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Real-time rapid prediction of variations of the Earth’s rotational rate is of great scientific and practical 
importance. However, due to the complicated time-variable characteristics of variations of the Earth’s 
rotational rate (i.e., length of day, LOD), it is usually difficult to obtain satisfactory predictions by con-
ventional linear time series analysis methods. This study employs the nonlinear artificial neural net-
works (ANN) to predict the LOD variations. The topology of the ANN model is determined by minimizing 
the root mean square errors (RMSE) of the predictions. Considering the close relationships between 
the LOD variations and the atmospheric circulation movement, the operational prediction series of axial 
atmospheric angular momentum (AAM) is incorporated into the ANN model as an additional input in the 
real-time rapid prediction of LOD variations with 1－5 days ahead. The results show that the LOD pre-
diction is significantly improved after introducing the operational prediction series of AAM into the 
ANN model. 
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The modern high-precision space-geodetic techniques, 
e.g., very long baseline interferometry (VLBI), satellite 
laser ranging (SLR), and global positioning system 
(GPS), have been widely applied to routine observations 
of the Earth’s variable rotation. They have provided a 
huge amount of observational data with unprecedented 
accuracies and spatial-temporal resolutions, and there-
fore promoted greatly the Earth rotation studies. On the 
other hand, there is a growing demand for the real-time 
monitor and prediction of the Earth rotation parameter 
(ERP) in modern space navigations and explorations. 
However, currently the precise measurements of ERP by 
VLBI and SLR have 2―5 day delays due to the com-
plexity in data processing. Therefore, the real-time rapid 
prediction of the variations of Earth rotation is of great 
scientific and practical importance[1―3]. 

Conventional ERP prediction methods are largely 
based on linear time series analysis methods. However, 
due to the complicated time-variable characteristics of 
the variations of the Earth’s rotational rate (as directly 

measured by length of day (LOD) in astronomical ob-
servation), it is usually difficult to obtain satisfatory pre-
dictions by conventional linear time series analysis 
methods. The artificial neural networks (ANN) is a dy-
namic information processing system, which is charac-
terized by non-linearity, distributed processing, associ-
ated memory, self-organization, self-adaptation, self- 
learning and fault-tolerance[4―7]. Egger (1992) intro-
duced AAN to ERP prediction for the first time[8], and 
demonstrated the great potential of ANN in predicting 
quasi-periodic and irregular physical processes. Schuh et 
al. (2002) applied the Stuttgart neural network simulator 
(SNNS) to short-, medium- and long-term ERP predic- 
tions[9]. The results showed that the ANN is one of the 
favorable methods for ERP predictions. 
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For most studies that use ANN to predict the LOD, 
the influence of global atmospheric movements on the 
variations of the Earth’s rotational rate has not been 
considered. Recently, we have made some tests of pre-
dicting the LOD by ANN based on the LOD changes 
obtained by space-geodetic techniques and the 
re-analysis series of atmospheric angular momentum 
(AAM). The simulations show that the contributions of 
AAM to the prediction of the non-linear LOD changes 
are quite significant. Considering the strong correlation 
between the LOD changes and the atmospheric circula-
tion movements[10−12], as well as the capability of simu-
lating and forecasting AAM function of global atmos-
pheric circulation models, this study focuses on the 
real-time rapid prediction of LOD variations in 1―5 
days, based on the ANN model, the LOD variations, and 
the operational prediction series of axial AAM. 

1  Data pre-processing 

The daily ERP series in this study are from the C04 se-
ries of the International Earth Rotation and Reference 
Systems Service (IERS), spanning from 2001 to 2006. 
We first removed the contributions of the 62 zonal Earth 
tides from the LOD changes with periods from 5 days to 
18.6 years according to IERS Convention 2003[13]. The 
residual data series thus obtained are called as LOD 
residues (LODR) for simplicity hereinafter. Other peri-
odical variations in the LODR, e.g. the annual and 
semi-annual oscillations, can be simulated and predicted 
by linear models. To reduce the complexity of ANN 
model and the times of iterative computations, the linear 
model includes not only the seasonal terms but also the 
terms whose periods are 1, 1/2, 1/3 of the length of the 
whole data set. After simulating the above linear model 
by least square method, we get the parameters of the 
linear model, simulated series and residual series of 
LODR. Then the residual series of LODR are used to 
construct the ANN model. 

