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In (Phys Lett A, 2002, 297: 4–8) an entanglement criterion for finite-dimensional bipartite systems is proposed: If ρAB is a separable
state, then Tr(ρ2

A) � Tr(ρ2) and Tr(ρ2
B) � Tr(ρ2). In the present paper this criterion is extended to infinite-dimensional bipartite

and multipartite systems. The reduction criterion presented in (Phys Rev A, 1999, 59: 4206–4216) is also generalized to infinite-
dimensional case. Then it is shown that the former criterion is weaker than the later one.

quantum state, entanglement criterion, infinite-dimensional system

Citation: Wang Y Z, Hou J C, Guo Y. An entanglement criterion for states in infinite-dimensional multipartite quantum systems. Chin Sci Bull, 2012, 57: 1643–1647,
doi: 10.1007/s11434-012-5111-5

1 Introduction

Quantum entanglement plays a crucial role in the rapidly de-
veloping theory of quantum information and quantum com-
putation [1]. One of the most fundamental problem in en-
tanglement theory is to determine whether a given quantum
state is entangled or not. Nowadays, a number of different
entanglement criteria have been found [2–18].

For the finite-dimensional bipartite quantum systems, Wu
and Anandan [18] proposed a trace inequality criterion which
reads as: If ρ is a separable state of a bipartite quantum
system A + B, then Tr(ρ2

A) � Tr(ρ2) and Tr(ρ2
B) � Tr(ρ2),

where ρA and ρB are the reduced density matrices of ρ, i.e.
ρA = TrB(ρ) and ρB = TrA(ρ). Recall that, the reduction crite-
rion says that if a state ρ is separable, then ρA⊗ IB−ρ � 0 and
IA ⊗ ρB − ρ � 0. It is claimed in [19] that the trace inequality
criterion mentioned above is weaker than the reduction cri-
terion. Though this claim is true, the proof of it is not right
there.

The aim of this paper is to generalize the above two crite-
ria to infinite-dimensional case and then show that the trace
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inequality criterion is weaker than the reduction criterion.
Recall that, a quantum state ρ (i.e. a positive trace-one

operator) acting on a Hilbert space H = HA ⊗ HB with
dim HA ⊗ HB � +∞, is called separable if it can be writ-
ten as a convex combination of some product states, i.e. ρ is
of the form

ρ =
∑

i

piρ
A
i ⊗ ρ

B
i ,
∑

i

pi = 1, pi � 0, (1)

or, it can be approximated in the trace norm by the states of
the form in eq. (1) [20], where ρA

i and ρB
i are (pure) states

in the subsystems HA and HB, respectively. Otherwise, ρ is
called entangled. A quantum state ρ (i.e. a positive trace-one
operator) acting on a Hilbert space H = H1 ⊗ H2 ⊗ . . . ⊗ Hm

with dim H1 ⊗ H2 ⊗ . . . ⊗ Hm � +∞ is defined to be fully
separable if it has the form

ρ =
∑

i

piρ
(1)
i ⊗ ρ

(2)
i ⊗ . . . ⊗ ρ

(m)
i ,
∑

i

pi = 1, pi � 0, (2)

or it can be approximated in the trace norm by the states of
the above form, where ρ(k)

i s are (pure) states in the subsys-
tems Hk, k = 1, 2, . . . , m.
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We fix some notations used in this paper. In quantum
mechanics, a quantum system is associated with a separable
complex Hilbert space H, i.e. the state space. Let HA, HB,
etc., be complex separable Hilbert spaces (associated with
quantum systems), throughout the paper we use the Dirac’s
symbols. The brackets notation, 〈·|·〉 stand for the inner prod-
uct in the given Hilbert spaces. The set of all bounded linear
operators on some Hilbert space H is denoted by B(H). Let
S (HA ⊗ HB) be the set of all states in HA ⊗ HB. It is obvious
that S (HA ⊗ HB) ⊆ B(HA ⊗ HB). By T (H) we denote the set
of all trace class operators of Hilbert spaces H. If T ∈ T (H),
we have ||T ||Tr = Tr((T †T )

1
2 ) < +∞, where ‖ · ‖Tr denote

the trace norm. Recall that, if a quantum system is in one of
a number of states |ψi〉, where i is an index, with respective
probabilities pi, then {pi, |ψi〉} is called an ensemble of pure
states, and the associated density operator for the system is
defined by ρ =

∑
i

pi|ψi〉〈ψi|. Obviously, ρ is a pure state if

and only if Tr(ρ2) = 1.

