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Abstract This paper presents a numerical technique for

the analysis of the cone penetration test by means of the

commercial finite element code ABAQUS. The von Mises

yield criterion with its associated flow rule is assumed to

model the plastic behaviour of elastoplastic undrained

clays. An explicit finite element scheme is used to effi-

ciently perform a large number of loading increments and

to simplify the treatment of contact. An Arbitrary

Langrangian–Eulerian (ALE) scheme is adopted to preserve

the quality of mesh throughout the numerical simulation.

A volumetric weighting algorithm adjusts the relative

positions of nodes after each loading increment. This

prevents mesh over distortion and allows the simulation to

run continuously. The variation of the cone resistance is

examined in relation to various parameters such as the in

situ stress state, shaft and cone face roughness, and the

material strength when steady state conditions have been

reached. The trends of these variations are highlighted and

compared with those found by other researchers. This

technique can be extended to analyse the plastic behaviour

of elastoplastic sands often modelled using either the

Drucker–Prager yield criterion or a critical state model.

Keywords Cone penetration Æ Finite element analysis Æ
ABAQUS Æ Arbitrary Langrangian–Eulerian (ALE)

scheme

1. Introduction

Over the last few decades, cone penetration testing (with or

without pore pressure measurement, i.e. CPTU or CPT,

respectively) has been established as the most widely

used in situ testing device for obtaining soil profiles. The

popularity of this in situ testing device has resulted in a

great demand for the effective assessment of correlations

between measured cone quantities and engineering

properties of soils. Recent reviews presented by Yu and

Mitchell [30] and Lunne et al. [19] suggest that despite

much research, rigorous solutions to the deep penetration

problem in soils are still unavailable. Due to the impor-

tance of deep penetration in foundation engineering and the

increasing reliance on in situ tests for soil profiling in

offshore engineering, the effective analysis of deep cone

or pile penetration in soils still represents a significant

challenge to the geotechnical community.

It has long been realised that the interpretation of in situ

tests is beset with difficulties especially if the results are

needed to assess the stress-strain and strength characteris-

tics of soils [27, 29]. These difficulties arise because of the

complicated soil deformation resulting from the punching

of the penetrometer. Many in situ tests, including the CPT/

CPTU represent complex boundary value problems ren-

dering their theoretical interpretation difficult. Given that

the interpretation of an in situ test requires the analysis of a

corresponding boundary value problem, some simplifying

assumptions have to be made. Hence, most existing cone

resistance correlations have been obtained by using one (or

more) of the following approaches: Bearing Capacity

Theory, Cavity Expansion Theory, Steady-State Deforma-

tion Theory, Incremental Finite Element Analysis or

Calibration Chamber Testing.
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The finite element (FE) method has played an

important role in the analyses of geotechnical problems

since its first application to geotechnical engineering in

the analysis of embankments. The finite difference and

the finite element methods can provide a full numerical

analysis where all the numerical requirements including

realistic constitutive models and boundary conditions are

satisfied, albeit in a numerically approximate manner.

However, the application of a full finite element analysis

is not always straightforward and at present, the simu-

lation of large deformations still remains a challenging

issue. In geotechnical engineering, there are two FE

approaches dealing with problems of large deformation,

namely Lagrangian and Eulerian formulations. Both of

these methods are based on the fundamental theories of

continuum mechanics and try to take into account the

effects of displacement, strain, material rotation and the

consequent changes in loading condition. Either formu-

lation is theoretically capable of including the various

effects of large strain deformation into its governing

equations. However, practically this is difficult to achieve

and therefore, no general and rigorous formulation is

currently available.

A large strain formulation is essential because, as

pointed out by Houlsby et al. [12], conventional small

strain finite element analysis (e.g. [8]) is unable to

generate the necessary stress field around the cone

and thus fails to achieve an appropriate cone resistance.

A review by Yu and Mitchell [30] suggested that many

previous large strain, incremental finite-element analyses

have treated the CPT as a collapse load problem (see [5]

for clays and [7] for sand). In these analyses, zero

thickness elements were used to model the frictional

interface between the cone and the soil allowing the

interface roughness to be varied. Van den Berg [24]

noted that when using these models, it was necessary to

decide the new location of boundary nodes after each

loading step and when the roughness of the penetrometer

is modelled, this procedure becomes very complicated

and the robustness of the whole numerical procedure is

not clear.

