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During the summer monsoon season, the moisture of precipitation events in southern and central regions of the Tibetan Plateau is 
mainly moisture from the Indian Ocean transported by the Indian monsoon and terrestrial vapor derived from the surface of the 
Tibetan Plateau. However, the respective contributions of these two types of moisture are not clear. From June to September, the 
excess deuterium values of precipitation and river water in the Nam Co basin are higher than those for the southern Tibetan Pla-
teau. This reflects the mixing of evaporation from Nam Co and local atmospheric vapor. On the basis of theory for estimating the 
contribution of evaporative vapor from surface water bodies to atmospheric vapor and relative stable isotopes in water bodies 
(precipitation, river water, atmospheric moisture and lake water), this study preliminarily estimates that the average contribution 
of evaporation from the Lake Nam Co to local atmospheric vapor has varied from 28.4% to 31.1% during the summer monsoon 
season in recent years. 
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Studies on terrestrial vapor recycling are important in fully 
determining the various sources of moisture and temporal 
and spatial characteristics of precipitation in different dis-
tricts of the Tibetan Plateau (TP). During spring and sum-
mer, as a strong source of heat, much latent heat and sensi-
ble heat is derived from the surface of the TP [1–3], and it 
not only plays an important role in the formation of the In-
dian monsoon [4–6] but also affects the global atmospheric 
cycle [7,8]. Meanwhile, with the output of much heat from 
the surface and the strengthening of atmospheric convection 
during the day [9,10], there is distinct terrestrial vapor recy-
cling, and much atmospheric vapor derived from the surface 
of the TP enters the atmosphere. Notably, the numerous 
lakes on the TP generate considerable evaporative vapor.  
                      
*Corresponding author (email: shichang.kang@itpcas.ac.cn) 

The total area of these lakes is nearly 44993.3 km2 [11]. 
Therefore, the contribution of surface evaporative vapor and 
especially the vapor from lakes, to atmospheric vapor on the 
TP cannot be ignored. In this regard, qualitative studies 
have been carried out. For example, Yang et al. [12] found 
that there was nearly a water balance among precipitation, 
evaporation and osmotic water flowing through soil on the 
western TP owing to local water recycling, which was the 
major form of water cycling. Yao et al. [13] studied the 
δ18O characteristics of snow in the region of Tanggula 
Mountain and found that moisture in some snow events 
came from evaporative vapor of the surface of the inner TP. 
From comparisons among the stable isotopic compositions 
in precipitation, moisture near ground, and vapor released 
by transpiration, Kurita and Yamada [14] considered that 
local evaporative vapor contributed to most precipitation 
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events during the summer season of 2004. However, quan-
titative studies on the contribution of terrestrial moisture to 
total atmospheric moisture on the TP are lacking.  

Water stable isotopes, especially those in atmospheric 
moisture, have been useful in quantitatively and qualita-
tively investigating terrestrial vapor recycling in different 
regions around the world. In the Amazon basin, via the con-
struction of a steady state evapotranspiration model, Gat 
and Matsui [15] calculated that evaporation from the surface 
water bodies provides approximately 20%–40% local at-
mospheric vapor. Analogously, in the Great Lakes region, 
Gat et al. [16] preliminarily estimated the contribution of 
evaporation from the Great Lakes to the continental atmos-
phere. Worden et al. [17] considered that moisture in the 
troposphere in the tropical zone is mainly derived from 
oceans and continents through comparison of stable isotope 
levels in the moisture of the troposphere and precipitation. 
In eastern Japan, Yamanaka and Shimizu [18] collected 
vapor samples at different sites in the Kasumigaura lake 
region, and calculated the proportions of various vapor 
sources and the contribution of evaporation by the lake to 
the local atmosphere. Additionally, similar studies have 
been carried out for the Mediterranean Sea [19], Madagas-
car off the coast of Africa [20], the Slave River Delta in 
Canada [21], and California and Nevada in the United 
States [22]. 