2 The main results

In this section we present the main results and their proofs.
Our first result is an infinite-dimensional version of the

trace inequality criterion proposed in [18].

Theorem 2.1 Let HA, HB be complex separable Hilbert
spaces with dim(HA ⊗ HB) = +∞. If ρ ∈ S (HA ⊗ HB) is
separable, then Tr(ρ2

A) � Tr(ρ2) and Tr(ρ2
B) � Tr(ρ2), where

ρA = TrB(ρ), ρB = TrA(ρ).
In order to prove this theorem, we need a lemma.

Lemma 2.2 Let H be a complex Hilbert space, Tn, T ∈
T (H). Then lim

n→+∞
Tn = T under the trace norm implies that

lim
n→+∞

T 2
n = T 2 under the trace norm.

Proof. Note that, for A ∈ T (H), we have ‖A‖ � ‖A‖Tr <
+∞. As Tn, T ∈ T (H) ⊆ B(H) and ‖Tn − T‖Tr → 0, there
exists some positive number M such that supn{‖Tn‖Tr} = M <

+∞. Then, it follows from

‖T 2
n − T 2‖Tr

= ‖T 2
n − TnT + TnT − T 2‖Tr

� M · ‖Tn − T‖Tr + ‖T‖ · ‖Tn − T‖Tr

that
‖T 2

n − T 2‖Tr → 0 as n→ +∞.

Proof of Theorem 2.1. Let S S−p(HA ⊗ HB) be the set of
all separable pure states. If ρ is separable, then it admits a
representation of Bochner integral [21]

ρ =

∫

S S−p

ϕ(ρA ⊗ ρB)dμ(ρA ⊗ ρB), (3)

where μ is a Borel probability measure on S S−p(HA ⊗ HB),
ρA ⊗ ρB ∈ S S−p(HA ⊗HB), and ϕ : S S−p → S S−p is a measur-
able function. It follows that there exists a sequences of step

function ϕn, such that

ϕ(ρA ⊗ ρB) = lim
n→+∞

ϕn(ρA ⊗ ρB)

with respect to the trace norm, where

ϕn(ρA ⊗ ρB) =
kn∑

i=1

XEi (ρ
A ⊗ ρB)ρA

i ⊗ ρB
i ,

and XEi (·) is the characteristic function of Ei, {Ei}kn
i=1 is a par-

tition of S S−p(HA ⊗ HB). Denote by E the set of all possible
partitions {Ei}kn

i=1 of S S−p(HA ⊗ HB). Then E is a direct set
and we have

ρ = lim
{Ei}∈E

∑

i

μ(Ei)ρ
A
i ⊗ ρ

B
i , (4)

with respect to the trace norm, as well as with respect to the
Hilbert Schmidt norm, where ρA

i and ρB
i are pure states re-

spectively in HA and HB, i.e. there exist unit vectors {|ψi〉} in
HA and {|φi〉} in HB, respectively, such that ρA

i = |ψi〉〈ψi| and
ρB

i = |φi〉〈φi|. It is well known that Tr is a completely positive
linear functional of T (H) with dim H � +∞. In fact, taking
any orthonormal basis {|ei〉}dim H

i=1 of H, the complete positivity

of Tr comes from the fact Tr(T )(|e1〉〈e1|) =
∞∑

i=1
EiT E†i , where

Ei = |e1〉〈ei|. Thus Tr is completely bounded and hence I⊗Tr
is continuous. So we have

ρA = TrB(ρ) = lim
{Ei}∈E

∑

i

μ(Ei)ρA
i , (5)

with respect to the trace norm. By Lemma 2.2, one gets

Tr(ρ2
A) = lim

{Ei}∈E
Tr([
∑

i

μ(Ei)ρA
i ]2)

= lim
{Ei}∈E

Tr(
∑

i

∑

j

μ(Ei)μ(E j)ρA
i ρ

A
j )

= lim
{Ei}∈E

Tr(
∑

i

∑

j

μ(Ei)μ(E j)|ψA
i 〉〈ψ

A
i | · |ψ

A
j 〉〈ψ

A
j |)

= lim
{Ei}∈E

[
∑

i

∑

j

μ(Ei)μ(E j)|〈ψA
i |ψA

j 〉|2]

� lim
{Ei}∈E

[
∑

i

∑

j

μ(Ei)μ(E j)|〈ψA
i |ψ

A
j 〉〈φ

B
i |φ

B
j 〉|

2].

