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We extend our research on the energy flux and waveform characteristics of gravitational waves generated by merging nonspinning
binary black holes through self-consistent effective one-body theory to include binary systems with slowly spinning black holes.
Initially, we decompose the equation for the null tetrad component of the gravitationally perturbed Weyl tensor ψB

4 into radial
and angular parts, leveraging the second-order approximation of the rotation parameter a. Subsequently, we derive an analytical
solution for the radial equation and observe that our results are contingent upon the parameters a2, a3, and a, which represent the
second- and third-order correction parameters, respectively. Ultimately, we calculate the energy flux, the radiation-reaction force
and the waveform for the “plus” and “cross” modes of the gravitational waves generated by merging slowly spinning binary black
holes.
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1 Introduction

The concept of gravitational waves (GWs) can be traced back
to general relativity [1]. However, due to a lack of sufficient
experimental observations for verification, research in this
field did not attract much attention in the decades following
Einstein’s prediction. Interest only surged into the 1960s, fol-
lowing Bondi and Sachs’ established formalism, which pro-
vided the theoretical foundation for the existence of GWs.
The amplitude of GWs is closely related to mass, positioning
black holes as a primary source. The metric for a spherically
symmetric non-symmetric black hole was first derived by
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Schwarzschild and later generalized to include rotation by
Kerr. In 1963, Schiffer et al. [2] presented a specific deriva-
tion of both geometries by simplifying the Einstein free space
field equations for the algebraically special form of the Kerr
metric.

The detection of GWs began with Weber’s resonators in
the 1960s, employing techniques such as environmental per-
turbation exclusion and signal amplification, which have pro-
pelled advancements in GW detection. The first direct detec-
tion of a GW signal, GW150914 [3], from the merger of two
black holes, was reported by the Laser Interferometer Grav-
itational Wave Observatory (LIGO) Scientific Collaboration
and the Virgo Collaboration. Subsequently, the Advanced
LIGO (aLIGO) [4], later joined by the Advanced Virgo [5]
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in 2017, has detected numerous coalescing binary black hole
events [6-14] and two binary neutron star events [15, 16]
from its O1 to O3 observation runs. Among these events, co-
alescing compact object binary systems are undoubtedly the
most promising sources. Therefore, a rigorous examination
of all aspects of black-hole research is imperative [17-23].
The successful detection of these GW signals marks the ar-
rival of a new generation of GW astronomy, opening un-
precedented opportunities for humans to explore cosmology,
especially concerning extreme physical processes and phe-
nomena, such as strong gravitational fields, extremely dense
celestial bodies, and high-energy processes.

Despite GWs being significantly weaker than background
noise, the GWs emitted by compact binary systems carry
crucial information about their sources. This information
can be extracted from the noise using the matched filtering
technique, which may require tens of thousands of wave-
form templates. However, the high computational cost and
the large parameter space associated with spinning binary
black holes make it impractical to rely solely on numerical
relativity for generating a comprehensive template bank of
gravitational waveforms [24]. Therefore, the effective-one-
body (EOB) theory was introduced in 1999 by Buonanno and
Damour [25-29]. Based on the post-Newtonian approxima-
tion, as a novel approach to investigate the general gravita-
tional radiation generated by coalescing compact object bi-
nary systems. The synergy between the EOB theory and nu-
merical relativity has played an essential role in the data anal-
ysis of GWs. Building on this great success, Damour [30] de-
veloped another EOB theory with a post-Minkowskian (PM)
approximation in 2016. Unlike its predecessor, this new ap-
proach removes the restriction that v/c must be small, lead-
ing to a significant expansion in related research [31-47]. In
this context, we have developed a self-consistent effective-
one-body (SCEOB) theory [48] tailored for the real spinless
two-body system under a PM approximation. This theory is
specifically designed to explore the dynamics and GW emis-
sions of merging nonspinning black holes characterized by
two mass parameters (m1,m2). We are now looking to ex-
tend the application of the SCEOB theory to binary systems
of spinning black holes, taking into account both mass and
spin parameters (m1, S 1,m2, S 2).

In previous work [49], following the approach of
Damour [29] and Barausse and Buonanno [50], we success-
fully developed an effective rotating metric for real spin two-
body systems and constructed an improved SCEOB Hamil-
tonian for scenarios where a spinning test particle orbits a
massive rotating black hole, as defined by the specified met-
ric. Key to detecting the “plus” and “cross” modes of GWs is
the calculation of the radiation-reaction force (RRF), which
requires analysis of the GW energy flux. This analysis hinges

on solving for the null tetrad component of the gravitation-
ally perturbed Weyl tensor ψB

4 since it is related to the two
modes of the GWs expressed as ψB

4 =
1
2 (ḧ+ − iḧ×) at infinity.