As the second largest saline lake in China, Nam Co 
(30°30′–30°55′N, 90°16′–91°03′E, 4719 m a.s.l.) has an 
area of nearly 2000 km2 [23] and is located on the central 
TP and the north piedmont of the Nyainqentanglha Range, 
mostly in Dangxiong county and Bange county, Tibet. The 
Nam Co basin possesses all Tibetan subsystems (such as 
atmosphere, glaciers, snow cover, lakes, frozen earth, and 
vegetation), and provides advantages for investigating 
land–atmosphere reciprocity and its effect on climate and 
atmospheric cycling on the TP. Through numerical model-
ing, Lü et al. [24] found that the presence of Nam Co de-
presses the height of the atmospheric boundary layer above 
and leads to limited moisture and heat preservation in the 
low zone of the boundary layer. Thus, evaporation from 
Nam Co can fully mix with input vapor from other regions. 
In addition, it has been found that the evaporation flux from 
Nam Co is strong during the thawing season, especially 
after the monsoon season (autumn and beginning of winter) 
[25]. All the above suggests that the cycling of evaporative 
vapor from the Nam Co basin, especially the evaporation of 
Nam Co lake water, may affect the atmospheric system of 
the Nam Co basin. 

With the above background, this study discusses a 
method that uses data of stable water isotopes, including 
δ 

18O, δ 
2H and excess deuterium for water bodies in the 

Nam Co basin and adjacent regions, to preliminarily esti-
mate the average contribution of evaporation from Nam Co 
to local atmospheric vapor. 

1  Theoretical background 

The stable isotopic compositions in marine vapor are con-
trolled by reciprocal processes between air and sea [26,27]. 
These processes ensure excess deuterium (d excess, which 
is defined as d=δ 

2H–8δ 
18O [28]) in the marine vapor. Dur-

ing the transportation of marine vapor by an air mass, the 
stable isotopes in vapor become more and more depleted 
owing to continuous precipitation, and the d value remains 
constant if no terrestrial vapor enters the air mass [29]. 
However, in reality, some precipitation returns to the at-
mosphere through the evaporation of surface water bodies 
and transpiration of vegetation. The vapor from transpira-
tion does not change the stable isotopic compositions in 
former vapor because there is no isotopic fractionation dur-
ing transpiration [16,30], while evaporative vapor from the 
surface returns air with a higher d value, and mixes with 
former vapor with a lower d value quickly. This leads to the 
actual d value of mixed vapor being higher than that of 
former vapor [16]. Thus, we can make use of the difference 
between the d values of former and mixed vapor to estimate 
the contribution of evaporation from surface water bodies to 
the continental atmosphere [15,20,22]. To evaluate the con-
tribution of evaporation from a water body to the local at-
mosphere, we need to know the d values of the former va-
por (usually the input vapor from upwind regions) and local 
vapor (mixed vapor) in the region of the water body.  

Supposing that the contribution of evaporation from a 
water body is x (0≤x<1), then the contribution of vapor from 
the upwind area is 1–x, and d A in local atmospheric vapor 
can be expressed as 

 A A E(1 ) ,d d x d x′= − +  (1) 

where dA, d′A, and dE are the d values of local atmospheric 
vapor, input vapor from upwind regions and evaporative 
vapor from the water body, respectively. Rearranging eq. 
(1), the formula for calculating the contribution (x) of 
evaporation from the water body is 

 A A

E A

.d dx
d d

′−
=

−
 (2) 

dE can be calculated from the stable isotopic composition 
(δE), which is usually estimated employing a simplified 
Craig–Gordon [26] water evaporation model as [31] 
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where δA and δW are stable isotopic compositions of local 
atmospheric vapor and water of the water body, respec-
tively. h is the relative humidity upon the water surface. The 
liquid-vapor equilibrium fractionation factor α∗ can be  
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calculated using empirical equations based on the air tem-
perature at the interface of the water surface and air [32]. ε∗ 
describes equilibrium separation between the liquid and 
vapor phases, and ε∗= α∗ – 1. εΚ can be evaluated with a 
function of the boundary layer conditions and the humidity 
deficit [33]: εΚ = CK (1–h) with CK being commonly deter-
mined as 0.0125 for hydrogen and 0.0142 for oxygen under 
typical evaporation conditions for a lake [33]. 