On the other hand, by Lemma 2.2, we have

Tr(ρ2) = lim
{Ei }∈E

Tr([
∑

i

μ(Ei)ρA
i ⊗ ρB

i ]2)

= lim
{Ei }∈E

Tr(
∑

i

∑

j

μ(Ei)μ(E j)ρA
i ⊗ ρB

i ρ
A
j ⊗ ρB

j )

= lim
{Ei }∈E

[
∑

i

∑

j

μ(Ei)μ(E j)|〈ψA
i |ψ

A
j 〉〈φ

B
i |φ

B
j 〉|

2].

So we obtain that Tr(ρ2
A) � Tr(ρ2). The inequality Tr(ρ2

B) �
Tr(ρ2) can be checked similarly. This completes the proof.

We give an example to illustrate how to apply the trace
inequality criterion established in Theorem 2.1.
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Example Let H = HA ⊗ HB be a Hilbert space with
dim HA = 2 and dim HB = +∞. We consider a state
ρ ∈ S (HA ⊗ HB) with the following form:

ρ =
x
2
|00

′〉〈00
′ | +

1 − x
2

(|01
′〉 + |10

′〉)(〈01
′ | + 〈10

′ |)

+
x
2

(|02
′〉 + |11

′ 〉)(〈02
′ | + 〈11

′ |),

where 0 � x � 1, {|0〉, |1〉} is an orthonormal basis of HA and
{|0′ 〉, |1′ 〉, · · · } is an orthonormal basis of HB. Then

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
2 0 0 · · · 0 · · · 0 0 0 · · · 0 · · ·

0 1−x
2 0 · · · 0 · · · 1−x

2 0 0 · · · 0 · · ·

0 0 x
2 · · · 0 · · · 0 x

2 0 · · · 0 · · ·
...

...
...

. . .
... · · ·

...
...

...
. . .

... · · ·

0 0 0 · · · 0 · · · 0 0 0 · · · 0 · · ·
...

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .

0 1−x
2 0 · · · 0 · · · 1−x

2 0 0 · · · 0 · · ·

0 0 x
2 · · · 0 · · · 0 x

2 0 · · · 0 · · ·

0 0 0 · · · 0 · · · 0 0 0 · · · 0 · · ·
...

...
...

. . .
... · · ·

...
...

...
. . .

... · · ·

0 0 0 · · · 0 · · · 0 0 0 · · · 0 · · ·
...

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and ρA =

⎛⎜⎜⎜⎜⎜⎜⎝
1+x

2 0

0 1
2

⎞⎟⎟⎟⎟⎟⎟⎠. It is obvious that

Tr(ρ2) =
9
4

x2 − 2x + 1 and Tr(ρ2
A) =

1
4

(x2 + 2x + 2).

Thus Tr(ρ2
A) < Tr(ρ2) whenever 0 � x < 1

4 . So ρ is entangled
whenever 0 � x < 1

4 .
For finite-dimensional case, the trace inequality criterion

in [18] is valid for multipartite systems. Namely, if ρ is a
fully separable state acting on H1 ⊗ H2 ⊗ · · · ⊗ Hm, then

Tr(ρ2
α1

) � Tr(ρ2
α1α2

) � · · · � Tr(ρ2
α1α2···αr

) � · · · � Tr(ρ2), (6)

where α1α2 · · ·αr represent r distinct elements from the set
{1, 2, · · · ,m}, and ρα1 is the reduced density matrix of the
subsystem α1, ρα1α2 is the reduced density operator of the
system α1 + α2, etc., that is, ρα1 is obtained by tracing over
all subsystems except α1, ρα1α2 is obtained by tracing over all
subsystems except α1 and α2, and so on. In what follows, we
will generalize Theorem 2.1 to multipartite cases.