However, the challenge lies in the decoupled equation within
this effective spacetime that cannot be separated naturally.
Yet, insights from the LIGO-Virgo Consortium indicate that
most events detected during the O1 and O2 observation in-
volve black holes with low effective spin values. Furthering
this, Roulet and Zaldarriaga [51], through a comprehensive
reanalysis of LIGO-Virgo strain data and models for angular
spin distributions, found that the spin systems predominantly
consist of slowly spinning black holes, namely a < 0.1. A
notable example is GW190814, involving a merger between
a 23M⊙ black hole and a 2.6M⊙ compact object, which en-
forced tight constraints on the spin of the primary black hole
to a < 0.07 owing to the large mass ratio. These discussions
enable us to divide the decoupled equation into the radial and
angular parts in scenarios involving slow rotations [52-56].
Building on the initiatives of Damour-Nagar-Pan [24,57-59],
we also derived a formal solution for ψB

4 up to the first order
of the rotation parameter a using the Green function. This
allowed us to delineate the waveform for the plus and cross
modes of the GW in the effective rotating spacetime [49].

In this study, we expand the decoupled equation of the null
tetrad component of the perturbed Weyl tensor ψB

4 to include
second-order effects in the rotation parameter a. By using the
definition and characteristics of spin-weighted spherical har-
monics, we demonstrate that the decoupled equation can be
variably separated into radial and angular parts. Specifically,
when the quantum numbers ℓ and m are fixed, the angular
part related to θ can be completely transformed into specific
numerical values through integral formulas. Next, we rewrite
the radial function Rℓmω in the form of a Teukolsky-like equa-
tion and convert it to a simpler Sasaki-Nakamura-like (S-N)
equation. Using the method proposed by Sasakiet et al. [60],
we obtain the corresponding solutions to the S-N-like equa-
tion. It is imperative to recognize that our results are contin-
gent upon the parameters a2, a3, and a, where the first two
correspond to second- and third-order correction parameters,
respectively. As a approaches zero, our results align with
those from the nonspinning case [61, 62]. Setting all three
parameters to zero yields results consistent with the simplest
Schwarzschild background.

The rest of the study is organized as follows. In sect. 2,
we review the effective metric, expand the decoupled equa-
tion to the second order based on prior work, and separate
ψB

4 into its radial and angular parts. In sect. 3, we trans-
form the radial function Rℓmω into the S-N-like equation and
present its corresponding analytical solution. Sect. 4 applies
similar techniques to the tetrad components of the energy-
momentum tensor and provides the ultimate expression of
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ψB
4 . In addition, it offers analytical expressions for the re-

duced RRF and waveform. The final section presents con-
clusions and discussions.

2 Variables separation equation of ψB
4 in scenar-

ios involving slow rotations

Based on the work of ref. [48] and using the approach of con-
structing an effective rotating metric as presented by Damour
[29] and Barausse et al. [50], we have obtained the effective
rotating metric for a real spin two-body system that can be
described by [49]

ds2 =
∆ − a2 sin2 θ

Σ
dt2 − Σ

∆
dr2 − Σdθ2

− Λt sin2 θ

Σ
dϕ2 +

2ω j sin2 θ

Σ
dtdφ, (1)

with

Σ = ρρ∗, ρ̄ = r + ia cos θ, ρ̄∗ = r − ia cos θ,

∆ = ∆0 + a2, Λt = ϖ
4 − a2∆ sin2 θ,

ϖ =
(
r2 + a2

) 1
2 , ω j = a

(
a2 + r2 − ∆

)
,

(2)

where ∆0 is the part that does not contain the rotational pa-
rameter a, which can be expressed as:

∆0 = r2 − 2GMr +
∞∑

i=2

ai
(GM)i

ri−2 , (3)

M is the mass of the black hole, and ai indicates the PM
correction parameter whose specific expressions have been
calculated up to 4PM order in ref. [63].

The decoupled equation of ψB
4 in the effective metric (1)

can be expressed as [49]:[
∆

(
D†−1 +

2ρρ∗

∆
F1

) (
D0 −

3
ρ̄∗

)
+ F2

(
L−1 −

√
2ρ̄∗F3

)
×

(
L †

2 −
3ia sin θ
ρ̄∗

)
+ 2ρρ∗F4

]
ϕB

4 = T4, (4)

