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We study the dynamics of two entangled atoms interacting with a common structured reservoir. By means of the exact solution of
atomic dynamics, we show a novel quantum interference controlled by the relative phase of initial entangled state of the atoms. The
quantum interference has a great influence on trapped excited-state population and stationary entanglement of the atoms. In particular,
we construct an explicit condition under which atomic stationary entanglement can grow over their initial value.
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Quantum entanglement is one of the most characteristic traits
of quantum mechanics and has been recognized as an indis-
pensable resource in realizing the quantum information tech-
nologies [1–4]. The fragility of entanglement, however, is
one of the reasons that hampers its practical applications.
The unavoidable coupling to the surrounding environment(s),
whether intentionally or accidentally, is a serious obstacle
since it always leads to the loss of open system’s informa-
tion [5]. Worse still, the entanglement may be terminated
even in a finite time, a phenomenon called entanglement sud-
den death [6–9]. Therefore, the study on entanglement dy-
namics [10–34], namely, to know the residual amount of en-
tanglement after a certain period of time evolution, is rele-
vant to both the fundamental characters and applications of
entanglement. In this connection, the issue of entanglement
control becomes more and more important and a lot of meth-
ods [35–40] have been proposed to prolong the service time
of entanglement or to preserve a long-lived stationary entan-
glement.

The realization of decay mechanism proves to be effective
in designing strategy to fight against the deterioration of en-
tanglement. The dissipative interaction between individual
quantum system with its environment is a usual mechanism
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spoiling the entanglement of a composite system. An em-
blematic example of the dissipative interaction is the spon-
taneous emission of a photon by a two-level atom (qubit)
into a vacuum environment of electromagnetic-field modes.
Therefore, the methods that can trap the excited-state pop-
ulation would be applicable for entanglement preservation.
It has been shown [36] in environments, such as photonic
band-gap materials, structured so as to inhibit spontaneous
emission of individual atoms, the entanglement of two inde-
pendent atoms can be trapped. Besides the special structure
of the environment, [37] shows the vacuum-induced coher-
ence [41] that can lead to quenching of spontaneous emission
in atomic systems can also lead to preservation of atomic en-
tanglement. For several qubits interacting with a same en-
vironment [23, 24, 26, 27, 35] and the total Hamiltonian is
highly symmetric, there may exist a decoherence-free sub-
space and the stationary entanglement in the long-time limit
can be expected. Focusing on the model that two qubits are
coupled to a common structured reservoir, the author in [35]
proposed an effective strategy to fight against the deteriora-
tion of the entanglement using the quantum Zeno effect. For
the same model, Li et al. [26] investigated the exploitation
of dipole-dipole interaction between two atoms and atom-
reservoir coupling strength to suppress disentanglement. It
is found for the situation that the dipole-dipole interaction
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exists and the couplings of the atoms to the field are dif-
ferent, the steady state entanglement of the atoms does not
exist [26]. Nevertheless, although the dipole-dipole inter-
action could destroy the asymptotic entanglement, a strong
dipole-dipole interaction does suppress disentanglement ef-
fects under some conditions [26]. Obviously, in case of the
stationary entanglement exists, it is related to the component
of decoherence-free state of the initial qubits’ state. In other
words, different initial states of the qubits will lead to dif-
ferent amount of stationary entanglement. In this work, we
shall also explore the model of two atoms interacting with a
common reservoir. We pay particular attention to the rela-
tive phase of atoms’ initial entangled state in influencing the
atoms’ stationary entanglement. It is found that the suitable
choice of relative phase can significantly increase atomic sta-
tionary entanglement.

A visualized picture of two atoms interacting with a com-
mon reservoir can be depicted by Figure 1. For two entangled
atoms with totally one excitation, the single excitation may
be distributed among the two atoms with nonzero probabili-
ties. Due to the interactions with the common reservoir, the
excitation-emission by one atom will lead to the absorbtion
of that excitation by another. As a result, for each atom, two
opposite processes of excitation emission and absorbtion will
coexist at the same time. A quantum interference effect of
these two processes can be expected. Through an exact so-
lution of the model, we show the existence of this quantum
interference. We show that the relative phase in atomic initial
entangled state will determine the destructive or constructive
feature of the interference, which in turn affects the extent of
excited-stat population trapped in the atoms as well as their
stationary entanglement in the long-time limit. We also give
a condition under which atomic stationary entanglement can
exceed their initial value.

