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We describe a high efficient entanglement concentration protocol (ECP) for multi-particle less-entangled nitrogen-vacancy (N-V)
center and microtoroidal resonator system. In the ECP, we only require one pair of less-entangled state, two auxiliary N-V center in
microcavities and some single photons. After the photon passing through the microcavity, by measuring the polarization of the photon,
a maximally entangled W state can be obtained with some success probability. This ECP does not need to destroy the solid qubit,
which makes it more feasible. Moreover, by resorting to more single photons, it can be repeated to reach a high success probability.
These features make this ECP useful in current long-distance quantum communications.
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Quantum communication deals with the transmission and ex-
change of quantum information between distant nodes of
a network [1]. Such transmission and exchange of quan-
tum information has potential application in the secret trans-
fer of classical messages by means of quantum key dis-
tribution [2–5], teleportation [6–8], quantum denescoding
[9–11], quantum secret sharing [12–14], quantum state shar-
ing [15–17], quantum secure direct communication [18–22],
and other protocols [23–27]. The basic principle of quantum
communication is to generate nearly perfect entangled states
between distant locations. Quantum repeaters are used to ex-
tend the length of quantum channel, which is used to resist
the photon loss. On the other hand, the perfect entangled
state will also be degraded because of the environment noise.
The maximally entangled state will become a mixed state or
a less-entangled states.

Entanglement purification is to distill some high qual-
ity entangled states from a large ensembles of low quality
entangled states, which has been widely studied [28–35].

*Corresponding author (email: zhoul@njupt.edu.cn)

Entanglement concentration is to recover some maximally
entangled states from a large ensembles of pure less-
entangled ensembles [36–64]. In 1996, Bennett et al. [36] de-
scribed an entanglement concentration protocol (ECP) with
collective measurement. The ECP with entanglement swap-
ping was developed by Shi et al. [37]. The ECPs with lin-
ear optics were proposed in 2001 [38, 39]. These protocols
were developed in 2008 with the help of cross-Kerr non-
linearity [40–42]. Most of the ECPs focused on the pho-
tons [38–44,46–51]. During the past few years, the ECPs for
solid entangled systems were also proposed, such as the ECP
for quantum dot and microcavity coupling system [54, 55],
electrons [56–58], atoms [59] and so on [62–65].

Recently, the nitrogen-vacancy (N-V) defect center in di-
amond becomes a promising candidate for solid quantum
information processing. The N-V centers are negatively
charged with six electrons from the nitrogen [66, 67]. The
vacancy are surrounded by three carbons. A lot of theoreti-
cal and experimental works have been devoted into such sys-
tems, for it provides us enough lifetime to manipulate at room
temperature. In 2010, Yang et al. [68] discussed the entangle-
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ment of separate N-V centers coupled to a whispering-gallery
mode cavity. In their paper, they presented the W-state and
Bell-state entanglement generation using N-V centers cou-
pled to whispering-gallery mode cavity. They also showed
that the N-V center ensemble is the high-fidelity quantum
memory for quantum computation [69]. In 2011, Chen et
al. [70] proposed a practical scheme to entangle negatively
charged N-V centers in distant diamonds. Li et al. [71] also
discussed the quantum-information transfer with N-V cen-
ters coupled to a whispering-gallery microresonator. Jiang et
al. [72] reported their experiment result for repetitive readout
of a single electronic spin via quantum logic with nuclear spin
ancillae. The entanglement between an optical photon and a
solid-state spin qubit was also realized. In 2012, the entan-
glement purification protocol for N-V centers via coupling to
microtoroidal resonators was proposed [73].

Inspired by the excellent works of entanglement concen-
tration and quantum information processing based on the N-
V centers, in this paper, we present an implementation of ECP
for multi-particle entangled N-V centers via the coupled with
microtoroidal resonators. We resort two single N-V centers
and two single photons to complete the task. After perform-
ing the ECP, one can obtain the maximally entangled W states
with some success probability. During the process, we do not
need to destroy the solid qubits. Moreover, the ECP can be
repeated to obtain a high success probability. These advan-
tages make it useful in current long-distance communication.