with

T4 =4πGF4

{
L−1

[
ρ̄∗

3ψ2 − 2ϕ11
L0

(
ρρ∗2Tnn

)]
+
∆2

2
D†0

[
ρ̄∗

3ψ2 + 2ϕ11
D†0

(
ρ̄−1ρ̄∗2Tmm

)]
+
∆2

√
2

{
D†0

[
ρ̄−2ρ̄∗

∆ (3ψ2 + 2ϕ11)
L−1

(
ρ̄2ρ̄∗2Tmn

)]
+L−1

[
ρ̄−2ρ̄∗

3ψ2 − 2ϕ11
D†0

(
ρ̄2ρ̄∗2

∆
Tmn

)]}}
, (5)

where ϕB
4 = (ρ̄∗)4ψB

4 , Tnn = ϕB
22/(4πG), Tnm = ϕB

21/(4πG),
and Tmm = ϕ

B
20/(4πG). The definitions of coefficients Fi (i =

1, 2, 3, 4), two operators L and D , component of the trace-
less Ricci tensor ϕ11, and component of the Weyl tensor ψ2

can be found in ref. [49].
To find a solution of ψB

4 , we should separate the variables
of the above-decoupled equation (4) and determine the tetrad
components of the energy-momentum tensor of the system.
However, it seems that direct separation of this equation is
not feasible. Since the bulk of the population of the ob-
served binary black holes merger events involve slowly spin-
ning black holes [56], a conclusion further supported by the
remarkably strong spin constraint (a < 0.07) on the 23M⊙
primary black hole in GW190814 [13], we can separate the
decoupled equation in slowly rotation cases [52-56]. Under
these conditions, which closely approximate spherical sym-
metry, ϕB

4 can be decomposed into Fourier-harmonic compo-
nents according to

ϕB
4 =

∑
ℓm

1
√

2π

∫
dω e−i(ωt−mφ)

−2Yℓm(θ) Rℓm(r), (6)

where the angular function −2Yℓm(θ) is called the spin-
weighted spherical harmonic that can be normalized as:∫ π

0
−2 Y∗ℓm(θ)−2 Yℓm(θ) sin θ dθ = 1. (7)

Therefore, we can expand the decoupled equation (4) to sec-
ond order with respect to a, which is expressed as:[

A(ℓ) + a B − a cos θC(ℓ) + a2 cos θD + a2 cos2 θ E(ℓ)

+a2 cos θ sin θ F ∂θ + a2 G
]
ϕB

4 = T
(0)
4 + aT (1)

4 + a2T (2)
4 , (8)

the definitions of these coefficients are

A(ℓ) = ∆0
[
D+0
−1 D0

0 −
(

3
r
D+0
−1 + F̃0

1D
0
0

)
+

3
r2

(
1 + rF̃0

1

)]
+ λ F0

2 + 2r2F0
4 ,

B = im


3

r
− F̃0

1 −
2
(
∆0

)
r

∆0 +
2ir2ω

∆0

 − 2F0
2

(
iω +

3
r

) ,
C(ℓ) = i∆0

[(
3
r2 D+0

−1 + F̃1
1D

0
0

)
− 3

r3

(
2 + rF̃0

1 + r2F̃1
1

)]
+ 2F0

2

(
ω − 3i

r

)
− iλ F1

2 − 2ir2F1
4 ,

D = m
[(

F̃1
1 −

3
r2

)
+ F0

2

(
3
r2 − F̃2

3

)
+ 2F1

2

(
iω +

3
r

)]
,

E(ℓ) = ∆0
[

3
r3

(
D+0
−1 −

3
r
− F̃0

1 − rF̃1
1 + r2F̃2

1 −
r3

3
F̃2

1D
0
0

)]
+ 2F0

2

(
ω2

2
− 3

r2 + F̃2
3 −

3i
r
ω

)
− 2F1

2

(
iω +

3
r

)
+ λ F2

2 + 2
(
F0

4 + r2F2
4

)
,

F = F0
2

(
3
r2 + F̃2

3

)
,
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G = −F̃0
1

(
∆0D2

0 −
3
r
+D0

0

)
+ 2F0

2

(
−ω

2

2
+

3
r2 +

3i
r
ω

)
+

(
∆0D2

0 −
3
r

)
D+0
−1 +

(
∆0D+2

−1 +D+0
−1

)
D0

0

+ ∆0
(D2

0

)
rr
+

m2(
∆0)2 −

3
r
D+2
−1 +

1
∆0

3
r2

 , (9)

where λ = (ℓ − 1)(ℓ + 2), the superscripts on all these quanti-
ties represent the corresponding order in the series expan-
sion with respect to a. The functions F i

j (i = 0, 1, 2 and
j = 1, 2, 3, 4) are detailed in Supplementary Material.