Let H1, H2, . . ., Hm be separable complex Hilbert spaces
with dim(H1⊗H2⊗· · ·⊗Hm) = +∞. By S S−p(H1⊗H2⊗···⊗Hm)
we denote the set of all full separable pure states acting on
H1 ⊗ H2 ⊗ · · · ⊗ Hm. According to [21], we have that if

ρ ∈ S (H1 ⊗ H2 ⊗ · · ⊗Hm) is fully separable, then ρ admits
a representation of Bochner integral

ρ =

∫

S S−p

ϕ(ρ(1)⊗ρ(2)⊗· · ·⊗ρ(m))dμ(ρ(1)⊗ρ(2)⊗· · ·⊗ρ(m)), (7)

where μ is a Borel probability measure on S S−p(H1 ⊗ H2 ⊗
· · · ⊗ Hm), ρ(1) ⊗ ρ(2) ⊗ · · · ⊗ ρ(m) ∈ S S−p(H1 ⊗ H2 ⊗ · · · ⊗Hm),
and ϕ : S S−p → S S−p is a measurable function. It follows
that there exists a sequences of step function ϕn such that

ϕ(ρ(1) ⊗ ρ(2) ⊗ · · · ⊗ ρ(m)) = lim
n→∞

ϕn(ρ(1) ⊗ ρ(2) ⊗ · · · ⊗ ρ(m))

with respect to the trace norm, where

ϕn(ρ(1) ⊗ ρ(2) ⊗ · · ⊗ρ(m)) =
kn∑

i=1

XEi (ρ
(1) ⊗ ρ(2) ⊗ · · · ⊗ ρ(m))

× ρ(1)
i ⊗ ρ

(2)
i ⊗ · · · ⊗ ρ

(m)
i ,

XEi (·) is the characteristic function of Ei, and {Ei}kn

i=1 is a par-
tition of S S−p(H1 ⊗ H2 ⊗ · · · ⊗ Hm). Let us denote by E the
set of all finite partitions {Ei}kn

i=1 of S S−p(H1 ⊗H2 ⊗ · · · ⊗Hm).
Now we have

ρ = lim
{Ei}∈E

∑

i

μ(Ei)ρ
(1)
i ⊗ ρ

(2)
i ⊗ · · · ⊗ ρ

(m)
i (8)

with respect to the trace norm, as well as with respect to the
Hilbert Schmidt norm, where ρ( j)

i = |ψ
j
i 〉〈ψ

j
i | are pure states in

H j, j = 1, 2, . . . , m.

Theorem 2.3 Let H1,H2, · · · ,Hm be separable complex
Hilbert spaces with dim H1 ⊗ H2 ⊗ · · · ⊗ Hm = +∞. If
ρ ∈ S (H1 ⊗ H2 ⊗ · · · ⊗ Hm) is a fully separable state, then

Tr(ρ2
α1

) � Tr(ρ2
α1α2

) � · · · � Tr(ρ2
α1α2···αr

) � · · · � Tr(ρ2), (9)

where α1α2 · · ·αr represent r distinct elements from the set
{1, 2, . . . ,m}, and ρα1 is the reduced density operator of the
system α1, ρα1α2 is the reduced density operator of the sys-
tem α1 + α2, etc., that is, ρα1 is obtained by tracing over all
subsystems except α1, ρα1α2 is obtained by tracing over all
subsystems except α1 and α2, and so on.

Proof. Since Tr is a completely bounded functional,
ρα1α2···αr is well-defined. From eq. (8), we can see that for
every integer r satisfying 1 � r � m, ρα1α2 ···αr has a represen-
tation as follows:

ρα1α2 ···αr = lim
{Ei}∈E

∑

i

μ(Ei)ρ
(α1)
i ⊗ ρ(α2)

i ⊗ · · · ⊗ ρ(αr )
i .

By Lemma 2.2, we get

Tr(ρ2
α1α2···αr

)

= lim
{Ei}∈E

Tr
(∑

i, j

μ(Ei)μ(E j)(ρ
(α1)
i ⊗ ρ(α2)

i ⊗ · · · ⊗ ρ(αr )
i )

× (ρ(α1)
j ⊗ ρ(α2)

j ⊗ · · · ⊗ ρ(αr )
j )
)

= lim
{Ei}∈E

[∑

i

∑

j

μ(Ei)μ(E j)|〈ψα1
i ψ

α2
i · · ·ψ

αr
i |ψ

α1
j ψ

α2
j · · ·ψ

αr
j 〉|

2
]
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� lim
{Ei}∈E

[∑

i

∑

j

μ(Ei)μ(E j)|〈ψα1
i ψ

α2
i · · ·ψ

αr
i ψ

αr+1
i |

ψα1
j ψ

α2
j · · ·ψ

αr
j ψ

αr+1
j 〉|

2
]

= Tr(ρ2
α1α2···αr+1

).

So we have

Tr(ρ2
α1

) � Tr(ρ2
α1α2

) � · · · � Tr(ρ2
α1α2···αr

) � · · · � Tr(ρ2). �

Next, we extend the reduction criterion to infinite-
dimensional case.