1 Basic model of the ECP

In this section, we will briefly describe the model that a
single N-V center is coupled by the evanescent field of
the microtoroidal resonator, which can be described as a
double-side optical cavity. In this model, the N-V cen-
ter can be regarded as an additional electron with a nega-
tive charge that consists of a substitutional nitrogen atom
and an adjacent vacancy. The ground state is a spin triplet
with the splitting at 2.87 GHz between levels |g0〉 (ms = 0)
and |g±1〉 (ms = ±1) owing to spin-spin interactions. The
six excited states are defined by group theory as shown
in [67]. In Figure 1, one of the excited state |A2〉 can be
described as |A2〉= |E−〉|g+1〉+|E+〉|g−1〉. Here |E±〉 are orbital
states. The possible cavity-mode-induced transitions are |g−1〉

L R

g+1
g0

g−1

A2

Figure 1 The N-V center couples to microtoroidal cavity. The |g±1〉 are
two generated states which couple with left |L〉 and right |R〉 polarization
photon, respectively. The |g0〉 is the ground state. The quantum qubits are
encoded in |g±1〉.

↔ |A2〉 and |g+1〉 ↔ |A2〉 by absorbing and emitting an |L〉
and |R〉 circularly polarized photon, respectively. We make a
single-photon pulse with frequencyωp enter a microresonator
cavity with the mode frequency ωc. Such coupled system es-
sentially exhibits similar features with the Jaynes-Cummings
model. The adiabatical elimination of the cavity mode leads
to the reflection coefficient as [70]

r(ω) =
[i(ωc − ωp) − κ2 ][i(ω0 − ωp) + γ2 ] + Ω2

[i(ωc − ωp) + κ2 ][i(ω0 − ωp) + γ2 ] + Ω2
. (1)

The ω0 is the transition frequency between |A2〉 and |g−1〉.
The γ and κ are the N-V center dipolar decay rate and the
cavity damping rate, respectively. Ω means the term for the
coupling of the N-V center to the cavity. From eq. (1), on
the resonant condition of the system with ω0 = ωc = ωp and
Ω = 0, above equation for an empty cavity can be written
as [70, 73]

r0(ω) =
i(ωc − ωp) − κ2
i(ωc − ωp) + κ2

. (2)

Therefore, if the initial state is |g−1〉 and the photon is |L〉, the
output photon pulse will be driven as |L〉 → r(ω)|L〉 = eiθ |L〉.
Here the phase θ is the phase shift determined by the input-
output relation. On the other hand, if the initial photon is pre-
pared in the |R〉 state, it will become |R〉 → r0(ω)|R〉 = eiθ0 |R〉.
The θ0 is the reflection coefficient from eq. (2). If the initial
state is |g+1〉 and the photon is |L〉, the output photon will
evolve as |L〉 → r(ω0)|L〉 = eiθ0 |L〉 and the |R〉 photon will
evolve as |R〉 → r(ω)|R〉 = eiθ |R〉.

If we consider a special case that the θ0 = π2 and θ = 0, the
above relationship can be regarded as the parity check mea-
surement (PCM) for N-V center spins. If the photon passes
through two N-V center spins, the input-output relationship
can be written as

|L〉 + |R〉√
2
|g+1〉|g+1〉 → |L〉 − |R〉√

2
|g+1〉|g+1〉,

|L〉 + |R〉√
2
|g−1〉|g−1〉 → |L〉 − |R〉√

2
|g−1〉|g−1〉,

|L〉 + |R〉√
2
|g+1〉|g−1〉 → |L〉 + |R〉√

2
|g+1〉|g−1〉,

|L〉 + |R〉√
2
|g−1〉|g+1〉 → |L〉 + |R〉√

2
|g−1〉|g+1〉.

(3)

In this way, the even parity state |g+1〉|g+1〉 and |g−1〉|g−1〉 can
be easily distinguished from the odd parity state |g+1〉|g−1〉
and |g−1〉|g+1〉 according to the different polarization of the
photon. The state |L〉−|R〉√

2
and |L〉+|R〉√

2
are two orthogonal states

which can be distinguished by their spatial mode after pass-
ing through the polarization beam splitter (PBS).

2 ECP on N-V centers coupled to micro-
toroidal resonators

From Figure 2, we suppose the three parities, say Alice, Bob
and Charlie, share the three-particle less-entangled state
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Figure 2 Schematic diagram showing the basic principle of our ECP for

entangled N-V centers. PCM is the parity check measurement which is

performed by single photons. The X indicates the measurement in the basis

| ± x〉 = 1√
2

(|g+1〉 ± |g−1〉).

|Φ〉a1b1c1 , which can be described as

|Φ〉a1b1c1 = α|g−1〉a1 |g+1〉b1 |g+1〉c1

+ β|g+1〉a1 |g−1〉b1 |g+1〉c1

+ δ|g+1〉a1 |g+1〉b1 |g−1〉c1 . (4)