On the other hand, the trigonometric function appearing
in eq. (8) can be expressed using the spin-weighted spherical
harmonics as:

sin θ = 2

√
2π
3 1Y10, cos θ = 2

√
π

3 0Y10,

cos2 θ =
4
3

√
π

5 0Y20 +
1
3
. (10)

Multiplying eq. (8) by the complex conjugate −2Y∗ℓm and tak-
ing the integrate over the angles, we obtain an integral involv-
ing the multiplication of three spherical harmonics, which
can be expressed as [64]:∮

−2Y∗ℓm −2Yℓm s′Yℓ′m′ dΩ

=

[
(2ℓ + 1)2 (2ℓ′ + 1)

4π

]1/2

×
 ℓ ℓ ℓ′

2 2 −s′


 ℓ ℓ ℓ′

m m m′

 , (11)

the matrices are the Wigner 3-ℓm symbols, and it has the fol-
lowing general form:

 ℓ1 ℓ2 ℓ3

m1 m2 m3

 =(−1)ℓ1−m1δm1+m2,−m3 ×
[
(ℓ1 + ℓ2 − ℓ3)! (ℓ1 + ℓ3 − ℓ2)! (ℓ2 + ℓ3 − ℓ1)! (ℓ3 + m3)! (ℓ3 − m3)!

(ℓ1 + ℓ2 + ℓ3 + 1)! (ℓ1 + m1)! (ℓ1 − m1)! (ℓ2 + m2)! (ℓ2 − m2)!

]1/2

×
∑
k≥0

(−1)k

k!

[
(ℓ2 + ℓ3 + m1 − k)! (ℓ1 − m1 + k)!

(ℓ3 − ℓ1 + ℓ2 − k)! (ℓ3 − m3 − k)! (ℓ1 − ℓ2 + m3 + k)!

]
. (12)

The sum runs over all values of k for which the arguments
within the factorials are non-negative. Furthermore, if the
particular combination of [ℓimi] results in negative arguments
for the factorials outside the sum, then the corresponding co-
efficient vanishes. By using eqs. (8)-(12), the equation of the
radial part can be written as:[

A(ℓ) + a B − aBC(ℓ) + a2BD + a2D E(ℓ) + a2H F

+a2G
]

Rℓmω = Tℓmω, (13)

with

B = 2m
ℓ (ℓ + 1)

,

D = 1
3
+

2
3

(ℓ + 4) (ℓ − 3)
(
ℓ2 + ℓ − 3m2

)
ℓ (ℓ + 1) (2ℓ + 3) (2ℓ − 1)

,

H = 2

√
2π
15

∮
−2Y∗ℓm

(
d−2Yℓm

dθ

)
1Y20dΩ,

Tℓmω =
1

2π

∫ +∞

−∞
dt

∫
dΩ

(
T (0)

4 + aT (1)
4 + a2T (2)

4

)
ei(ωt−mφ) −2Y∗ℓm√

2π
,

(14)

where Tℓmω is the source term that should also be expanded
in the series of a. The explicit form of T (i)

4 (i = 0, 1, 2) is
described below.

3 Analytical solution for radial equation of Rℓmω
without source

In this section, we should first transform the radial equation
(13) that is devoid of source and features a long-range po-
tential into the short-range potential S-N equation to find the
corresponding solution. Then, the radial equation incorpo-
rating a source can be obtained through the Green function.

3.1 General discussion for Teukolsky-like equation

We find that the radial function Rlmω shown by eq. (13) obeys
the Teukolsky-like equation in the form[
∆2

f (r)
d
dr

(
f (r)
∆

d
dr

)
− V(r)

]
Rlmω = Tℓmω, (15)

with

f (r) = −3GM
r3F0

4

+
3iaBGM

(
rF1

4 − 3F0
4

)
r4

(
F0

4

)2

− 3a2GM
2r3F0

4

3iB
r
−

iBF1
4

F0
4

2

+2

−3D
2r2 −

D
(
F1

4

)2

2
(
F0

4

)2 −
DF2

4

F0
4


 . (16)
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The potential V(r) can be calculated through eq. (13) as:

V(r) = −(V0 + aV1 + a2V2), (17)

with

V0 =
r2ω

(
r2ω + 2i∆0′

)
∆0 − irω

(
5 − rF̃0

1

)
+

3
[
∆0

(
1 + rF̃0

1

)
+ r∆0′

]
r2 + 2r2F0

4 − λ F0
2 ,

V1 = B−B
{(

r2F̃1
1 − 3

)
ω− 3i

r3

[
r∆0′ + ∆0

(
2 + rF̃0

1 + r2F̃1
1

)]
+2F0

2

(
ω − 3i

r

)
− 2ir2F1

4 + iλ F1
2

}
,

V2 = BD +D
{
∆0

[
3
r3

(
iωr2 − ∆0′

∆0 − 3
r
− F̃0

1

−rF̃1
1 + r2F̃2

1 +
iωr5

3∆0 F̃2
1

)]
+2F0

2

(
ω2

2
− 3

r2 + F̃2
3 −

3iω
r

)
− 2F1

2

(
iω +

3
r

)
+λ F2

2 + 2
(
F0

4 + r2F2
4

)}
+HF +

m2 + 2r2ω2 + 2iω∆0′

∆0 −
r2ω

(
r2ω + 2i∆0′

)
(∆0)2

+
3
r2 (1 − iωr) + F̃0

1

(
iω +

3
r

)
+ 2F0

2

(
−ω

2

2
+

3
r2 +

3i
r
ω

)
. (18)