As the solid Earth and its surrounding fluid layers 
form an approximately close dynamic system, changes 
of atmospheric or oceanic angular momentum will result 
in variations in the solid Earth’s rotational rate, based on 
the conservation law of angular momentum. The high- 
accuracy Earth rotation observations and researches on 
global atmospheric models reveal that the axial AAM 
(X3) correlates strongly with the LOD changes. There-
fore, we introduce the re-analysis series of X3, which is 

from National Centers for Environmental Prediction 
(NCEP) and National Center for Atmospheric Research 
(NCAR), to the TRAIN set of ANN model[14], and the 
operational prediction series of X3, which is from NCEP 
global analysis/forecast system, to the PREDICTION set 
of ANN model[15]. It will add a physical constraint to the 
ANN. Likewise, the X3 series are also detrended with 
linear models and the least square methods. The residual 
series of X3 are used to assist the ANN modeling. 

The residual series of LODR and X3 include the re-
sidual short-periodical components and non-periodical 
and non-linear components. We adopt the non-linear 
ANN technique to model and predict these components. 
According to the practical conditions of ANN model, the 
whole data set are divided into four sub-sets, i.e., TEST, 
TRAIN, VALIDATION and PREDICTION sets. Gen-
erally, the length of TRAIN and VALIDATION sets 
should be long enough, the length of TEST set can be a 
little short and the length of PREDICTION set is based 
on the practical instance. In the modeling, the residual 
series of LODR and X3 are first normalized into the 
range of [−1, 1], and then used to construct the ANN 
models. After getting the predicted series from the ANN 
model, an inverse-normalization process is applied to 
transform them into their original space.  

2  Model and prediction 

An ANN model is generally composed of one input 
layer, several hidden layers and one output layer. The 
topology of the network will affect the accuracy of pre-
diction directly. So far, more than 40 different kinds of 
ANN models have been developed, of which the back- 
propagation (BP) network model is usually for modeling 
and predicting time series. The flow of BP network is 
composed of forward and back propagations. In the 
forward propagation, the information is from the input 
layer to the output layer through the hidden layers. The 
neurons of every layer are only affected by those of the 
predecessor layer. Errors derived by comparing the out-
put of the network with the observed ones are back- 
propagated to the net to modify the parameters of the net 
gradually, until the threshold is satisfied[4,5]. 

Based on the Kolmogorov theorem, any continuous 
function can be described precisely by a 3-layer artificial 
neural network[4,5]. Therefore, in this study, we choose 
the BP network with one input layer, one hidden layer 
and one output layer. Hyperbolic tangent functions are 
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used as transfer functions between the input and the 
hidden layers, while linear functions as the transfer 
functions between the hidden and the output layers. 
There is one neuron in the output layer. Many researches 
indicated that the neuron numbers of the input and hid-
den layers can be preliminarily chosen by some rules[4,5], 
e.g., the neuron numbers of the hidden layer are equal to 
2N+1, where N is the neuron numbers of the input layer. 
The final topology of the network should be determined 
according to the issues investigated and the practical 
data. The number of neurons in the input and the hidden 
layers will be chosen according to the rule that the 
RMSE is the smallest. 

The method for training the network is another im-
portant issue after the topology of the network has been 
determined. In numerous ANN learning and training 
algorithms, we choose the Bayesian-regulation algo-
rithm, as it has good generalization and prediction capa-
bilities. In addition, the data input pattern is also a very 
important factor for modeling and predictions. Assum-
ing that the predicted LODR is at time epoch t and that 
the time interval of the prediction is i days (i =1―5), the 
input pattern of LODR is 

LODR(t-s×i), … , LODR(t-3×i) , 
LODR(t-2×i), LODR(t-1×i) , 

where s is the number of neurons in the input layer. The 
input pattern of X3 is the same as that of LODR, but its 
time epoch t corresponds to t, t-i, t-2i, … .  

In the modeling, the initial values of the network are 
given randomly. To suppress the effects from the ran-
domness of initial values, we repeat the training and 
prediction processes of each ANN network a number of 
times and use the averaged values of the prediction as 
the final results. 

Finally, to assess the performances of each ANN 
models, we choose the root mean squared error (RMSE) 
as the criterion, i.e., 

2
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1 ( )
n

j j
i i i
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RMSE p o

n =

= −∑ ,           (1) 

where o, the expected output of the network (i.e., the 
LODR series after removing the linear model values); p, 
the output of the network, i.e., the predicted values; i, 
time interval of prediction; n, total number of predic-
tions. 

As an example, Figure 1 shows variations of RMSE 
of neural network training with respect to the neuron 
numbers in the input and hidden layers for the 5-day 

time interval prediction. The smallest RMSE is found 
when the neuron numbers are 2 in the input layer and 6 
in the hidden layer. 