Sheng et al. [21] presented a finite element analysis of

the cone penetration test in a cohesive soil. Contact

elements capable of large scale sliding along the pene-

trometer surface were used to model the whole penetra-

tion process from the ground surface to a prescribed

depth. The emphasis of their study was on pore pressure

development around the cone at different penetration

speeds.

An alternative approach to a large deformation analysis

is an Eulerian scheme where the element mesh is fixed and

the material flows through the elements [24]. However, this

approach has some mathematical difficulties in the calcu-

lation of material time derivatives.

To avoid frequent remeshing in a large strain finite

element calculation, Van den Berg [24] used an Arbitrary

Lagrangian–Eulerian (ALE) formulation to uncouple nodal

displacements and velocities from material displacements

and velocities. The uncoupling of material and nodal dis-

placements requires the advection of field variables be-

tween the old mesh and the new mesh. One of the first

advection methods able to do this was presented by Hu-

etink [14, 15]. The basic idea was to introduce additional

continuous stress and strain fields by interpolating nodal

stresses and strains. The advective terms were then calcu-

lated as the product of the gradients of these additional field

variables and the displacement increments. However, it

was found that this first order advection scheme diminished

the strain gradients and this implied that the advective

increment disappeared. To overcome this problem, so-

called ‘local’ or ‘global’ smoothing procedures described

by Huetink [15] were introduced. Unfortunately, the use of

these simple smoothing procedures did not always give

stable and accurate solutions.

Hu and Randolph (1998a) presented a technique referred

to as the RITSS (Remeshing and InTerpolation with Small

Strain) model. In this approach, a series of small strain

analysis increments were followed by the complete reme-

shing and interpolation of field quantities (stress and

material properties) between the old mesh and the new

mesh. Hu and Randolph (1998a, b) discussed five ap-

proaches for the advection of the field variables and con-

cluded that the (Modified) Unique Element Method was

most suitable. This has allowed a full, large strain analysis

of the cone penetration test in a simple elastic, perfectly

plastic Tresca material to be simulated and it has been

successfully performed by Lu [18].

This paper presents the full finite element analysis of

the deep penetration of a cone penetrometer into

homogenous, undrained clay. The undrained clay is

modelled using perfect plasticity, the von Mises failure

criterion and an associated flow rule. An ALE analysis is

used and the field variables are transferred between

meshes using a second order advection technique [25].

The advection of momentum is carried out using the Half

Shift Index method [4]. This advection method is

monotonic and consistent.

The presented investigation examines what effects the

rigidity index of the material, the cone and shaft roughness,

and the in situ stress state have on the resistance to pene-

tration. The results are compared with those from other

researchers. Preliminary tests have shown that the proposed

technique can be extended to model frictional-dilatant

materials using the Drucker–Prager failure criterion.
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2. FE analysis for continuous penetration

2.1. Introduction

This section explains the procedures used to simulate the

penetration of a cone penetrometer from the soil surface to

any depth. This is achieved using both the explicit

dynamics procedure and the adaptive meshing tool in the

commercial finite element software ABAQUS.

The explicit dynamics procedure performs a large

number of small time increments efficiently and uses a

central difference time integration rule. The procedure re-

quires no iterations, no tangent stiffness matrix and a

solution to a set of simultaneous equations is not required.

Each increment is relatively inexpensive because lumped

element mass matrices are used. However, the resulting

formulation is only conditionally stable and the increment

size is dictated by the stability limit.

The explicit procedure is ideally suited to analysing high

speed dynamic events but many of the advantages of the

explicit procedure also apply to the analysis of slower

(quasi-static) processes. This is particularly true in cases

where contact dominates a solution and local instabilities

may form as a result.

2.2. Treatment of contact

This section will describe how this simulation establishes

contact and calculates the resulting deformation in the

model.

In ABAQUS, the contact algorithm is based on the

concept of a master surface and a slave surface. The master

surface pushes into the slave surface and contact forces are

generated to prevent nodes penetrating into the master

surface. Contact is established with contact pairs which use

a kinematic contact algorithm that enforces contact con-

straints and conserves momentum.