Alice first prepares an ancillary N-V center a2 in the follow-
ing state

|Φ〉a2 =
α

√
α2 + β2

|g+1〉a2 +
β

√
α2 + β2

|g−1〉a2 . (5)

Alice also prepares a single photon state of the form |Φ〉p =
1√
2
(|L〉 + |R〉). Here |α|2 + |β|2 + |δ|2 = 1. The whole system

can be written as

|Φ〉a1b1c1 ⊗ |Φ〉a2 = (α|g−1〉a1 |g+1〉b1 |g+1〉c1

+ β|g+1〉a1 |g−1〉b1 |g+1〉c1

+ δ|g+1〉a1 |g+1〉b1 |g−1〉c1 )

⊗
(

α
√
α2 + β2

|g+1〉a2 +
β

√
α2 + β2

|g−1〉a2

)

=
α2

√
α2 + β2

|g−1〉a1 |g+1〉a2 |g+1〉b1 |g+1〉c1

+
β2

√
α2 + β2

|g+1〉a1 |g−1〉a2|g−1〉b1|g+1〉c1

+
αδ

√
α2 + β2

|g+1〉a1 |g+1〉a2 |g+1〉b1 |g−1〉c1

+
βδ

√
α2 + β2

|g+1〉a1 |g−1〉a2 |g+1〉b1 |g−1〉c1

+
αβ

√
α2 + β2

|g−1〉a1 |g−1〉a2 |g+1〉b1 |g+1〉c1

+
αβ

√
α2 + β2

|g+1〉a1 |g+1〉a2 |g−1〉b1 |g+1〉c1 . (6)

From eq. (6), it can be found that the items |g+1〉a1 |g+1〉a2

|g+1〉b1 |g−1〉c1 , |g−1〉a1 |g−1〉a2 |g+1〉b1 |g+1〉c1 and |g+1〉a1 |g+1〉a2

|g−1〉b1 |g+1〉c1 will make the polarization of the photon flip to
1√
2
(|L〉 − |R〉). Therefore, if the photon is flipped which can

be detected by the single-photon detector, they can obtain

|Ψ〉′ = αδ
√
α2 + β2

|g+1〉a1 |g+1〉a2 |g+1〉b1 |g−1〉c1

+
αβ

√
α2 + β2

|g−1〉a1 |g−1〉a2 |g+1〉b1 |g+1〉c1

+
αβ

√
α2 + β2

|g+1〉a1 |g+1〉a2 |g−1〉b1 |g+1〉c1 , (7)

with a success probability of

P1 =
|α|2(|δ|2 + 2|β|2)
|α|2 + |β|2 . (8)

Then they measure the a2 state in the bases X as shown in
Figure 2. The basis X is | ± x〉 = 1√

2
(|g+1〉 ± |g−1〉). If the

measurement result is | + x〉, they will obtain

|Φ1〉 = δ
√
δ2 + 2β2

|g+1〉a1 |g+1〉b1 |g−1〉c1

+
β

√
δ2 + 2β2

|g−1〉a1 |g+1〉b1 |g+1〉c1

+
β

√
δ2 + 2β2

|g+1〉a1 |g−1〉b1 |g+1〉c1 . (9)

Otherwise, if the measurement result is |− x〉, they will obtain

|Φ2〉 = δ
√
δ2 + 2β2

|g+1〉a1 |g+1〉b1 |g−1〉c1

− β
√
δ2 + 2β2

|g−1〉a1 |g+1〉b1 |g+1〉c1

+
β

√
δ2 + 2β2

|g+1〉a1 |g−1〉b1 |g+1〉c1 . (10)

If they obtain the state |Φ2〉, they only need to perform a phase
flip operation to convert it to |Φ1〉.

The second step for Charlie is similar to Alice. Charlie
first prepares a single photon 1√

2
(|L〉+ |R〉) and another single

N-V center qubit of the form

|Φ〉c2 =
β

√
γ2 + β2

|g−1〉c2 +
δ

√
γ2 + β2

|g+1〉c2 . (11)

The single N-V center qubit combined with |Φ1〉 can be writ-
ten as

|Φ1〉 ⊗ |Φ〉c2 =

(
δ

√
δ2 + 2β2

|g+1〉a1 |g+1〉b1 |g−1〉c1

+
β

√
δ2 + 2β2

|g−1〉a1 |g+1〉b1 |g+1〉c1

+
β

√
δ2 + 2β2

|g+1〉a1 |g−1〉b1 |g+1〉c1

)

