Dr12

þ
Nð2Þ

Dr2
12

� 	
: ð8Þ

Previous discretized system of equations forms an initial

value problem in the time dimension. By using forward

difference technique, one can introduce the boundary

condition at the left boundary (node 1 in Fig. 1) as,

Nð1ÞP1 � Nð2Þ
P2 � P1

Dr12

¼ 0 ð9Þ

or, after rearranging,

P1 ¼ P2

Nð2Þ=Dr12

Nð1Þ þ Nð2Þ=Dr12

� 	
¼ 0: ð10Þ

Similarly, using backward difference technique, one can

introduce the boundary condition at the right boundary

(node n in Fig. 1) as,

Nð1ÞPn � Nð2Þ
Pn � Pn�1

Dr12

¼ 0 ð11Þ

which, after rearranging becomes

Pn ¼ Pn�1

Nð2Þ=Dr12

Nð2Þ=Dr12 � Nð1Þ

� 	
¼ 0: ð12Þ

The initial condition depends on the type of the problem

and it could be deterministic or random. For elastic

constitutive rate equation with random shear modulus

(Problem I) and for pre-yield elastic–plastic linear

hardening constitutive rate equation with random shear

modulus (elastic part of Problem II) the initial condition is

deterministic. It will, therefore, be best represented as

Dirac Delta function of the form,

Pðr12Þ ¼ Dðr12Þ: ð13Þ

For simulation purpose the Dirac delta initial condition

was approximated with a Gaussian function. That is, for

Problem I, the initial condition was approximated with a

Gaussian function with mean of 0 and standard deviation of

0.00001 MPa as shown in Fig. 2.

For post-yield, probabilistic elastic–plastic behavior

(plastic part of Problem II), the initial condition is random

1 The yield parameter a is an internal variable and is a function of the

friction angle / given by a ¼ 2 sin/=ð
ffiffiffi
3
p
ð3� sin/ÞÞ (e.g., Chen and

Han [1]).
2 The plastic slope a0 is a rate of change of friction angle governing

linear hardening.
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and it corresponds to the probability density function of r12

just prior to yielding, that is obtained from elastic part of

Problem II. For Problem III, the pre-yield elastic part is

deterministic but initial condition for the post-yield elastic–

plastic response is random and corresponds to the assumed

distribution in yield strength.

5 Determination of coefficients for Fokker–Planck–

Kolmogorov equation

To solve Problems I, II, and III, the advection and diffusion

coefficients N(1) and N(2) must be determined for all three

problems. For sake of simplicity, a constant strain rate is

assumed and hence, terms containing de12/dt in coefficients

of Eqs. (3) and (4) can be substituted by a constant

numerical value for the entire simulation of the evolution

of PDF. It should be noted that the FPK equation [Eqs. (3)

or (4)] describes the evolution of PDFs of stress with time,

while, similarly, strain rate describes the evolution of strain

with time. Combining the two, the evolution of PDF of

stress with strain can be obtained. Time has been brought

in this simulation as an intermediate dimension to help in

solution process, and hence, the numerical value of strain

rate could be any arbitrary value, which will cancel out

once the time evolution of PDF of stress is converted to

strain evolution of PDF of stress. For simulation of all the

three example problems, an arbitrary value of strain rate of

de12/dt = 0.054 s–1 is assumed.

It should also be noted that since the material properties

are assumed as random variables at a point-location scale,

the covariance terms appearing within the advection and

diffusion coefficients become variances of random vari-

ables. For estimations of means and variances of functions

of random variables (e.g., for Problems II and III) from

basic random variables, commercially available statistical

software mathStatica Rose and Smith [9] was used.