At the start of each increment, the kinematic state of a

model is advanced into a predicted configuration without

considering the contact conditions. The slave nodes that

penetrate the master surface are then determined and the

depth of each node’s penetration, the mass associated with

it and the time increment are used to calculate the force

necessary to resist the penetration. If this force had been

applied during the increment it would have caused the

slave node to exactly contact the surface.

The resisting force at each slave node is defined using a

hard contact condition (as opposed to a penalty contact

condition). This is a common contact condition where no

pressure is transmitted between the surfaces when the nodes

are not in contact. When the surfaces are in contact, any

contact pressure can be transmitted between them. The

surfaces separate when the contact pressure reduces to zero.

Movement between surfaces in contact is modelled by

a finite sliding algorithm that allows for any arbitrary

motion of the surfaces. In this study, both smooth and

rough conditions are adopted at the contact interface. In

smooth cases, a completely frictionless condition exists at

the contact interface. The rough condition is modelled

with a ‘sticky’ condition existing at the contact interface

until a limiting shear stress is reached and under this

condition, the soil is allowed to slide freely along the

interface. The ‘sticky’ condition is reapplied if the shear

stress at the contact interface falls below the preset limit

value.

A contact search algorithm is used to detect contact. The

algorithm uses both a global search and a local search

procedure to provide a balance between accuracy and

computational speed. A global search is used at the

beginning of each step and a hierarchical global/local

search algorithm is used throughout the step.

A global search determines the nearest master surface

facet for each slave node in a contact pair. A bucket

sorting algorithm is used to minimise the computational

expense of these searches. An example is shown in

Figure 1.

The global search computes the distance from node 50

to all the master surface facets in the same bucket as

node 50. It determines the facet on the master surface

that is closest to node 50, this is the facet of element 10.

Node 100 is the node on this facet that is closest to node

50 and it is designated as the tracked master surface

node. This search is conducted for each slave node by

comparing each node against all of the facets on the

master surface that are in the same bucket. Despite the

bucket-sorting algorithm, global searches are computa-

tionally expensive.

A local search is used to track the motion of surfaces

during the analysis. If Fig. 1 is advanced by one incre-

ment, then a given slave node (node 50 in this case)

searches only the facets that are attached to the tracked

master surface node (i.e. facets 9 and 10). Of these, the

facet which is closest to the slave node is determined.

The node on this facet which is closest to the slave

node is considered the new tracked master surface node

(node 101 in this case, see Fig. 2). If the master surface

node has changed another iteration of the search is per-

formed. This procedure can be understood more clearly

using Fig. 2.

Let us suppose that the translation of the slave surface

shown in Figure 2 occurs over one increment. The first

iteration of the local search finds that of the facets attached

to node 100, the master surface facet on element 10 is still

the closest to the slave node. However, of the nodes

defining facet 10, node 101 is closest to node 50 and

therefore becomes the new tracked master surface node.
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If the tracked master surface node had remained node 100,

then this would be the end of the procedure. However,

because the master surface node has changed, the proce-

dure continues. The second iteration finds the master

surface facet on element 11 and the identity of the tracked

master surface node is found to be node 102. The third and

final iteration finds that the identity of the tracked master

surface node does not change. A local search is less com-

putationally expensive than a global search.

2.3. Adaptive meshing

Adaptive meshing is a tool that makes it possible to

maintain a high quality mesh throughout an analysis, even

when large deformations occur. This is achieved by

allowing the mesh to move independently of the underlying

material. The adaptive meshing technique in ABAQUS

follows the work of Van Leer [25] and combines the fea-

tures of a pure Lagrangian analysis and an Eulerian anal-

ysis. Therefore, it is often referred to as an ALE.

A smoother mesh is created by sweeping iteratively over

the adaptive domain. During each mesh sweep, nodes in

the domain are relocated based on the positions of neigh-

bouring nodes and element centres. A volume smoothing

technique is used to improve the quality of the mesh and

one mesh sweep is performed after each increment. The

mesh density near areas of evolving curvature is unchanged

in this model.

In Fig. 3, the new position of node M is determined by

taking the volume weighted average position of the ele-

ment centres C1, C2, C3, and C4. The volume weighting

will tend to push the node away from element centre C1

and toward C3. This can reduce the distortion of all four

elements in Fig. 3.