1
2
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Figure 1 (Color online) Schematic diagram of two entangled two-level
atoms coupled to a common environment. The excitation-emission by
one atom will lead to the absorbtion of that excitation by another; there-
fore for each atom two opposite processes of excitation emission and
absorbtion coexist at a time. A quantum interference can be induced by
these two processes, while the relative phase φ in atomic entangled state
determines the destructive or constructive feature of the interference.

1 Model and solution

Consider a pair of two-level atoms interacting with a common
structured reservoir which can be modeled as the electromag-
netic field inside a lossy cavity (see Figure 1). The Hamilto-
nian H of the total system contains three parts (� = 1):

Ĥ = Ĥ0 + Ĥint + Ĥdd, (1)

where H0 is the free Hamiltonian, Hint denotes the atom-
reservoir coupling, and Hdd is responsible for the dipole-
dipole interaction:

Ĥ0 = ω1σ̂
(1)
+ σ̂

(1)
− + ω2σ̂

(2)
+ σ̂

(2)
− +
∑

k

ωkâ+k âk (2)

Ĥint = (α1σ̂
(1)
+ + α2σ̂

(2)
+ )
∑

k

gkâk + H.c., (3)

Ĥdd = D(σ̂(1)
+ σ̂

(2)
− + σ̂

(1)
− σ̂

(2)
+ ). (4)

Here, σ̂ j
± and ω j are the inversion operator and transition fre-

quency of the atom j = 1, 2, âk and â†k are the annihilation
and creation operators for the kth mode of the reservoir with
frequency ωk. As the coupling of an atom to the reservoir
depends on the value of the cavity field at the atomic posi-
tion, a dimensionless real constants α j is introduced to indi-
vidualize the atom: the actual coupling strength between the
jth atom and an kth mode is thus measured by α j|gk|. The
static part of the dipole-dipole interaction is proportional to
D = [�d · �d − 3(�d · �r12)(�d · �r12)/r2

12]r−3
12 , where �r12 = �r1 − �r2

is the relative position and �d is the electric dipole moment of
the atom. Though in calculation we include the dipole-dipole
interaction of the two atoms, it is not a crucial factor for the
appearance of quantum interference effect.

Assume that at time t = 0 the cavity is empty (i.e. its state

is
∣∣∣∣0
〉
=
⊗

k |0k〉r with |0k〉r the cavity state containing 0 ex-
citations in mode k) and the two atoms are in the Bell-like
state

|ψ(0)〉 = c1(0) |e, g〉1,2 + c2(0) |g, e〉1,2 , (5)

with |c1(0)|2 + |c2(0)|2 = 1. Therefore, the total system of
atoms and reservoir contains only one excitation which may
be initially in the first atom with a probability |c1(0)|2 or in
the second atom with |c2(0)|2. Since [Ĥ,

∑
k â+k âk + σ̂

(1)
+ σ̂

(1)
− +

σ̂(2)
+ σ̂

(2)
− ] = 0, the initial total state |Ψ(0)〉 = |ψ(0)〉 ⊗

∣∣∣∣0
〉

evolves at time t > 0 into

|Ψ(t)〉 = e−iω0t[c1(t) |e, g〉1,2 + c2(t) |g, e〉1,2] ⊗
∣∣∣∣0
〉

+
∑

k

ck(t)e−iωkt |g, g, 1k〉1,2,r (6)

with |1k〉r the reservoir state containing only one excitation in
the kth mode. Here, we have considered the two atoms have
the same frequency, i.e. ω1 = ω2 = ω0. The equations of
motion for the probability amplitudes take the form

ċ1(t) = −iα1

∑

k

gke−i(ωk−ω0)tck(t) − iDc2(t), (7)
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ċ2(t) = −iα2

∑

k

gke−i(ωk−ω0)tck(t) − iDc1(t), (8)

ċk(t) = −ig∗kei(ωk−ω0)t[α1c1(t) + α2c2(t)]. (9)

Integrating eq. (9) with the initial condition ck(0) = 0 and
inserting its solution into eqs. (7) and (8), one obtains the
integro-differential equations for the amplitudes c1(t) and
c2(t):

ċ1(t) = −
∫ t

0
dt′
∑

k

|gk|2e−i(ωk−ω0)(t−t′)[α2
1c1(t′) + α1α2c2(t′)]

− iDc2(t), (10)

ċ2(t) = −
∫ t

0
dt′
∑

k

|gk|2e−i(ωk−ω0)(t−t′)[α1α2c1(t′) + α2
2c2(t′)]

− iDc1(t). (11)

The sum
∑

k |gk|2e−i(ωk−ω0)(t−t′) in the above equations is rec-
ognized as nothing else but the reservoir correlation function

f (t − t′) =r

〈
0
∣∣∣∣ A(t)A†(t′)

∣∣∣∣0
〉

r
, with A(t) =

∑
j g ja je−i(ω j−ω0)t.