Expressing eq. (3) for 18O and 2H, respectively, we obtain 
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According to the definition of d [28] and the empirical 
equation for εΚ [33], after substituting δE(2H)=dE+8δE(18O), 
δA(2H)=dA+8δA(18O),  εΚ(2H)=0.0125(1–h) and εΚ(18O)=0.0142 
(1–h) into eq. (5), the combination of eqs. (4) and (5) yields 
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E 0.1011,
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Eq. (6) can be rearranged as 

 A
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Finally, substituting eq. (7) into eq. (2), we get 

 A A

A

( )(1 ) .
0.1011(1 )

d d hx
A d B h

′− −
=

− − + −
 (8) 

It is notable that all relative parameters used in the equa-
tions are presented in decimal notation; e.g. dA = 0.010 and 
h = 0.6. 

Summarizing the above descriptions, if we know the values 
of h, α∗, δW, dA and (dA–d′A), the contribution (x) of evapora-
tion from the water body can be estimated using eq. (8). 

In this study, to avoid the effect of an elevated d value 
for precipitation vapor resulting from the formation of ice 
and snow at super low air temperature [34], we only esti-
mate the contribution during the summer monsoon season 
from isotopic data of rainfall from June to September. 

2  Results and discussion 

2.1  Stable isotopic compositions in the Nam Co basin  
and its southern districts in summer 

Previous studies show that precipitation moisture on the 

southern and central TP is mainly moisture from the Indian 
Ocean transported by the Indian monsoon along two typical 
trajectories (Figure 1) that pass through the Arabian Sea and 
the Bay of Bengal [35,36]. Table 1 presents mean stable 
isotopic data (δ 

18O, δ 
2H and d) for the summer precipita-

tion recorded at stations along the two trajectories (Figure 
1). Looking at Table 1 from south to north, if we set the 
Himalayas as the boundary, the mean δ 

18O, δ 
2H and d of 

the precipitation recorded at stations located on the Indian 
subcontinent (Kozikode, Maner basin, Bombay, Allahabad, 
New Delhi and Shillong) are –9.0‰ to –1.0‰, –64.0‰ to 
–2.0‰, and 8.7‰ to 11.0‰, respectively, while the mean 
δ 

18O, δ 
2H and d (–20.0‰ to –15.0‰, –153.0‰ to 

–120.0‰ and 4.0‰ to 5.0‰, respectively) for precipitation 
recorded at stations located in the Himalayas and on the 
southern TP (Nyalam, Tingri and Lhasa) are clearly lower 
than values for the Indian stations. The reason for these 
clear differences between δ 

18O and δ 
2H values of precipita-

tion south and north of the Himalayas is the obvious deple-
tion of 18O and 2H in monsoon vapor after plentiful precipi-
tation when long-distance vapor from the Indian Ocean 
crosses the Himalayas [35,37]. There is no current explana-
tion as to why the mean d value of precipitation recorded at 
stations in the Himalayas and on the southern TP (4.5‰) is 
lower than that recorded at stations in the southern Himala-
yas (9.0‰). Theoretically, because we are considering the 
same precipitation moisture from the Indian Ocean, the d 
values for the precipitation recorded at the stations men-
tioned above should be similar. 