2.4. Advecting solution variables to the new mesh

The ALE method of adaptive meshing introduces advective

terms into the momentum balance and mass conservation

equations. These account for the independent mesh and

material motion. ABAQUS solves these modified equa-

tions by decoupling the material motion from the mesh

motion. It has been proven that this technique has a high

computational efficiency.

In an adaptive meshing increment, the element formu-

lations, boundary conditions, external loads, contact con-

ditions, etc. are all handled first in a manner consistent with

a pure Lagrangian analysis. Once the Lagrangian motion

has been updated and the mesh sweeps have been per-

formed to find the new mesh, the solution variables are

remapped by performing an advection sweep. Both

momentum and field variables are advected during an

advection sweep. A second order advection technique that

is both monotonic and consistent is used to advect the field

variables.

An element variable is remapped from the old mesh to

the new mesh by first determining a linear distribution of

the variable in each of the elements in the old mesh and

Fig. 3 Relocation of a node during a mesh sweep (ABAQUS

Handbook, 2001)

Fig. 1 A 2-D global search (ABAQUS Handbook, 2001)

Fig. 2 A 2-D local search (ABAQUS Handbook, 2001)
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advecting the distribution exactly. The process is described

below for a one-dimensional element with one integration

point. However, the process can easily be extended for

two-dimensional elements.

The following technique is shown in Fig. 4:

• A quadratic function is constructed using the values of

the variable at the integration points of a central ele-

ment and its adjacent elements.

• A trial linear distribution of the variable is found by

differentiating the quadratic function at the integration

point of the central element.

• This trial linear distribution is limited by reducing its

gradient until the minimum and maximum values are

within the range of the element averages in the adjacent

elements. This process is referred to as flux-limiting

and is essential to ensure that the advection is mono-

tonic.

Once the flux-limited linear distributions are determined

for all elements in the old mesh, the distributions are

integrated over each new element. The new values of the

variable are found by dividing the value of each integral by

each element volume.

Momentum advection is performed following the work

of Benson [4]. Advecting momentum directly ensures

that it is conserved properly during remapping and the

method used in this simulation is known as the Half-Shift

Index method. This method first shifts each of the nodal

momentum variables to the element centre. The shifted

momentum is then advected from the old mesh to the

new mesh using the second order algorithm described

previously. Finally, the momentum variables at the ele-

ment centres of the new mesh are shifted back to the

nodes.

3. Details of the analysis

3.1. Basic parameters

An axisymmetric model is used to simulate the deep

penetration of a cone penetrometer in undrained clay.

The soil is approximated by a 1.5 m square domain

whose mesh consists of 40,500 four-noded elements.

A reduced integration scheme is used, i.e. one integration

point is adopted for each element. This helps overcome the

locking problem.

The area of the adaptive mesh is highlighted in Figure 5.

This domain is 0.2m wide, 1.5 m deep and contains 27,000

elements. Boundary conditions place the fewest possible

constraints on the mesh and are placed on both the bottom

and left side of the mesh as shown in Fig. 5. In order to

control the in situ stress conditions, loads are placed on

both the top and the right side of the mesh. Different in situ

stress states, soil strengths and roughnesses at the pene-

trometer–soil interface are modelled. The soil is modelled

as an elastic perfectly plastic medium obeying the von

Mises failure criterion and an associated flow rule. The

analysis is performed using a total stress formulation and

the effect of consolidation is not studied in detail here. The

strength is varied by adjusting the rigidity index (IR = G/su)

so that the elastic modulus remains constant at 2.98 MPa

and the Poisson’s ratio is kept at 0.49 (to simulate

incompressibility). Rigidity indices of 100, 300 and 500 are

used in the simulations.

3.2. Hourglassing difficulties

Two unexpected difficulties may be encountered when

performing the simulations. The first is the hourglassing of

elements along the axis of symmetry ahead of the cone tip.

This results in the elements becoming overly distorted and

nodes slipping to the wrong side of the rigid analytical

surface. This is shown in Fig 6. In this instance, hourgl-

assing effects have distorted the elements ahead of the cone

tip to the extent that one of nodes has crossed the axis of

symmetry and remained in that position while the cone tip

has passed it. Note that the node has not penetrated the

cone surface.

For first order elements, ABAQUS uses an integration

scheme that is based on the uniform strain formulation.