Substituting the values of deterministic and random

material properties and the strain rate, coefficients N(1) and

N(2) of the FPK equations can be obtained for all problems:

5.1 Problem I

Nð1Þ ¼ G
d�12

d
t

� �

¼ 2
d�12

dt
Gh i

¼ 0:27 MPa/s

Nð2Þ ¼
Z t

0

dsVar G
d�12

dt

� �

¼ 4t
d�12

dt

� 	2

Var½G�

¼ 0:0058t ðMPa/sÞ2

Fig. 1 Stress domain discretization of Fokker–Planck–Kolmogorov PDE

0.0005 0.001 0.0015 0.002
Stress MPa

10000

20000

30000

40000

Density StressProb

Fig. 2 Approximation of Dirac delta function, used as an initial

condition for Problem I
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5.2 Problem II

For pre-yield linear elastic case, the coefficients N(1) and

N(2) will be the same as those for Problem I. For post-yield

elastic–plastic case the coefficients are

Nð1Þ ¼ G� G2

Gþ 9Ka2 þ 1ffiffi
3
p I1a0

 !
d�12

dt

* +

¼ d�12

dt
G� G2

Gþ 9Ka2 þ 1ffiffi
3
p I1a0

* +

¼ 0:147 MPa/s

Nð2Þ ¼ t
d�12

dt

� 	2

Var G� G2

Gþ 9Ka2 þ 1ffiffi
3
p I1a0

" #

¼ 0:00074t ðMPa/sÞ2

5.3 Problem III

For post-yield elastic–plastic simulation the coefficients

N(1) and N(2) are

Nð1Þ ¼ G� G2

Gþ 9Ka2 þ 1ffiffi
3
p I1a0

 !
d�12

dt

* +

¼ d�12

dt
G� G2

Gþ 9Ka2 þ 1ffiffi
3
p I1a0

* +

¼ 0:2365 MPa/s

Nð2Þ ¼ t
d�12

dt

� 	2

Var G� G2

Gþ 9Ka2 þ 1ffiffi
3
p I1a0

" #

¼ 0:0001t ðMPa/sÞ2

It should be noted that for Problem III, since the shear

modulus is deterministic, the pre-yield elastic case is

deterministic.

6 Results and verifications of example problems

In this section results are presented for elastic and elastic–

plastic probabilistic 1D problem. The results are obtained

by using FPK equation approach described in previous

sections and in the companion paper (Jeremić et al. [3]). In

addition to that, the Monte Carlo based verification of

developed solutions (results) is presented. The effort to

verify developed solutions (that are based on FPK

approach) plays a crucial role in presented development of

probabilistic elasto-plasticity as there are no previously

published solutions which could have been used for veri-

fication. In addition to that, verification and validation

efforts should always be included in any modeling and

simulations work (Oberkampf et al. [7]).

For linear elastic constitutive rate equations (Problem I

and pre-yield case of Problem II) the verification is per-

formed by comparing solutions obtained through the use of

FPK equation approach with high accuracy (exact) solu-

tion, using a transformation method of random variables

(Montgomery and Runger [6]). This method is applicable

as for rate-independent linear elastic case the 1D shear

constitutive equation simplify to a linear algebraic equation

of the form,

r12 ¼ G�12 ¼ uðG; �12Þ ð14Þ

Using the definition of strain rate, the above equation can

be written in terms of time t as,

r12 ¼ Gð0:054tÞ ¼ vðG; tÞ ð15Þ

where 0.054 s–1 is the arbitrary strain rate assumed for this

example problem. According to the transformation method

of random variables (Montgomery and Runger [6]), and,

given the continuous random variable (shear modulus) G,

with PDF g(G) and Eqs. (14) or (15) as one-to-one

transformations between the values of random variables of

G and r12, one can obtain the PDF of shear stress (r12),

P(r12) as,

Pðr12Þ ¼ gðu�1ðr12; �12ÞÞ Jj j ð16Þ

which will allow for predicting the evolution of PDF of r12

with e12 or,

Pðr12Þ ¼ gðv�1ðr12; tÞÞ Jj j ð17Þ

Equation (17) will predict the evolution of PDF of r12

with t. In Eqs. (16) and (17), functions G = u–1(r12, e12) or

G = u–1(r12, t) are the inverse of functions r12 = u(G, e12)

or r12 = v(G, t) respectively and J = du–1(r12, e12)/dr12

and J = dv–1(r12, t)/dr12 are their respective Jacobians of

transformations.