On the other hand, the asymptotic solutions for the homo-
geneous of eq. (15) are

Rin
asy →

Btrans
ℓmω

(
∆0

)2
e−iωr∗ , for r → r+,

r3Bref
ℓmωeiωr∗ + r−1Binc

ℓmωe−iωr∗ , for r → +∞,
(19)

Rup
asy →

Cup
ℓmωeiωr∗ +

(
∆0

)2
Cref
ℓmωe−iωr∗ , for r → r+,

Ctrans
ℓmω r3eiωr∗ , for r → +∞,

(20)

with the tortoise coordinate r∗ defined by r∗ =
∫

r2

∆0 dr, and
the inhomogeneous solution for the radial equation being

Rℓmω(r) =
1

2iωCtrans
ℓmω Binc

ℓmω

Rup
ℓmω(r)

∫ r

r+
dr̃

f (r̃)Rin
ℓmω(r̃)Tℓmω(r̃)(
∆0)2

+Rin
ℓmω(r)

∫ ∞

r
dr̃

f (r̃)Rup
ℓmω(r̃)Tℓmω(r̃)(
∆0)2

 ,
(21)

where Rup
ℓmω(r̃) and Rin

ℓmω(r̃) are homogeneous solutions that
satisfy the outgoing-wave boundary condition at the infinity
and the ingoing-wave boundary condition at the horizon, re-
spectively, and r+ denotes the radius of the event horizon.

Therefore, the solution of the Teukolsky-like equation at in-
finity can be expressed as:

Rℓmω(r → ∞) =
r3eiωr∗

2iωBinc
ℓmω

∫ ∞

r+
dr̃

f (r̃)Rin
ℓmω(r̃)Tℓmω(r̃)(
∆0)2

≡Z̃ℓmωr3eiωr∗ . (22)

The above discussion shows that the key step to get Rℓmω(r →
∞) is to find Rin

ℓmω(r̃) that will be studied in the following.

3.2 Analytical solution of homogeneous Teukolsky-like
equation

The Teukolsky-like equation without source can be rewritten
as:[
∆2

f (r)
d
dr

(
f (r)
∆

d
dr

)
− V(r)

]
Rlmω = 0. (23)

It is difficult to solve the above equation directly owing to
its long-range potential. However, we can transform it into a
short-range potential S-N-like equation that takes the form:[

d2

dr∗2
− F (r)

d
dr∗
−U(r)

]
Xlmω = 0, (24)

where

F (r) =
∆

r2 + a2

γ′

γ
,

U(r) =
∆U(r)
r2 + a2

2

+G(r)2 +
∆

r2 + a2 G(r)′ − F(r)G(r)
r2 + a2 ,

G(r) =
r∆

(r2 + a2)2 +
∆ f (r)′

2 f (r)(r2 + a2)
− ∆′

r2 + a2 ,

U(r) =
∆2

β

((
2α +

β′

∆
− β

∆

f (r)′

f (r)

)′
−γ
′

γ

(
α +

β′

∆
− β

∆

f (r)′

f (r)

))
+ V(r). (25)

The relation between Rlmω and Xlmω is

Rlmω =
1
γ

[(
α +

β′

∆
− f (r)′β

f (r)∆

)
x(r) − x(r)′β

∆

]
, (26)

with x(r) = ∆√
f (r)(r2+a2)

Xlmω, and the other functions that ap-

pear in the above equations are defined as:

α =
4iK

r
+ V(r) − K2

∆
+

6∆
r2 − iK′ +

iK∆′

∆
,

β = ∆

(
−2iK + ∆

(
−4

r
− f (r)′

f (r)

)
+ ∆′

)
,

γ = α

(
α +

β′

∆
− β

∆

f (r)′

f (r)
− β

∆

(
α′ +

β

∆2 V(r)
))
. (27)

Then, the asymptotic behavior of the ingoing-wave solution
Xin

lmω is given by

Xin
asy →

Aout
lmωeiωr∗ + Ain

lmωe−iωr∗ , for r → +∞,
Ctrans

lmω r3eiωr∗ , for r → r+.
(28)
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Meanwhile, Ain
lmω is related to Binc

lmω in eq. (19) as:

Binc
lmω = −

1
4ω2 Ain

lmω. (29)

Now, we employ the PM expansion method for the effec-
tive spacetime background, as outlined in refs. [48, 65]. Our
focus is solely on the GWs emitted toward infinity; there-
fore, we need to solve for the ingoing-wave homogeneous
Teukolsky-like function Rin

lmω, or its counterpart in the homo-
geneous S-N-like equation, namely Xin

lmω.
We first introduce a dimensionless variable z, a dimension-

less parameter η, and a new parameter q associated a with η,
which can be defined as:

z ≡ ωr, η ≡ 2GMω, q ≡ 2aω
η
, (30)

and assume that the solution has the following form:

Xin
lmω =

√
z2 +

η2q2

4
ξlm(z)e−iϕ(z), (31)

where the exponential term is intended to eliminate the sin-
gularity at the horizon and can be written as:

ϕ(z) =
∫ (

(r2 + a2)ω − ma
∆

− ω
)

dr

= η (b1 ln (z − c1η) + b2 ln (z − c2η) − bh ln (z − chη)) ,
(32)

with

c1 =
1
3
− 1

2

[ (
1 − i

√
3
) (

Q +
√

P3 + Q2
) 1

3

+
(
1 + i

√
3
) (

Q −
√

P3 + Q2
) 1

3
]
, (33)

c2 =
1
3
− 1

2

[ (
1 + i

√
3
) (

Q +
√

P3 + Q2
) 1

3

+
(
1 − i

√
3
) (

Q −
√

P3 + Q2
) 1

3
]
, (34)

ch =
1
3
+

(
Q +

√
P3 + Q2

) 1
3
+

(
Q −

√
P3 + Q2

) 1
3
, (35)

b1 =
c3

1

(c1 − c2)(c1 − ch)

−mq
2c2

1

+
ηq2

4c2
1

+ η

 , (36)

b2 =
c3

2

(c2 − c1)(c2 − ch)

−mq
2c2

2

+
ηq2

4c2
2

+ η

 , (37)

bh =
c3

h

(c1 − ch)(ch − c2)

−mq
2c2

h

+
ηq2

4c2
h

+ η

 , (38)

where Q = 1
27 −

a2+q2

24 −
a3
16 and P = 1

3

(
a2+q2

4 − 1
3

)
.

By inserting eq. (31) into eq. (24) and expanding it to the
third order in powers of η, we obtain

L(0) [ξlm
]
= η L(1) [ξlm

]
+ η2L(2) [ξlm

]
+ η3L(3) [ξlm

]
, (39)

where the specific form of these differential operators is given
by

L(0) =
d2

dz2 +
2
z

d
dz
+

(
1 − ℓ(ℓ + 1)

z2

)
, (40)

L(1) =
1
z

d2

dz2 +

(
1 + 2iz

z2 +
2a2

3z2

)
d
dz

− 4 + z2 − iz
z3 −

a2

(
ℓ2 + ℓ + 2

)
3z3 +Q(1), (41)

L(2) = −a2 + q2

4z2

d2

dz2 +

a(2)
ℓ

z2 +
b

(2)
ℓ

z3

 d
dz

+

 c(2)
ℓ

z2 +
d

(2)
ℓ

z3 +
e

(2)
ℓ

z4

 , (42)

L(3) = − a3

8z3

d2

dz2 +

a(3)
ℓ

z2 +
b

(3)
ℓ

z3 +
c

(3)
ℓ

z4

 d
dz

+

d(3)
ℓ

z2 +
e

(3)
ℓ

z3 +
f
(3)
ℓ

z4 +
g

(3)
ℓ

z5

 , (43)

with

Q
(1) = −

imq
(
4 + ℓ + ℓ2

)
z2ℓ(ℓ + 1)

d
dz
− 4imq

z3ℓ (ℓ + 1)
(44)

and the coefficients that appear in L(2) and L(3) can be found
in Supplementary Material. Since the general expressions are
too long, we only show the results when ℓ is fixed to 2.

To maintain the consistency of the perturbation, we also
expand ξlm with respect to η as:

ξℓm =

∞∑
n=0

ηnξ(n)
ℓm(z). (45)

At this point, we can solve the equation order by order. The
recursive equation is

L(0)
[
ξ(n)
ℓ

]
= W (n)

ℓ
, (46)

where

W (0)
ℓm = 0,

W (1)
ℓm =

(
L(1)

) [
ξ(0)
ℓm

]
,

W (2)
ℓm =

(
L(1)

) [
ξ(1)
ℓm

]
+

(
L(2)

) [
ξ(0)
ℓm

]
,

W (3)
ℓm =

(
L(1)

) [
ξ(2)
ℓm

]
+

(
L(2)

) [
ξ(1)
ℓm

]
+

(
L(3)

) [
ξ(0)
ℓm

]
.