This method was first proposed by Flanagan and

Belytschko [10]. In this method, the strains are not calcu-

lated at the first-order Gauss points but are analytically

calculated by averaging the strain over each element

volume. For first-order elements, the uniform strain method

yields the exact average strain over the element volume

and lowers the computational cost of forming the element.

However, the deficiency of reduced integration is that the

Element 1 Element 2 Element 3

Φ-constant 
Φ-quadratic 
Φ-trial 
Φ-limited   

Fig. 4 Second order advection (ABAQUS Handbook, 2001)
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element stiffness matrix will be rank deficient and this will

exhibit itself as hourglassing. This can make the elements

unusable unless it is controlled. In ABAQUS, the artificial

stiffness method developed by Flanagan and Belytschko

[10] is used to control hourglassing by default. This method

is generally successful in linear and mildly non-linear

problems but breaks down in strongly non-linear problems

and is not effective enough to be used in this model. Hence,

a refinement of the hourglass control method is used. This

approach is based on the enhanced assumed strain and

physical hourglass control methods proposed in Engelmann

and Whirley [9], Belytschko and Bindeman (1992) and

Puso [20].

A finite element analysis of an axisymmetric footing

problem has been performed to validate the model. A

displacement controlled test forced the footing to penetrate

12% of its radius in a von Mises material which had an IR

of 100 and an undrained shear strength of 10 kPa. The

finite element domain was square and 20 times the radius

of the footing. The numerical results are presented in

Fig. 7.

Following the method of characteristics, the exact

bearing capacity of a circular footing resting on a Tresca

material can be calculated as 5.69 su (See [22]). In the

application of the theory by Shield [22], the hypothesis of

Haar von Karman (1909) is assumed in the relevant plastic

Fig. 5 A schematic of the finite element mesh

Fig. 6 The result of hourglassing
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state. This hypothesis states that the circumferential stress

is taken to equal one of the other two principal stresses in

the meridional plane. The validity of the Haar von Karman

hypothesis in this situation arises directly from the use of

the Tresca yield condition with an associated flow rule.

When the von Mises yield condition is implemented, the

analysis becomes more complex because the circumferen-

tial stress then depends on the strain pattern. The ratio of

the maximum increase in strength given by the von Mises

criterion over the Tresca criterion is approximately 15%.

Hence, the increase in the resistance to penetration would

be expected to be of this magnitude (i.e. 6.54su). In

Figure 7, it can be seen that the bearing capacity of the

footing approaches this value.

3.3. Loading difficulties

The second difficulty arises when creating an in situ stress

state in the mesh. This problem is the result of a software

limitation that has been recognised by the producers. In the

current release, ABAQUS/Explicit does not include initial

stresses when calculating the initial accelerations. This is

not a problem if the initial stress field is in static equilib-

rium with the external stresses, however, in other cases this

may introduce noise into the solution.

The in situ stresses are created by externally loading the

soil and the arrows in Fig. 5 represent the surfaces that are

uniformly loaded to create the desired stress state. It is

found that after the initial loading period, the values of the

stresses within the mesh fluctuate even though the pres-

sures at the boundaries are held constant. Clearly this

causes the vertical stresses on the face of the cone to

fluctuate during penetration. By reducing the rate at which

the exterior loads are applied the fluctuation can be re-

duced, however; this can lead to impractically long run

times. Instead, it has been found that the loads can be

applied more quickly if they are smoothly increased. This

can be understood using Fig. 8.

The sudden change in the rate of loading at the begin-

ning and the end of the conventional loading step causes

fluctuations in the in situ stress state. However, by using a

smooth step this effect can be significantly reduced. The

equation of the line representing the smooth loading in

Figure 8 is given below;

a ¼ ai þ ðaiþ1 � aiÞn3 10� 15nþ 6n2
� �

; ð1Þ

where

n ¼ t � ti
tiþ1 � ti

;

ti � t � tiþ1 and ‘a’ represents the value of a field variable.

The simulation is performed using two steps. The first

step lasts 25 s and during this step, the cone is held
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Fig. 7 Validation of finite elements using a smooth footing (IR = 100, su = 10 kPa)
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stationary while loads are placed on the boundaries of the

soil domain. This enables an in situ stress state to be set up

before the penetration of the cone is carried out. The

duration of the loading increment is 0.0005 s. This step can

be omitted from analyses which have no initial in situ stress

state.