For non-linear elastic–plastic constitutive rate equations

(post-yield cases of Problems II and III) the verification is

done using Monte Carlo simulation technique by generat-

ing sample data for material properties from standard

normal distribution and by repeating solution of the

deterministic elastic–plastic constitutive rate equation for

each data generated above. The probabilistic characteristics

of resulting random stress variable for each time (or strain)

step are then easily computed. A relatively large number of

data points (1,000,000) were generated for each material

constant random variable for this simulation purpose.
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6.1 Problem I

The evolution of PDF of shear stress with time and shear

strain is shown in Figs. 3 and 4. Presented PDFs are for

linear elastic material with random shear modulus, and

were obtained using FPE approach (Figs. 3, 4: ElasticPDF)

and transformation method (Fig. 4).

The contours of evolution of PDFs are compared in

Fig. 5. Similarly, comparison of the evolution of mean and

standard deviations are shown in Fig. 6. It can be seen from

the comparison figure that even though the FPK approach

predicted the mean behavior exactly, it slightly over-pre-

dicted the standard deviation. This is because of the

approximation used to represent the Dirac delta function,

which was used as the initial condition for the FPK. One

may note that at e12 = 0, the probability of shear stress r12

should theoretically be 1, i.e., all the probability mass

should theoretically be concentrated at r12 = 0. As such, it

would be best described by the Dirac delta function.

However, for numerical simulation of FPK, Dirac delta

function as initial condition was approximated with a

Gaussian function of mean zero and standard deviation of

0.00001 MPa, as shown in Fig. 2. This error in the initial

condition advected and diffused into the domain with the

simulation of the evolution process. This error could be

minimized by better approximating the Dirac delta initial

condition (but at higher computational cost). The effect of

approximating the initial condition of the PDF of shear

stress at e12 = 0.0426% is shown in Fig. 7. In this figure the

actual PDF at e12 = 0.0426% obtained using the transfor-

mation method was compared with the PDFs at

e12 = 0.0426% obtained using the FPK approach with three

different approximate initial conditions—all having zero

mean but standard deviations of 0.01, 0.005 and

0.00001 MPa.

One may also note that finer approximation of initial

condition necessitates finer discretization of stress domain

close to (or at) r12 = 0. The finite difference discretization

scheme adopted here uses the same fine discretization

uniformly all throughout the entire domain. It is noted that

fine, uniform discretization is not needed (and is quite

expensive) in later stages of calculation of evolution of

PDF, but is kept the same for simplicity sake. In presented

examples, to properly capture the approximate initial

condition (as shown in Fig. 2), the stress domain between –

0.1 and +0.1 MPa was discretized with a uniform step size

of 0.000005 MPa and hence there is a total of 40,000

nodes. This not only requires large computational effort but

is also very memory sensitive. An adaptive discretization

technique will be a much better approach to solving this

problem. Current work is going on in formulating an

adaptive algorithm for the solution of this type of problem.

6.2 Problem II

The solution to this problem involves the solving two FPK

equations, one corresponding to the pre-yield elastic part

and the other corresponding to the post-yield elastic–plastic

part. The elastic part of this problem is identical to Problem

I. The initial condition for the post-yield elastic–plastic part

of the problem is random and is shown in Fig. 8. It may be

noted that this initial condition corresponds to the PDF of

shear stress [P(r12)] at yield obtained from the solution of

FPK equation of the pre-yield elastic part.

A view of the surface of evolution of the PDF of shear

stress versus shear strain (time) is shown in Fig. 9. Another

view to the PDF of stress–strain surface is shown in

Fig. 10. It is noted that the yielding of this material
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occurred at t = 0.00789 s (which is equivalent to

e12 = 0.0426%).