In Figure 1 and Table 1, the mean d values of summer 
precipitation recorded at each station on the southern TP 
(Nyalam, Tingri and Lhasa) from 1998 to 2001 are similar. 
This suggests that the d values of moisture at these stations 
are also similar. Because the Nam Co station located on the 
central TP has the same moisture from the Indian Ocean and 
is near the upwind three stations on the southern TP, espe-
cially the Lhasa station (only 120 km distant) (Figure 1), the 
d value of the input vapor in the Nam Co basin should be 
similar to that of the vapor at these three stations, especially 
that at the Lhasa station. Thus, if there is no evaporation 
from surface water bodies in the Nam Co basin to mix with 
the input vapor, the d value of the local vapor should be the 
same as that of the input vapor. The mean d value of the 
summer precipitation in the Nam Co basin should also be 
similar to that recorded at the three stations on the southern 
TP. However, the mean d value of summer precipitation at 
the Nam Co station from 2005 to 2008 (11.1‰) is 6.6‰ 
higher than that at the three stations on the southern TP 
(4.5‰). This suggests that there should be evaporative va-
por with a higher d value from surface water bodies in the 
Nam Co basin that mixes with the local atmosphere. 
Meanwhile, a previous study considered that the evapora-
tion flux from Nam Co holds the majority of the total 
evaporation flux from the surface water bodies in the Nam 
Co basin [38]. Therefore, the higher d values of summer  
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Figure 1  Distribution of stations for collecting precipitation samples on the southern TP and in Indian subcontinent. The two typical trajectories of the 
Indian monsoon to transport moisture from the Indian Ocean are shown: (1) the moisture trajectory through the Arabian Sea and (2) the moisture trajectory 
through the Bay of Bengal. These two trajectories are confirmed by backward air trajectories (500 m above the ground), which arrive at the Nam Co basin 
within 10 days and are modeled by the HYSPLIT air trajectory model provided by the NOAA on the basis of GDAS historical meteorological data for June 
to September from 2006 to 2009 (http://ready.arl.noaa.gov/hysplit-bin/trajtype.pl?runtype=archive). 

Table 1  Stable isotopes in summer precipitation recorded at stations in this study 

Station Data period Mean δ 
18O (‰) Mean δ 

2H (‰) Mean d (‰) Data source 

The south district of the Himalayas 

Bombay 1961–1977 –1.4±1.1 –2.4±8.7 8.7±4.0 

Kozikode 1998–1999 –2.9±1.9 –12.6±13.5 10.2±2.1 

New Delhi 1961–1996 –5.7±4.5 –36.1±33.1 7.8±6.7 

Shillong 1969–1978 –7.1±4.0 –45.6±30.0 10.8±5.2 

Allahabad 1980 –9.0±2.7 –63.4±20.2 8.6±2.3 

Maner basin 1977 –4.7±2.5 –29.4±19.0 8.1±2.8 

[39] 

The central and south regions of the TP 

Tingri 2000 –19.5±4.2 –152.0±32.3 4.1±4.0 [40] 

Nyalam 1998–2001 –15.7 –120.4 5.0 

Lhasa 1998–2001 –18.4 –142.7 4.2 
[35] 

Nam Co 2005–2008 –19.6 –146.6 11.1 this study 

 
precipitation recorded at the Nam Co station must result 
from the mixing of evaporation from Nam Co and input 
vapor from upwind regions. 

2.2  Excess deuterium of river water in the Nam Co  
basin 

The characteristic of higher d values of summer precipita-
tion in the Nam Co basin are reflected by the d values of 
river water in the Nam Co basin. The mean d value of river 

water samples (12.4‰) is clearly higher than that of river 
water samples (6.9‰) in the upwind regions (Table 2). 
Furthermore, it is especially clear that the d values of water 
in rivers No. 2, No. 3, No. 4, No. 5 and No. 6 are higher 
than 13.0‰. This is because the main source of these rivers 
is the meltwater of glaciers and snowpack in the Nam Co 
basin [41]. The mean d value of meltwater in the Nam Co 
basin is about 14.0% [38]. However, the mean d value of 
river water for rivers No.1, No.7 and No. 8 is 8.7‰, which 
is only a little higher than 6.9‰. This is because the two 
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main sources of these rivers are precipitation and wetlands, 
and the supplies of plentiful wetland water with an ex-
tremely low mean d value (–1.4‰) weaken the high d 
value information in the precipitation [38]. 

2.3  Stable isotopic compositions of Nam Co lake water 

The mean δ 
18O and δ 

2H values of Nam Co lake water 
(–6.7‰ and –67.7‰) are far higher than those of river water 
in the Nam Co basin (–16.4‰ and –119.1‰) (Tables 2 and 
3). This is due to the gradual enrichment of 18O and 2H in the 
lake water resulting from long-term strong evaporation [43]. 
In addition, Table 3 shows that there is little monthly and 
yearly variation. Thus, we conclude that the δ 

18O and δ 
2H 

values of Nam Co lake water are steady and the mean stable 
isotopic compositions of Nam Co lake water from 2005 to 
2008 are the mean values for lake water in recent years. 