The second step involves moving the cone to a pen-

etration depth of 17 cone diameters (0.6069 m) whilst

maintaining the loads placed on the boundaries. Adaptive

meshing is used throughout this step to prevent

over distortion of the elements adjacent to the cone.

The duration of this step is 60.69 s and the loading

increment is 0.0004 s. Five remeshing sweeps are per-

formed after each increment. It has been found that

increasing the size of the loading increment may lead to

instability.

4. Results and discussions

4.1. Smooth conditions at the penetrometer-cone

interface

In this section, the proposed numerical technique is applied

to the cone penetration test in a weightless material. Sliding

is allowed at the soil-penetrometer interface and no initial

stress is imposed on the soil domain. In this case, the cone

factor (Nc) is defined as the cone tip resistance (q) nor-

malised by the undrained shear strength of the soil (su).

Figure 9 shows the evolution of the cone resistance as

the cone penetrometer is pushed into three materials

obeying the von Mises failure criterion. It can be concluded

from Fig. 9, that it is not necessary to continue the analyses

after a penetration depth of 17 diameters because a steady

state condition has been reached.

The depth required to achieve a steady state condition

increases with IR. These results show that a steady state

condition is achieved after a penetration depth of approx-

imately 9 cone diameters in a von Mises material with an IR

of 100 and a steady state condition is achieved after a depth

of approximately 15 cone diameters in a von Mises mate-

rial with an IR of 500. The final cone factors for the three

different material stiffnesses are plotted on a logarithmic

scale and are shown in Fig. 10.

The labels in Fig. 10 represent the cone factors at

rigidity indices of 100, 300 and 500. The equation represents
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Fig. 8 Comparison of loading methods
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Fig. 9 Evolution of cone resistance in clays with different rigidity indices
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a fit to the numerical results. In order to validate these

results, it is necessary to compare this equation with others,

as shown in Fig. 11.

It can be seen that the result obtained using the proposed

method agrees well with others. Of particular note is the

extremely close agreement between the current work and

Yu et al.’s (2000) novel method which can not be seen on

the graph because the results virtually coincide with each

other.

To further verify the numerical results, the distribution

of the plastic strain is plotted at different stages of the

analysis and it is shown in Fig. 12. The size of the plastic

zone is then compared with solutions to cylindrical cavity

expansion problems. It is found that the size of the plastic
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Fig. 10 Effect of the rigidity index on the cone factor
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Fig. 11 Comparison of the cone factors from different studies
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zone is 9.4 cone radii and this compares well with the

cavity expansion solution which gives a value of 9.3 cone

radii in a von Mises material with an IR of 100 [28].

4.2. Rough cone face and shaft

The investigation is extended to examine the effect of the

roughness of the penetrometer on the cone factor. No

special contact elements are needed because the explicit

algorithm can handle complicated contact conditions (see

sect 2.2). The friction conditions at both the cone face-soil

interface and the shaft-soil interface are identical. It is as-

sumed that the soil sticks to the penetrometer until the

shear stress at the interface equals a predetermined fraction

of the shear strength of the soil. At this point the material is

allowed to slide freely. The maximum shear stress that can

be reached in a von Mises material is given by:

smax ¼
2suffiffiffi

3
p ; ð2Þ

where su is the undrained shear strength of the material

under triaxial conditions.

Interface friction is proportional to the roughness of the

cone penetrometer itself. Hence, to simulate different levels

of roughness the maximum permissible shear stress at the

interface is varied. The fraction of permissible shear stress

at the interface can be described by the following equation:

a ¼ sint

smax

; ð3Þ

where sint is the permissible shear stress at the penetrom-

eter-soil interface.

The final cone factors for four different values of a (=0,

1/3, 0.5, 2/3) are presented in Fig. 13 for three different

rigidity indices (100, 300, 500).

It can be seen that the cone factor increases with

friction at the interface. The four equations in Figure 13

represent the trend lines of the data and it can be seen

that for the range of values considered, the inclusion of

friction at the interface increases the gradient of the

trends. Whilst the gradient is constant if friction is in-

cluded, the intercept of each trend line varies with a and

a curve fitting analysis has shown that the intercepts

adhere to the following trend

Intercept ¼ a:ð0:0026:ðIRÞ � 1:1919Þ; ð4Þ

Hence the following relation is obtained for 1/3 £ acs £ 2/3.