Theorem 2.4 Let ρ ∈ S (HA ⊗ HB) with dim(HA ⊗ HB) =
+∞. If ρ is a separable state, then

ρA ⊗ IB − ρ � 0, IA ⊗ ρB − ρ � 0. (10)

Proof. We only need to prove the inequality ρA⊗IB−ρ � 0.
Another one can be checked similarly. Since ρ is separable,
by eqs. (4) and (5), we have

ρ = lim
{Ei}∈E

∑

i

μ(Ei)ρA
i ⊗ ρB

i ,

and
ρA = TrB(ρ) = lim

{Ei}∈E

∑

i

μ(Ei)ρA
i

with respect to the trace norm. Then

ρA ⊗ IB − ρ
= lim

{Ei }∈E
(
∑
i
μ(Ei)ρA

i ⊗ IB −
∑
i
μ(Ei)ρA

i ⊗ ρB
i )

= lim
{Ei }∈E

[
∑
i
μ(Ei)(ρA

i ⊗ IB − ρA
i ⊗ ρB

i )]

= lim
{Ei }∈E

[
∑
i
μ(Ei)(ρA

i ⊗ (IB − ρB
i ))]

� 0

as desired.
Now we discuss the relation between the trace inequality

criterion and the reduction criterion.

Definition 2.5 Let (a) and (b) be two necessary separabil-
ity criteria. By ε(a) and ε(b), we denote the set of entangled
states detected by (a) and (b), respectively. We say that (a) is
weaker than (b) if ε(a) ⊆ ε(b). In this case we also say that
(b) is stronger than (a). We say that (a) and (b) are equivalent
if ε(a) = ε(b). Finally we say that (a) and (b) are independent
if (a) is neither weaker nor stronger than (b).

In [19], it is pointed out that the trace inequality criterion is
weaker than the reduction criterion for the finite-dimensional
systems. However the proof provided there is not correct
since the argument is based on an incorrect equation (see
eq. (3) in [19], it is stated there that “...

√
ρ = (

√
ρ1 ⊗ I)R† =

R(
√
ρ1)⊗ I. Therefore, ρ = R†(

√
ρ1 ⊗ I)R and ...”. This is not

correct since ρ = R(
√
ρ1 ⊗ I)R† � R†(

√
ρ1 ⊗ I)R. The fact

is true that the trace inequality criterion is weaker than the

reduction criterion for systems of any dimension. We give
a correct proof that is valid for both finite-dimensional and
infinite-dimensional cases.

Theorem 2.6 The trace inequality criterion is weaker
than the reduction criterion for both finite- and infinite-
dimensional bipartite systems.

Proof. Assume that dim HA ⊗ HB � +∞. Let ρ ∈
S (HA ⊗ HB) be any state satisfying ρA ⊗ IB − ρ � 0. Since
the square root is an operator monotone function, we have√
ρA ⊗ IB −

√
ρ � 0. By Douglas theorem [22], there ex-

ists a contractive operator R such that
√
ρ = (

√
ρA ⊗ IB)R =

R†(
√
ρA ⊗ IB). It follows that

ρ = (
√
ρA ⊗ IB)RR†(

√
ρA ⊗ IB).

Thus,
ρA = TrB(ρ) =

√
ρATrB(RR†)

√
ρA,

which implies that

TrB(RR†)
√
ρA =

√
ρA =

√
ρATrB(RR†).

Consequently,
ρ2

ATrB(RR†) = ρ2
A.

Since

ρ2 =
√
ρρ
√
ρ = R†(ρA ⊗ IB)RR†(ρA ⊗ IB)R � R†(ρ2

A ⊗ IB)R,

one has

Tr(ρ2) � Tr(R†(ρ2
A ⊗ IB)R)

= Tr((ρ2
A ⊗ IB)RR†)

= TrA(TrB((ρ2
A ⊗ IB)RR†))

= TrA(ρ2
ATrB(RR†))

= TrA(ρ2
A)

= Tr(ρ2
A).

Similarly, one can check that IA ⊗ ρB − ρ � 0 implies that
Tr(ρ2

B) � Tr(ρ2). Therefore, the trace inequality criterion is
weaker than the reduction criterion.

Remark. Although the criterion of Theorem 2.1 is weaker
than the reduction criterion, it is easy to handle for some
senses, since its form is simpler than the reduction criterion.
The criterion of Theorem 2.1 is a complementarity for detect-
ing entanglement of states.
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