3  Results and analyses 

In this study, the LODR residual series and re-analysis 
X3 during the period of 2001―2004 are used to train the 
networks. The trained networks are applied to 1―5 day 
LODR predictions for each data point of the years 2005 
and 2006 series (730 data points in total, the combined 
prediction for short). For comparison, we also use the 
residual series of LODR only (the individual prediction 
for short) to construct the ANN models and to conduct 
similar forward predictions. Figure 2 shows the predic-
tion errors of LODR residuals (i.e., the LODR residu-
als―the predicted LODR residuals) between the indi-
vidual and the combined prediction methods. The solid 
blue lines and dashed red lines represent the prediction 
errors by the individual and the combined prediction 
methods, respectively. Subplots (a), (b), (c), (d) and (e) 
correspond to time intervals of 1 to 5 days, respectively. 

In the five subplots of Figure 2, the phases of the 
dashed red and the solid blue lines are in good consis-
tency, which demonstrate the feasibility and effective-
ness of using ANN to predict LOD change. From the 
amplitude information of the 5 subplots, it is clear that 
the variations of dashed red lines are smaller than that of 
the solid blue lines, which shows that the prediction ac-
curacies of the LODR have been improved to a certain 
extent after introducing the X3 series. And the improve-
ment is more and more visible when the prediction in- 
tervals increase from 1 to 5 days. 

To give some quantitative results, we calculate the 
RMSEs of the combined prediction method for time in-
tervals of 1 to 5 days and list them in Table 1. Also 
listed in Table 1 are the RMSEs of the individual predic-
tion method. It can be seen that the accuracies of the 
combined prediction method are better than those of the 
individual prediction method for all the time intervals. 
For the time interval of 1 day, the combined prediction 
is slightly better than the individual prediction, while for 
the time interval of 2 days, the former is obviously better 
than the latter. For time intervals of 3 to 5 days, the 
combined prediction becomes much better than the indi-
vidual prediction. For example, for the time interval of 5 
days, the RMSE of the individual prediction is ±0.134 
ms, while the RMSE of the combined prediction is only 
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Figure 1  Variations of RMSE of neural network training with respect to 
the neuron numbers in the input and hidden layers. 
 

 
Figure 2  Comparisons of the prediction errors of LODR residuals (i.e., 
the LODR residuals – the predicted LODR residuals) between the indi-
vidual and the combined prediction methods. The solid blue lines and 
dashed red lines represent the prediction errors by the individual and the 
combined prediction methods, respectively. Subplots (a), (b), (c), (d) and 
(e) correspond to time intervals of 1 to 5 days, respectively. 
 

 
Figure 3  Comparison between the observed LODR residuals (solid blue 
line) and the LODR residuals (dashed red line) predicted by the combined 
5-day prediction method. 
 

Table 1  Comparison of the LODR prediction accuracies (unit: ms) 
Prediction 
interval (d) 

RMSELODR+AAM RMSELODR Range of im-
provement (%) 

1 0.026 0.027 3.7 
2 0.059 0.067 11.9 
3 0.073 0.093 21.5 
4 0.085 0.116 26.7 
5 0.097 0.134 27.6 

 

±0.097 ms, which indicates that the combined prediction 
is 27.6% better than the individual one. This shows that 
the prediction accuracy of LODR has improved re- 
markably after introducing the operational prediction 
series of X3. This is in good agreement with the results 
of the previous qualitative analysis. 

As an example, the observed LODR residuals (in 
solid blue line) and the real-time predicted LODR re-
siduals (in dashed red line) for a time interval of 5 days 
by the combined prediction method are plotted in Figure 
3 for comparison. Comparing the two curves in Figure 3, 
we can see that not only the amplitude but also the phase 
of the predicted LODR are in good agreement with the 
observation. 

4  Conclusions  

Considering the close relationship between LOD varia-
tion and atmospheric circulation movement, the opera-
tional prediction series of axial atmospheric angular 
momentum are added into the ANN model as a further 
input parameter for the first time to make the real-time 
rapid LOD predictions for time intervals of 1 to 5 days. 
For comparisons, we also use the LODR only to con-
struct the ANN model and predict the LOD variations. 
The results show that the accuracies of predictions are 
significantly improved after introducing the AAM into 
the TRAIN and PREDICTION sets of the ANN model. 
The real-time rapid prediction results of the LODR re-
siduals by the combined prediction method are in good 
agreement with the observed ones, in terms of both am-
plitude and phase. The LOD prediction by ANN will be 
more practically meaningful by introducing the opera-
tional prediction series of axial AAM.  
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