Nc ¼ 2:1907: lnðIRÞ þ acs:ð0:0026:ðIRÞ � 1:1919Þ: ð5Þ

where acs is the value of a at the penetrometer-soil interface.

Many results in the literature use a linear term to describe

the effect of the roughness of the penetrometer. However,

the results in this paper show that this term is non-linear

and dependent on IR.

Fig. 12 Size of the plastic zone at different penetration depths
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4.3. Different friction conditions along

the penetrometer

The study is extended further to examine the effect of a

difference in the friction conditions at the cone face and the

shaft. A penetrometer with both a smooth shaft and a rough

cone face is simulated. Figure 14 shows the variation of the

cone factor with both IR and the roughness of the cone face.

It can be seen that Fig. 14 is identical to Fig. 13 and it

appears that the inclusion of shaft friction has little effect

on the results. This outcome was expected because it is

unlikely that an increase in the shear stress in the

Nc = 2.1907Ln(G/su) - 0.3162
Nc = 2.1907Ln(G/su) - 0.1912
Nc = 2.1907Ln(G/su) + 0.0588

Nc = 2.0167Ln(G/su) + 0.2092
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Fig. 14 Effect of a rough cone and a smooth shaft on the cone factor
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material adjacent to the shaft would increase the mean

stress ahead of the cone in a von Mises (non-dilatant)

material. Other relevant results tend to place very little

significance on the effect of the shaft friction. For

example, Teh and Houlsby [23] use a value of )0.2as to

account for the shaft friction (as is the roughness at the

soil-shaft interface).

It should be noted that equation 5 can be used to

describe the trends shown in Fig. 14 (with acs replaced with

ac, where ac represents the roughness at the soil-cone face

interface). These results emphasise the fact that the

roughness of the cone face must be measured because the

difference between the results neglecting the roughness at

the cone face and those accounting for it, can be as high as

6.6%.

4.4. The effect of in situ stresses on the cone factor

To investigate the effect of the in situ stresses on the

cone factor, the in situ stress state parameter is used (as

defined by Teh and Houlsby [23]). This parameter,

ranging between )1 and 1, is a measure of the in situ

stress ratio.

D ¼ rv0 � rh0

2su
; ð6Þ

where rv0 is the initial in situ vertical stress, rh0 is the

initial in situ horizontal stress and D is the anisotropic in

situ stress parameter.

The final cone factors for different values of the in situ

stress state parameter are presented in Fig. 15.

In simulations including an initial stress field, the fol-

lowing equations are used to calculate the cone factor:

Ncv ¼
q� rv0

su
; ð7aÞ

Nch ¼
q� rh0

su
ð7bÞ

and

Ncp ¼
q� rp0

su
; ð7cÞ

where q is the average vertical pressure on the cone face

and rv0 is the vertical stress, rh0 is the horizontal stress and

rp0 is the mean in situ pressure.

Five simulations are performed using a material with

an IR of 100. Similar tests performed in a material with an

IR of 300 will not change the trend of the results. Like-

wise, a test is performed at D = 0 with a higher mean

stress and no change in the cone factor results. The

average vertical stress on the cone face is normalised by

the vertical, horizontal or mean in situ stress to determine

the relative importance of the in situ stresses to the cone

resistance. It is found that the cone factor is more sensi-

tive to changes in the initial stress ratio if the cone factor

is normalised by the vertical stress. From Fig. 15, it can

be seen that the gradient of the line that represents the

11

10.25

8.3

7.5

9.4

9

8.7

9.1 9.15

9.35
9.6

9.8

9.25

Nch = 0.1745∆ + 9.25

Ncp = -0.6085∆ + 9.25

Ncv = -1.9458∆ + 9.25

7

8

9

10

11

12

-1 -0.5 0 0.5 1 1.5

Insitu Stress Parameter

C
o

n
e 

F
ac

to
r,

 N
c

Normalised By The Insitu
Vertical Stress

Normalised By The Insitu
Horizontal Stress

Normalised By The Insitu
Mean Pressure

Fig. 15 Variation of the cone factor with the in situ stress state

54 Acta Geotechnica (2006) 1:43–57

123



trend of these results has the value of )1.95. This is

comparable to others in the literature and these are sum-

marised in Table 1.