In the limit of a large number of modes, the summation
over the reservoir modes can be changed to an integration∫

dωJ(ω)e−i(ω−ω0)(t−t
′
), where J(ω) is referred to as the reser-

voir effective spectral density. In the continuum limit for the
environment and by introducing the correlation function, eqs.
(10) and (11) become

ċ1(t) = −
∫ t

0
dt′ f (t−t′)[α2

1c1(t′)+α1α2c2(t′)]−iDc2(t), (12)

ċ2(t) = −
∫ t

0
dt′ f (t−t′)[α1α2c1(t′)+α2

2c2(t′)]−iDc2(t). (13)

In the following we consider a realistic cavity whose pho-
tons can be leaked out through its nonperfect mirrors. In this
case, the fundamental mode ωc supported by the cavity dis-
plays a Lorentzian broadening due to the non-perfect reflec-
tivity of the cavity mirrors. The effective spectral density of
the intracavity field can be modeled as

J(ω) =
W2

π

λ

(ω − ωc)2 + λ2
. (14)

Laplace transforming both sides of eqs. (12) and (13), with
J(ω) given by eq. (14), yields

c̃1(s) =
[s(s + λ) + R2r2

2]c1(0) − [R2r1r2 + iD(s + λ)]c2(0)

s2(s + λ) + R2s + D2(s + λ) − 2iR2r1r2D
,

(15)

c̃2(s) =
[s(s + λ) + R2r2

1]c2(0) − [R2r1r2 + iD(s + λ)]c1(0)

s2(s + λ) + R2s + D2(s + λ) − 2iR2r1r2D
,

(16)
where the notation f̃ (s) = L[ f (t)] =

∫ t

0
f (t)e−stdt and

the following dimensionless quantities have been introduced
for convenience: the collective coupling constant αT =√
α2

1 + α
2
2, the relative coupling strengths r1(2) = α1(2)/αT ,

and the vacuum Rabi frequency R = WαT . Not that r2
1 + r2

2 =

1, by definition. Applying the inverse Laplace transforms on
eqs. (15) and (16), we get the time-dependent solutions:

c j(t) =
∑

n

lim
s→sn

(s − sn )̃c j(s)esnt, (17)

with j = 1, 2 and sn a pole of c̃ j(s). In the absence of dipole-
dipole interaction with D = 0, the analytic expressions of
c1(t) and c2(t) can be obtained as

c1(t) = [r2
2 + r2

1E(t)]c1(0) + r1r2[E(t) − 1]c2(0), (18)

c2(t) = [r2
1 + r2

2E(t)]c2(0) + r1r2[E(t) − 1]c1(0), (19)

in which E(t) = e−λt/2[cosh(Ωt
2 ) + λ

Ω
sinh(Ωt

2 )] and Ω =√
λ2 − 4R2. In the {|e, e〉 , |e, g〉 , |g, e〉 , |g, g〉} basis, the re-

duced density operator for the two atoms is given by

ρ12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 |c1(t)|2 c1(t)c∗2(t) 0

0 c∗1(t)c2(t) |c2(t)|2 0

0 0 0 1 − |c1(t)|2 − |c1(t)|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)
We adopt the concurrence [42] C(t) as the measure of atomic
entanglement, which takes the form

C(t) = 2|c1(t)c∗2(t)|. (21)

In this work, we are concerned with the quantum inter-
ference induced by two entangled atoms. The feature of the
interference is closely related to the relative phase of atomic
initial entangled state (5); therefore we reexpress c1(0) and
c2(0) as

c1(0) = sin θ, c2(0) = cos θeiφ, (22)

with θ ∈ [0,π/2] and φ ∈ [0,π]. Though in essence the initial
state of the atoms is characterized by both the parameters θ
and φ, the initial excited-state population of the atoms as well
as its initial concurrence C(0) = 2|c1(0)c∗2(0)| = 2 sin θ cos θ
are determined only by θ. In this connection, one may ask for
the definite value of θ, how the the relative phase φ influences
the subsequent dynamics of the atoms? We shall show that a
quantum interference effect can be induced due to the inter-
action of the entangled atoms with the common environment.
The destructive and constructive features of the interference
are determined by the relative phase in the initial entangled
state of the atoms. The excited-state population trapped in
the atoms and atomic stationary entanglement are hence in-
fluenced strongly by the quantum interference.