2.4  Stable isotopic compositions of atmospheric vapor  
in the Nam Co basin  

It is difficult to measure δA directly because of the dynamic 
nature of the atmosphere [30,31] and strong seasonality 
[44]. In this study, we use the vapor–precipitation balance 
to estimate the stable isotopic composition (δA) in the vapor 
of the Nam Co basin during the summer monsoon season. 

This method has been successfully employed in many stud-
ies for many districts [16,21,45,46]. The calculation is [46]  

 * *
A P ) / ,δ δ ε α= −（  (9) 

where δP is the mean stable isotopic composition of summer 
precipitation. From the mean air temperature during summer 
and the mean δ 

18O and δ 
2H values of summer precipitation 

recorded at the Nam Co station from 2005 to 2008 (–19.6‰ 
and –146.6‰, respectively; see Table 1), the mean δ 

18O and 
δ 

2H values (δA) of the vapor in the Nam Co basin are deter-
mined as –30.2‰ and –224.1‰, respectively. Accordingly, 
the d value of the vapor is 17.6‰. 

2.5  Contribution of evaporation from Nam Co to local 
atmospheric vapor 

(1) Estimation of the average contribution during summer. 
During summer, the annual d values of the precipitation at the 
Nam Co station for 2005, 2006, 2007 and 2008 are 10.2‰, 
12.5‰, 10.7‰ and 11.3‰, respectively. Thus, the mean d 
value of summer precipitation at the Nam Co station from 
2005 to 2008 can be considered equal to the mean d value of 
summer precipitation at the Nam Co station for the past 10 
years. The difference between the d value of the precipitation 
at the Nam Co station (11.1‰) and the mean d value of the 

Table 2  Mean d values of river water samples in the Nam Co basin and southern upwind regions  

River No. River name δ 
18O (‰) δ 

2H (‰) d (‰) Data source 

Nam Co basin 

1 Niyaqu –17.2 –128.5 9.0 

2 Langma –17.3 –124.4 14.1 

3 Zhaoshaqu –17.2 –122.8 15.0 

4 Qugaqie –16.1 –115.8 13.2 

5 Lanong –15.2 –106.5 14.7 

6 Bilang –15.5 –107.7 16.2 

7 Aangqu –17.1 –128.4 8.1 

8 Boqu –16.0 –118.7 9.2 

Mean value –16.4 –119.1 12.4 

this study 

The upwind regions of the Nam Co basin (the north of the Himalayas) 
 Lhasa River – – ~8.5 

 Dangxiong River – – ~7.5 

 Yarlung Zangbo River – – ~7.5 

 Shigatse River – – ~6.5 

 Tingri River – – ~6.0 

 Langlongcuo Pass River – – ~5.5 

Mean value  – ~6.9 

[42] 

 

Table 3  δW
18O and δW

2H of Nam Co lake water in summer from 2005 to 2008  

Year δW
18O, δW

2H  
in June (‰) 

δW
18O, δW

2H  
in July (‰) 

δW
18O, δW

2H in  
August (‰) 

δW
18O, δW

2H in  
September (‰) 

δW
18O, δW

2H in  
summer (‰) 

Data source 

2005 – – –6.5, –64.0 –7.1, –69.7 –6.8, –66.8 

2006 –6.7, –67.6 –6.8, –64.9 –6.5, –63.6 – –6.6, –65.4 

2007 –6.4, –67.0 –6.4, –67.4 –6.6, –68.5 –7.0, –71.0 –6.6, –68.5 

2008 –6.5, –67.5 –6.7, –69.0 –7.0, –70.7 –7.1, –72.3 –6.8, –69.9 

The mean δW
18O, δW

2H value from 2005 to 2008 –6.7, –67.7 

this study 
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precipitation at the Nyalam, Tingri and Lhasa stations (4.5‰) 
might be the difference between the mean d values of pre-
cipitation in the Nam Co basin and its upwind region; i.e. 
(dA–d′A) = 6.6‰. As presented above, the mean δW