The gradient of )1.95 is found for the values

)0.9 £ D £ 0.9. This investigation shows that difficulties

arise when performing the simulations under initial stress

conditions at, or approaching, D = –1. A typical result is

presented in Fig. 16.

In Figure 16 it can be seen that after the initial pen-

etration the cone factor reduces with depth. This effect

can be investigated by changing the loading increment,

the boundary conditions and the number of elements. It

seems that this effect is caused by the material unloading

during the penetration. This is possible because the

material is in a plastic state at the beginning of the

simulation and the penetration itself causes parts of the

soil to unload and become elastic, i.e. at the start of the

simulation, every point in the material is on the yield

surface and the stress paths can only move along or

inside the yield surface.

Provided that the cone factor is found by normalising the

vertical force on the cone face by the in situ vertical stress,

the following equation can be used under the conditions of

1/3 £ acs £ 2/3 and )0.9 £ D £ 0.9 to relate the cone factor

to the soil properties.

Nc ¼ 2:19: lnðIRÞ þ acs:ð0:0026:ðIRÞ � 1:1919Þ � 1:95D:

ð8Þ

If the penetrometer is completely smooth then the follow-

ing relation can be used

Nc ¼ 2:02: lnðIRÞ � 1:95D: ð9Þ

Table 1 A Comparison of in situ Stress State Parameter Coefficients

Authors Coefficient

Abu-Farsakh et al. [1] 2.1

Lu [18] 1.9

Teh and Houlsby [23] 2

Teh and Houlsby [23] 1.8

Yu et al. [32] 1.83

This paper 1.95

Table 2 Comparison of the cone factors

Author IR

100 300 500

Abu-Farsakh et al. [1] 10.74 12.72 13.64

Baligh [2] 10.72 12.92 13.94

Lu [18] 10.77 12.53 13.34

Teh and Houlsby [23] 9.77 11.80 12.75

Vesic [26] 7.45 8.92 9.60

Yu and Whittle [31] 11.14 13.34 14.36

Yu et al. [32] 9.54 11.74 12.76

This paper 9.50 11.71 12.75
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4.5. Further Work

In order to demonstrate this numerical technique further,

Fig. 17 shows the plastic zone around a cone that has

been pushed through a multi-layered clay. This clay is

modelled using the von Mises failure criterion. The upper

material has an IR of 100 and the bottom material has an

IR of 300. Both materials have a shear modulus of 1 MPa.

The radii of the plastic zone is 7.75 diameters and 15.375

diameters in the top and bottom materials respectively.

The interface between these materials is at a depth of

0.3 m (8.4 cone diameters) and this is represented by the

vertical line in Fig. 18. Figure 18 shows the vertical

pressure on the cone face during the penetration process.

A predictive response can be seen because the vertical

resistance to the penetration reduces before the cone

penetrates the softer soil. This is a demonstrative example

of our ongoing work which further utilises the proposed

method.

5. Conclusion

An explicit finite element model based on the commercial

code ABAQUS has been developed to simulate the cone

penetration test in undrained clay using the von Mises

yield criterion. An explicit integration scheme with an

adaptive meshing algorithm enables the simulation to run

continuously. The dependency of the cone factor on IR,

penetrometer roughness and the in situ stress state has been

evaluated. The advantages of the proposed numerical

method are as follows:

Fig. 17 Plastic area in a two-layered clay
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• An explicit integration scheme efficiently performs a

large number of increments and simplifies the treatment

of contact.

• The cone geometry can be modeled explicitly and no

special contact elements are required at the penetrom-

eter-soil interface.

• The roughness at the shaft-soil and cone face-soil

interface can be varied independently.

• The approach can easily be extended for the analysis

of the cone penetration test in frictional-dilatant

materials.

• Accurate results can be obtained using first order ele-

ments.

The proposed numerical method provides an effective

tool for the analysis of the cone penetration test. Further-

more, this method can be extended to the analysis of the

cone penetration test in frictional-dilatant soils. Pre-

liminary tests have shown that this model is capable of

achieving good results in these materials.
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