2 Quantum interference

At first, we consider the time evolution of excited-state pop-
ulation of one atom, say, the first atom, which for D = 0 can
be expressed by virtue of eq. (18) as

|c1(t)|2 = T1(t) + T2(t) + T3(t), (23)
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with

T1(t) = [r2
2 + r2

1E(t)]2|c1(0)|2, (24)

T2(t) = r2
1r2

2[E(t) − 1]2|c2(0)|2, (25)

T3(t) = 2r1r2[r2
2 + r2

1E(t)][E(t) − 1] sin θ cos θ cos φ, (26)

where we have employed the expression (22) for the term
T3(t). Obviously, the excited-state population of an individ-
ual atom is composed of three parties, i.e. T1(t), T2(t) and
T3(t). The term T1(t) (24) represents the emission of exci-
tation that lies initially in the first atom with a probability
|c1(0)|2. On the contrary, T2(t) denotes the absorbtion of ex-
citation that lies initially in the second atom by the first atom.
Actually, the single excitation may initially be in the sec-
ond atom with a probability |c2(0)|2, which will be emitted
to the cavity and then be absorbed partially by the first atom
due to the interaction with the cavity. That is, the excitation-
emission of one atom leads to the excitation-absorbtion of an-
other in the presence of a common environment. As a result,
two opposite processes of excitation emission and absorbtion
coexist for the first atom, by which a quantum interference is
induced and represented by the term T3(t). From eq. (26),
one can see the interference term T3(t) is dependent on the
value of φ, i.e. the relative phase in atomic initial entangled
state, which determines the features of the quantum interfer-
ence: for 0 � φ < π/2, we have T3(t) < 0 corresponding
to the destructive interferences, while for π/2 < φ � π, we
instead have T3(t) > 0 corresponding to the constructive in-
terferences. For φ = π/2, we are left with T3(t) = 0, which
means the two processes of excitation emission and absorb-
tion are independent so that the quantum interference does
not occur. Though we focus on the first atom here, the pre-
ceding discussion is suitable for the second atom as well.

The quantum inferences under various values of the rela-
tive phase φ are bound to influence the dynamics of atomic
excited-state population during the time-evolution. Here, we
are more interested in the excited-state population trapped in

the atomic system in the long-time limit, which for t → ∞
reads

|cs
1|2 ≡ lim

t→∞ |c1(t)|2

= r4
2 sin2 θ + r2

1r2
2 cos2 θ − 2r1r3

2 sin θ cos θ cos φ. (27)

As shown by eq. (27), for any fixed initial entanglement in
terms of θ and relative coupling strengthes r1 and r2, the
asymptotical excited-state population |cs

1|2 of the first atom
is proportional to φ ∈ [0,π]. This result applies also to the
second atom; hence the total excited-state population of the
two atoms can be trapped to a greater extent for a bigger φ.

In Figure 2, we plot the time evolution of |c1(t)|2 under var-
ious values of φ in both Markovian and non-Markovian reser-
voirs. In both regimes, the asymptotical values of |c1(t)|2,
i.e. |cs

1|2, increase with an increase of φ. Compared to the
case of no quantum interference (φ = π/2), the steady value
of |c1(t)|2 is reduced by the destructive quantum interference
(e.g. φ = 0,π/4), while enhanced by the constructive quan-
tum interference (e.g. φ = 3π/4,π). The excited-state pop-
ulation can exceed its initial value for a biggish φ, such as
φ = π/2, 3π/4,π here. The net increase of the excited-state
population, i.e. |cs

1|2 − |c1(0)|2, is obviously transferred from
the cavity, to which the second atom emits. It can be verified
the asymptotical excited-state population |cs

2|2 of the second
atom also increases with an increase of φ, although it can-
not exceed its initial value |c2(0)|2 for the present choice of
parameters. The inset in Figure 2(a) shows the dynamics of
T1(t), T2(t) and T3(t), the three constituents of |c1(t)|2. The
terms T1(t) and T2(t) are independent of φ, while the interfer-
ence term T3(t) is closely dependent on φ, which varies from
a negative value for φ = 0 (φ < π/2) to null for φ = π/2
and then to a positive value for φ = π (φ > π/2). In the in-
set of Figure 2(b), we have shown the dynamics of |c1(t)|2 in
the initial period for the non-Markovian regime. Though the
asymptotical values of |c1(t)|2 are proportional to φ, it is