⊗
(

β
√
γ2 + β2

|g−1〉c2 +
δ

√
γ2 + β2

|g+1〉c2

)

=
δ

√
δ2 + 2β2

β
√
γ2 + β2

|g+1〉a1 |g+1〉b1 |g−1〉c1 |g−1〉c2
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+
δ

√
δ2 + 2β2

β
√
γ2 + β2

|g−1〉a1 |g+1〉b1 |g+1〉c1 |g+1〉c2

+
δ

√
δ2 + 2β2

β
√
γ2 + β2

|g+1〉a1 |g−1〉b1 |g+1〉c1 |g+1〉c2

+
δ

√
δ2 + 2β2

δ
√
γ2 + β2

|g+1〉a1 |g+1〉b1 |g−1〉c1 |g+1〉c2

+
β

√
δ2 + 2β2

β
√
γ2 + β2

|g−1〉a1 |g+1〉b1 |g+1〉c1 |g−1〉c2

+
β

√
δ2 + 2β2

β
√
γ2 + β2

|g+1〉a1 |g−1〉b1 |g+1〉c1 |g−1〉c2 . (12)

According to eq. (3), after measuring the c2 qubit in X
basis, if the auxiliary photon is flipped to 1√

2
(|L〉 − |R〉), state

|Φ1〉 ⊗ |Φ〉c2 will collapse to the maximally entangle W state

|Ψ〉′′ = 1√
3

(|g+1〉a1 |g+1〉b1 |g−1〉c1 + |g−1〉a1 |g+1〉b1 |g+1〉c1

+ |g+1〉a1 |g−1〉b1 |g+1〉c1 ), (13)

with the success probability

P2 =
3|β|2|δ|2

(|δ|2 + |β|2)(|δ|2 + 2|β|2)
. (14)

So far, we have briefly explained the basic principle of the
ECP. Interestingly, different from the ECP with linear optics,
this ECP can be repeated to obtain a high success probabil-
ity. For example, in the first step performed by Alice, he
only picks up the cases that the single photon is flipped to the

1√
2
(|L〉 − |R〉). Certainly, the single photon does not change

with some probability. In this way, from eq. (6), by measur-
ing the single photon and the auxiliary N-V center qubit a2,
Alice will obtain

|Ψ1〉′ = α2

√
α2 + β2

|g−1〉a1 |g+1〉b1 |g+1〉c1

+
β2

√
α2 + β2

|g+1〉a1 |g−1〉b1|g+1〉c1

+
βδ

√
α2 + β2

|g+1〉a1 |g+1〉b1 |g−1〉c1 . (15)

Compared |Ψ1〉′ with the initial less-entangled W state shown
in eq. (4), it can be found that |Ψ1〉′ has the same form with
the initial less-entangled W state. Therefore, it can also be
reconcentrated with the help of another single photon and the
auxiliary N-V center qubit in the second round. Certainly,
Alice should re-prepare the auxiliary solid qubit a2. The sim-
ilar way can also be performed by Charlie, if the polarization
of his auxiliary photon does not change, it will make the state
in eq. (12) become

|Ψ2〉′ = δ
√
δ2 + 2β2

δ
√
γ2 + β2

|g+1〉a1 |g+1〉b1 |g−1〉c1

+
β

√
δ2 + 2β2

β
√
γ2 + β2

|g−1〉a1 |g+1〉b1 |g+1〉c1

+
β

√
δ2 + 2β2

β
√
γ2 + β2

|g+1〉a1 |g−1〉b1 |g+1〉c1 . (16)

By both Alice and Charlie repeating this ECP, they can obtain
a high success probability.

3 Discussion and summary

So far, we have fully explained this ECP. We can calculate
the total success probability by repeating this ECP. During
the practical experiment, we should consider the photon loss,
which may be the main obstacle in realistic experiment. It
may occur due to the fiber absorption, the coupling of the
fiber and the cavity. Certainly, the imperfect detection can
also lead to the photon loss. If they can not detect the photon,
it is a failure. Then they should restart the protocol. There-
fore, the imperfect detection will greatly affect the total suc-
cess probability. Fortunately, according to eq. (3), it does not
affect the fidelity of the entangled state, for the state N-V cen-
ter does not change. Suppose that the efficiency of the single-
photon detector is ηd = 0.8, the transmission efficiency of
each photon through the N-V center is ηT = 0.95 and the effi-
ciency of coupling and transmission of each photon through
the single-mode fiber is ηf = 0.9. We can estimate the total
detection success probability of each concentration round as