The evolution contours for PDF of shear stress versus

strain (time) along with the mean and standard deviations

are shown in Fig. 11. It can be seen from that figure that, as

expected, the evolution of mean of shear stress changes

slope after the material yielded. Another interesting aspect

to note is the relative slope of the evolution of standard

deviation with respect to the evolution of mean. The rela-

tive slope in the pre-yield elastic zone increases at a higher

rate during the evolution process when compared with that

in the post-yield elastic–plastic zone. In other words, in the

evolution process the post-yield elastic–plastic constitutive

rate equation did not amplify the initial uncertainty as

much as the pre-yield elastic constitutive rate equation did.

This can be easily viewed from Fig. 12 where the post-

yield elastic–plastic evolution of PDF of shear stress was

compared with fictitious extension of elastic evolution of

PDF. Comparing the PDF of shear stress at e12 = 0.0804%

(which is equivalent to t = 0.01489 s), one can conclude

that the variance of predicted elastic–plastic shear stress is

much smaller (i.e., prediction is less uncertain) as com-

pared to the same if the material were modeled as

completely elastic.

Figure 13 compares the evolution of means and standard

deviations of predicted shear stress obtained using FPK

equation approach and transformation method (pre-yield

behavior)/Monte Carlo approach (post-yield behavior).

Although in the pre-yield response the FPK equation

approach over-predicted the evolution of standard devia-

tions because of reasons discussed earlier, in the post-yield

response it matched closely at regions further from the

yielding region. The somewhat larger difference between

FPK equation solution and the verification one (Monte

Carlo solution) close to the yielding region is attributed to

the fact that the initial condition for solution of post-yield

elastic–plastic FPK equation was obtained from the solu-

tion of pre-yield elastic FPK equation. One way to better

predict the overall probabilistic elastic–plastic behavior,

would probably be to obtain the pre-yield elastic behavior

through the transformation method and then use the FPK

approach to predict post-yield elastic–plastic behavior.

6.3 Problem III

In this problem, the pre-yield linear elastic part is deter-

ministic, however, at yield there is a distribution (with very

small standard deviation) in shear stress due to assumed

distribution in yield parameter a. The distribution in shear

stress corresponds to the PDF of the random variable aI1

(first invariant of the stress tensor or mean confining stress)
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and is assumed to be deterministic. This PDF of shear

stress at yield was assumed to be the initial condition for

the solution of post-yield elastic–plastic FPK equation and

is shown in Fig. 14.

The evolution of PDF for shear stress versus strain

(time) is shown in Fig. 15. In addition to that the contours

(including mean and standard deviation) of the evolution of

PDF for shear stress versus strain (time) are shown in

Fig. 16.

Looking at Fig. 16 and comparing the slopes of evolu-

tion of mean and standard deviation, one can conclude that

the elastic–plastic evolution process did not amplify the

initial uncertainty in yield strength significantly. The initial

(at yield) probability density function of shear stress just

advected into the domain during the elastic–plastic evolu-

tion process without diffusing much. Figure 15 clearly

shows this advection process. The evolution of mean and

standard deviations of shear stress obtained from the FPK

equation approach was compared with those obtained from

the Monte Carlo simulation and is shown in Fig. 17.

7 Conclusions

In this paper a solution was presented for the evolution of

the probability density function (PDF) of elastic–plastic

stress–strain relationship, in 1D. The solution was based on

expressions developed in a companion paper and special-

ized to the Drucker–Prager elasto–plastic material model

with linear isotropic hardening.
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Three numerical problems were used to illustrate the

developed solution and discuss the general behavior of

elastic–plastic materials which exhibit uncertainty in

material parameters. The solutions to numerical problems

were verified against closed, analytical forms, where

available, while Monte Carlo simulations were used for all

other verifications.

The approach to solving probabilistic elastic–plastic

problems presented here is quite unique and shows great

promise in dealing with general 3D probabilistic constitu-

tive problems. Subsequently, the developed methodology is

to be used in solving general, probabilistic elastic–plastic

boundary value problems using the finite element method.

Current work is progressing in that direction.
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