(a) (b)

|c
1(
t)|

2

T2(t)

T1(t)

T3(t) φ = 0

T3(t) φ = �

T3(t) φ = �/2

|c
1(
t)|

2

λtλt

φ = �

φ = 3�/4
φ = �/2
φ = �/4
φ = 0

φ = �

φ = 3�/4
φ = �/2
φ = �/4
φ = 0

Figure 2 (Color online) Time evolution of excited-state population |c1(t)|2 = T1(t) + T2(t) + T3(t) of the first atom for sin θ =
√

3
20 , cos θ =

√
17
20 and

different relative phases φ in (a) the Markovian (R/λ = 0.1) and (b) non-Markovian (R/λ = 10) reservoirs. The other parameters are D = 0 and r1 =
√

3/2,

r2 = 1/2. The inset in (a) shows the dynamics of T1(t), T2(t) (black dashed lines) and that of T3(t) for φ = 0,π/2,π (orange solid lines). The inset in (b)

shows the dynamics of |c1(t)|2 in the initial period.
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not the case in the short time: due to the oscillation of |c1(t)|2,
the values of which are alternate for the big and the small φ.

3 Stationary entanglement

The expression (21) of atomic concurrence shows that only
when neither of |c1(t)| and |c2(t)| approaches zero in the time
limit can a nonzero stationary value of C(t) exists. It can
be verified that when D = 0, i.e. in the absence of dipole-
dipole interaction, there always exists a stationary entangle-
ment Cs = C(t → ∞), which can be obtained by virtues of
eqs. (18), (19) and (22) as

Cs = 2r1r2(r2
2 sin2 θ+r2

1 cos2 θ−2r1r2 sin θ cos θ cos φ). (28)

Nevertheless, if D � 0, the condition for the existence of
a stationary entanglement is that the two atoms should have
equivalent coupling strengths to the cavity mode [26] and the
stationary entanglement is given in (28) with r1 = r2. Though
the dipole-dipole interaction influences the detailed process
of entanglement evolution, it does not change the stationary
entanglement once the parameters θ, φ and r1 = r2 are given.
Therefore, we shall concentrate on the general situation of
D = 0 in the following consideration.

Our first observation from eq. (28) is that besides the
relative coupling strengthes of the two atoms to the cav-
ity mode, the stationary entanglement will be determined
by the initial state of the system in terms of both θ and φ.
For any definite values of r1, r2 and θ � 0,π/2, the max-
imal (minimal) stationary entanglement always correspond
to an initial relative phase of φ = π (φ = 0). As an ex-
ample, for three particular cases of φ = 0,π/2,π, the sta-
tionary entanglement takes the forms C0

s = 2r1r2(r2
2 sin2 θ +

r2
1 cos2 θ−2r1r2 sin θ cos θ), Cπ/2

s = 2r1r2(r2
2 sin2 θ+r2

1 cos2 θ)
and Cπ

s = 2r1r2(r2
2 sin2 θ + r2

1 cos2 θ + 2r1r2 sin θ cos θ) and
thus the inequality C0

s < Cπ/2
s < Cπ

s holds for any initial
nonzero entanglement. The result coincides with the relation
between the total excited-state population trapped in the two
atoms and the relative phase. Therefore, an explicit link is
constructed between the stationary entanglement and excited-
state population of the two atoms. That is, it is due to the
relative phase dependent quantum interference that lead to
the possible increase of both stationary excited-state popula-
tion and entanglement. In Figure 3, we plot the dynamics
of entanglement and total excited-state population of the two
atoms with respect to a fixed initial concurrence and different
relative phases in both Markovian and non-Markovian reser-
voirs.
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Figure 3 (Color online). Time evolution of the concurrence and excited-state population of the two atoms for the initial entangled state with a fixed
θ = π/4 and different relative phases φ in (a) the Markovian (R/λ = 0.1) and (b) non-Markovian (R/λ = 10) reservoirs. We have considered the case of no
dipole-dipole interaction D = 0 and r1 =

√
3/2, r2 = 1/2.
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The figure clearly show the increases of both stationary en-
tanglement and excited-state population with an increase of
φ from zero to π. One can also note that though both entan-
glement and excited-state population exhibit distinct dynam-
ics behaviors in Markovian and non-Markovian reservoirs,
their stationary values are the same in the two regimes. This
can be verified from the formulae (27) and (28) that station-
ary excited-state population and entanglement are determined
only by the relative coupling strengthes r1, r2 and the initial
state in terms of both θ and φ, while independent to concrete
parameters of the reservoir.