18O and 
δW

2H of summer Nam Co lake water and the mean dA value 
of the atmospheric vapor in the Nam Co basin from 2005 to 
2008 are –6.7‰, –67.7‰ and 17.6‰, respectively. Mean-
while, from the mean air temperature (7.8°C) during summer 
from 2005 to 2008, the parameters A and B in eq. (8) are 
calculated as –0.00853 and 0.004231, respectively. Substi-
tuting these data and the average evaporation-weighted rela-
tive humidity (h is 61%–62%) at the Nam Co station into eq. 
(8), the contribution of evaporation from Nam Co to local 
atmospheric vapor is estimated to be 28.4%–31.1%. Accord-
ing to the estimation, there is plentiful evaporation from Nam 
Co to mix with vapor from the upwind region and increase 
the d value of local vapor and precipitation in the Nam Co 
basin. Additionally, the estimation made in this study is simi-
lar to the results of previous similar studies (Table 4). 

(2) Error analysis.  According to eq. (8), the estimation 
of the contribution strongly depends on the exactness of 
parameters h, dA and (dA–d′A). The (dA–d′A) value is based on 
field measurements made over several years and it is be-
lievable and exact. The dA value is estimated employing the 
vapor–precipitation balance, and relative humidity (h) of the 
lake water surface is substituted with the relative humidity 
of air recorded at the Nam Co station; therefore, these two 
parameters have certain inevitable errors. In Table 5, an 
increase or decrease in (dA–d′A) by 5% results in a change in 
the estimated contribution (x) of 5% or –5%. Relative hu-
midity (h) is the most critical parameter in the estimation. If 
h increases or decreases by 5%, the estimated contribution 
(x) changes by 39.7% or –19.5%. The parameter dA is an-
other critical factor of the estimation result, and an increase 
or decrease in dA by 5% results in a decrease or increase in 

Table 4  Comparison of the results of similar studies for the contribution 
of evaporation from a surface large water body to continental vapor based 
on stable isotopes 

Contribution (%) Study region Data source 

20–40 Amazon basin [15] 

~20 Northern and central California [22] 

5–16 North American Great Lakes [16] 

≥16–50 Ihorty lake, Madagascar [20] 

10–20 Kasumigaura lake, Japan [18] 

0–45 Great Slave River Delta, Canada [21] 

28.4–31.1 Nam Co basin, Tibet, China this study 

Table 5  Percentage changes in the contribution of evaporation from Nam 
Co to local vapor for a change in input parameters by ±5%  

Parameters (change by 5%/–5%) dA–d′A h dA 

Corresponding change of  
contribution (%) 

5/–5 39.7/–19.5 –8.8/10.7 

the estimated contribution (x) by 5%. Summarizing the 
analysis above, h and dA may be the main sources of error in 
the estimation of the contribution (x). 

3  Conclusions and prospects 

During the summer monsoon season, owing to long-distance 
transportation of moisture from the Indian Ocean, the δ 

18O, 
δ 

2H and d values of precipitation on the Indian subcontinent 
are clearly higher than those in the northern Himalayas (the 
southern TP). The d values of summer precipitation recorded 
at Nyalam, Tingri and Lhasa stations are very similar, while 
the mean d value of the summer precipitation at the Nam Co 
station located on the central TP (11.1‰) is higher than that 
at those three stations. This suggests mixing of evaporation 
from Nam Co and the local atmospheric vapor. Meanwhile, 
the mean d value of river water samples in the Nam Co basin 
(12.4‰) is also higher than that in the upwind regions 
(6.9‰). Additionally, this study preliminarily estimates that 
the average contribution rate of evaporative vapor from Nam 
Co to local atmospheric vapor has varied from 28.4% to 
31.1% during the summer monsoon season in recent years. 
The estimation of the contribution is a preliminary result 
based on limited stable isotopes in water bodies and mete-
orological data that can be obtained at present. Thus, its ex-
actness and validity require more relative data (especially 
field measurements of atmospheric vapor) and further study 
for improvements and validation.  
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