(47)

The solution to eq. (46) for the case n = 0 can be ex-
pressed as a linear combination of two classes of the usual
Bessel functions, i.e.,

ξ(0)
ℓm = α

(0)
ℓm jℓ + β

(0)
ℓm jℓ. (48)

To ensure that ξ(n)
ℓm meets the boundary condition of regularity

at z = 0 for n ≤ 2, and without loss of generality, we assign
α(0)
ℓm = 1 and β(0)

ℓm = 0. For further calculations when n ≥ 1,

https://www.sciengine.com/SCPMA/doi/10.1007/s11433-024-2415-y
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eq. (47) should be rewritten in the indefinite integral form by
using the spherical Bessel functions:

ξ(n)
ℓm = nℓ

∫ z

dzz2 jℓW
(n)
ℓm − jℓ

∫ z

dzz2nℓW
(n)
ℓm (n = 1, 2).

(49)

Thus, the solution of eq. (31) corresponds to the case of n = 1
is given by

ξ(1)
ℓm =α

(1)
ℓ

jℓ +
(ℓ − 1)(ℓ + 3)

2(ℓ + 1)(2ℓ + 1)
jℓ+1 −

ℓ2 − 4
2ℓ(2ℓ + 1)

jℓ−1 + i jℓlnz

+

ℓ−1∑
k=1

(
1
k
+

1
k + 1

)
z2 (nℓ jk − jℓnk) jk + z2 (nℓ j0 − jℓn0) j0

− 2Dn j
ℓ
− a2

3

(
ℓ2 + 3ℓ + 4

2 (ℓ + 1) (2ℓ + 1)
jℓ+1 −

ℓ2 − ℓ + 2
2ℓ (2ℓ + 1)

jℓ−1

)
+

imq
2

(
ℓ2 + 4

ℓ2(2ℓ + 1)

)
jℓ−1 +

imq
2

(
(ℓ + 1)2 + 4

(ℓ + 1)2(2ℓ + 1)

)
jℓ+1,

(50)

with

D
nJ
ℓ =nℓB jJ− jℓBnJ =nℓ

∫ z

0
z j0DJ

0dz− jℓ

∫ z

0
zn0D

J
0dz,

D
jJ
ℓ
= jℓB jJ+nℓBnJ = jℓ

∫ z

0
z j0DJ

0dz+nℓ

∫ z

0
zn0D

J
0dz,

D
j
ℓ
≡ jℓ, D

n
ℓ ≡ nℓ,

(51)

and α(1)
ℓ

is the integration constant which represents the arbi-
trariness of the normalization of Xin

ℓmω, for convenience, we
set α(1)

ℓ
= 0.

Owing to the complexity of the general expressions, we
choose to present results specifically for particular values of ℓ
concerning the second- and third-order terms of ξℓm by using
eq. (49). Specifically, we provide results for ℓ = 2, 3 at the
second order and for ℓ = 2 at the third order. Inserting these
expressions into eq. (31) and expanding it in terms of η, we
can obtain the solution Xin

2mω of the S-N-like equation (24).
Furthermore, using the transformation given by eq. (26), we
obtain the corresponding solutions R(in)

2mω of the Teukolsky-
like equation without a source (see Supplementary Material
for explicit expressions of the aforementioned results).

At last, we should consider the amplitude Ain
ℓmω. By intro-

ducing the first and second kinds of spherical Hankel func-
tions defined as:

h(1)
ℓ
= jℓ + inℓ → (−1)ℓ+1 eiz

z
,

h(2)
ℓ
= jℓ − inℓ → (−1)ℓ+1 e−iz

z
,

(52)

the spherical Bessel function can be expressed in terms of the

two Hankel functions as:

jℓ =
1
2

(
h(1)
ℓ
+ h(2)

ℓ

)
,

nℓ =
1
2i

(
h(1)
ℓ
− h(2)

ℓ

)
.