Pt = ηdηfη
2
T. (17)

In the first step, we calculate the success probability in each
iterated round as

P1
1 =
|α|2(|δ|2 + 2|β|2)
|α|2 + |β|2 Pt,

P1
2 =

|α|4(|β|2|δ|2 + 2|β|4)
(|α|4 + |β|4)(|α|2 + |β|2)

P2
t ,

P1
3 =

|α|8(|β|6|δ|2 + 2|β|8)
(|α|8 + |β|8)(|α|4 + |β|4)(|α|2 + |β|2)

P3
t ,

· · ·

P1
N =

|α|2N
(|β|2N−2|δ|2 + 2|β|2N

)

(|α|2N
+ |β|2N )(|α|2N−1

+ |β|2N−1 ) · · · (|α|2 + |β|2)

× PN
t . (18)

Here the subscript “1”, “2”, · · · “N” is the number of the
concentration round. The superscript “1” is the first step per-
formed by Alice.

Following the same principle, in the second step performed
by Charlie, the success probability in each iterated round is

P2
1 =

3|β|2|δ|2
(|δ|2 + |β|2)(|δ|2 + 2|β|2)

Pt,

P2
2 =

3|β|4|δ|4
(|δ|2 + 2|β|2)(|δ|4 + |β|4)(|δ|2 + |β|2)

P2
t ,

P2
3 =

3|β|8|δ|8
(|δ|2 + 2|β|2)(|δ|8 + |β|8)(|δ|4 + |β|4)(|δ|2 + |β|2)

× P3
t ,
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· · ·

P2
M =

3|β|2M |δ|2M

(|δ|2M
+ |β|2M )(|δ|2M−1

+ |β|2M−1 ) · · · (|δ|2 + |β|2)

× 1
(|δ|2 + 2|β|2)

PM
t . (19)

Therefore, the total success probability can be described as

Ptotal =

∞∑

N=1

P1
N

∞∑

M=1

P2
M. (20)

In Figure 3, we calculate the practical success probabil-
ity with different initial coefficient α. We let β = 1√

3
and

change α from 0 to
√

2
3 . Curve A denotes that both Alice and

Charlie repeat their protocol with N = M = 3, and Curve B
denotes that Alice and Charlie does not repeat their protocol
with N = M = 1. In Figure 3, the total success probability
in Curve A is greater than that in Curve B with the same
α. When α ∈

{
0, 1√

3

}
, the success probability in both curves

increases, while it decreases when α ∈
{

1√
3
, 2√

3

}
. They can

obtain a higher success probability if the ECP is repeated.
The max value of Ptotal in Curve B is Ptotal ≈ 0.10, while
it can reach Ptotal ≈ 0.22 in Curve A. Finally, let us discuss
the practical experiment with such devices. Over past years,
a variety of cavity QED systems have been studied for N-V
centers. It is shown that the coupling strength of the N-V cen-
ter to an optical resonator can reach the order of hundreds of
megahertz. Certainly, there are also other imperfect control
during the practical operation, such as the Debye-Waller fac-
tor. Current experiment showed that with the cavity of a low-
Q factor Q ∼ 104, the coupling of a N-V center and a GaP mi-
crodisk has reached the relevant parametersΩ/2π = 0.6 GHz,
κ/2π = 26 GHz [74]. The large coupling between N-V cen-
ters and photonic crystal nanocavities has been realized [75].
Moreover, as shown in [76], the dephasing time of the N-
V center is about 2 ms in an isotopically pure diamond. It

0.25

0.20

0.15

0.10

0.05

0.00
0.0 0.2 0.4 0.6 0.8

A
BP

to
ta
l

α
Figure 3 The total success probability Ptotal for getting a maximally entan-
gled W state is altered with the α. We let β = 1√

3
and change α from 0 to

√
2
3 . Curve B is the success probability for only performing the ECP for one

time. Curve A is the success probability for both Alice and Charlie repeating
this ECP for three times. It is shown that the Ptotal increases greatly.

provides us enough time to complete the operation for the
ECP.

In conclusion, we have described an ECP for multi-particle
W state for separated N-V centers via coupling to micro-
toroidal resonators. With the help of single photons and two
single auxiliary N-V centers in microcavity, we can obtain
the maximally entangled W state with some success proba-
bility. During the whole protocol, we do not need to destroy
the solid qubits instead of consuming some single photons,
which makes it more feasible. Moreover, our ECP can be
repeated to obtain a higher success probability even in an im-
perfect and practical experiment.
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