Our second observation is that for definite values of r1, r2

and θ if they satisfy the condition

−1 �
1
2

(r1 cos θ
r2 sin θ

+
r2 sin θ
r1 cos θ

− 1

r2
1r2

2

)
� 1, (29)

then the stationary entanglement of the two atoms can equal
and even exceed their initial entanglement when the relative
phase φ further satisfies the relation

cos φ �
1
2

(r1 cos θ
r2 sin θ

+
r2 sin θ
r1 cos θ

− 1

r2
1r2

2

)
, (30)

where the equality and inequality denote respectively the sta-
tionary entanglement be equal to and larger than the initial
entanglement. The fact that the stationary entanglement can
asymptotically reach the initial entanglement does not neces-
sarily mean the entangled state is the decoherence-free eigen-
state of the Hamiltonian of the composite system. Actually,
the eigenstate is a particular case of (29) and (30) correspond-
ing to cosφ = 1

2 ( r1 cos θ
r2 sin θ +

r2 sin θ
r1 cos θ − 1

r2
1r2

2
) = −1, i.e. r1 = cos θ,

r2 = sin θ and φ = π. Namely, the decoherence-free state
has the form |ψ−〉 = r2 |e, g〉 − r1 |g, e〉. In Figure 4, we show
the growth of stationary entanglement of the two atoms over
their initial entanglement by adjusting the relative phase of

the initial entangled state. Here, we choose sin θ =
√

1
10 ,

cos θ =
√

9
10 (i.e. C(0) = 2 sin θ cos θ = 0.6) and r1 =

√
3/2,

r2 = 1/2, under which the condition in eq. (29) is satisfied
and the right hand side of eq. (30) is approximatively equal to
0.0276. According to the restriction of eq.(30) and as shown
in Figure 4, when cosφ � 0.0276 (i.e. φ � arccos 0.0276)
the stationary entanglement can reach and exceed the ini-
tial value C(0) = 0.6. In fact, the existence of a stationary
entangled state is due to the decoherence-free space of the
model. Therefore, given certain initial states of the system
their stationary entanglement can be enhanced. Here, from
another perspective, we present a possible explanation for
the growth of atoms’ stationary entanglement over the ini-
tial value. From eq. (21), atoms’ entanglement in the evo-
lution is determined by the product of |c1(t)| and |c2(t)|, i.e.
the excited state populations of the two atoms. Under the
conditions (29) and (30) we have proposed, the single exci-
tation can be redistributed in the two atoms in such a way
that the values of |c1(t)| and |c2(t)| are more even for t → ∞
and thus the stationary entanglement is correspondingly im-
proved. Taking the parameters used in Figure 4 as an ex-

ample, at the beginning, |c0| = | sin θ| =
√

1
10 ≈ 0.32 and

|c2(0)| = | cos θeiφ | =
√

9
10 ≈ 0.95 (i.e. the initial concurrence

C(0) = 0.6). In the long-time limit (e.g. λt = 15 for the strong
coupling regime), we get that |c1(t)| ≈ 0.49 and |c2(t)| ≈ 0.85
for φ = π (corresponding to the blue line in Figure 4(b)),
which are more even in comparison to the initial time and
thus lead to an increased stationary entanglement C(t) ≈ 0.83
over the initial value.

4 Conclusion

In conclusion, we have studied a novel quantum interference
induced by two entangled atoms coupled to a common en-
vironment. The relative phase in the initial entangled state
determines the constructive and destructive features of the in-
terference. It is shown the trapped excited-state population of
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Figure 4 (Color online) Time evolution of atomic entanglement for a fixed initial concurrence C(0) = 0.6, i.e. sin θ =
√

1
10 , cos θ =

√
9

10 and different
relative phases φ in (a) the Markovian (R/λ = 0.1) and (b) non-Markovian (R/λ = 10) reservoirs. The case of no dipole-dipole interaction D = 0 and
r1 =

√
3/2, r2 = 1/2 is considered.
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both the individual atom and the total atoms are closely re-
lated to the features of quantum interference. An explicit link
between the trapped excited-state population and the station-
ary entanglement is constructed. It is shown atomic station-
ary entanglement can be promoted by adjusting the values of
the relative phases. The stationary entanglement of the atoms
can reach and exceed their initial value under a given condi-
tion.
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