(53)

Then examining the asymptotic behavior of ξ(n)
ℓm at z → ∞,

we obtain

Ain
ℓm =

1
2

iℓ+1e−iη(ln2η+elg)ei
[
ηp(0)

ℓm−πη2 p(1)
ℓm+η

3
(

p(2)
ℓm−π2 p(3)

ℓm+p(4)
ℓmRiZ(3)

)]
×

{
1 − π

2
η + η2

[
2(elg + ln2)p(1)

ℓm + q(1)
ℓm +

5π2

24

]
+ η3

[
πq(2)

ℓm + π
3q(4)

ℓm + π(elg + ln2)q(3)
ℓm

]}
, (54)

where elg is EulerGamma constant elg = 0.57721 · · · ,
RiZ(n) is the Riemann zeta function and RiZ(3) = 1.202 · · · ,
and the coefficients of Ain

2m are

p(0)
2m =

5
3
− 2a2

9
− i

mq
18
, (55)

p(1)
2m =

8a2
2

945
− a2

42
+

5a3

252
+

m2q2

945
− q2

105
+

107
420

, (56)

p(2)
2m =

109a2
2

1944
− 85a2a3

3888
−

a2q2H(2m)

288
− 569a2m2q2

54432
+

17a2q2

1134

− 11a2

216
+

11a3

108
− 11m2q2

3888
+

q2

288
+

29
648
−

73a3
2

8748

− i
a2

2mq
1944

+
5a2mq

972
+

115a3mq
15552

+
197mq

864

 , (57)

p(3)
2m =

107
1260

+
8a2

2

2835
− a2

126
+

5a3

756
+

m2q2

2835
− q2

315
, (58)

p(4)
2m =

1
3
, (59)

q(1)
2m =

25
18
+

q2

72
− 37a2

108
− 5a3

108
− m2q2

216
+ i

(
2a2mq

81
+

5mq
108

)
,

(60)

q(2)
2m = −

25
36
−

a2
2

210
− 5a2a3

378
−

a2q2H(2m)

2520
− 19a2m2q2

52920

+
5a2q2

1764
+

37a2

216
+

43a3

3024
+

m2q2

432
− q2

144

−
11a3

2

2835
+ i

a2
2mq
270

− a2mq
2268

+
17a3mq

3024
+

mq
54

 , (61)

q(3)
2m = −

107
420
− a2mq

42π
+

a2

42
− 17a3mq

1512π
− 5a3

252
− m2q2

945

− mq
12π
+

q2

105
−

a2
2mq

135π
−

8a2
2

945
+ i

5a2q2

882π
−

22a3
2

2835π

−
a2

2

105π
− 5a2a3

189π
−

a2q2H(2m)

1260π
− 19a2m2q2

26460π
− a3

56π

 ,
(62)

q(4)
2m = −

1
16
. (63)

https://www.sciengine.com/SCPMA/doi/10.1007/s11433-024-2415-y
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4 Analytical solution of ψB
4 with source in effec-

tive spacetime

4.1 Tetrad components of energy-momentum tensor

The energy-momentum tensor for the EOB theory, which de-
scribes a particle orbiting a massive black hole described by
the effective metric, can be expressed as:

T µν =
m0

Σ sin θdt/dτ
dxµ

dτ
dxν

dτ
δ(r − r(t))δ(θ − θ(t))δ(φ − φ(t)),

(64)

where m0 is the mass of the test particle, xµ =

(t, r(t), θ(t), φ(t)) is a geodesic trajectory, and τ is the proper
time along the geodesic. The geodesic equations in the effec-
tive metric are

Σ
dθ
dτ
= ±

[
C − cos2 θ

{
a2

(
1 − E2

)
+

L2

sin2 θ

}]1/2

,

Σ
dφ
dτ
= −

(
aE − L

sin2 θ

)
+

a
∆

(
E

(
r2 + a2

)
− aL

)
,

Σ
dt
dτ
= −

(
aE − L

sin2 θ

)
a sin2 θ

+
r2 + a2

∆

(
E

(
r2 + a2

)
− aL

)
,

Σ
dr
dτ
= ±

[
E

(
r2 + a2

)
− aL

]2

− ∆
[
(Ea − L)2 + r2 + C

]1/2
,

(65)

where E, L, and C are the energy, the z-component of the
angular momentum, and the Carter constant of a test particle,
respectively.

Thus, the tetrad components of the energy-momentum ten-
sor can be expressed as:

Tnn = m0
Cnn

sin θ
δ(r − r(t))δ(θ − θ(t))δ(φ − φ(t)),

Tmn = m0
Cmn

sin θ
δ(r − r(t))δ(θ − θ(t))δ(φ − φ(t)),

Tmm = m0
Cmm

sin θ
δ(r − r(t))δ(θ − θ(t))δ(φ − φ(t)),

(66)

with

Cnn =
1

4Σ3 ṫ

[
E

(
r2 + a2

)
− aL + Σ

dr
dτ

]2

,

Cmn = −
1

2
√

2ρ̄∗Σ2 ṫ

[
E

(
r2 + a2

)
− aL + Σ

dr
dτ

]
×

[
i sin θ

(
aE − L

sin2 θ

)
+ Σ

dθ
dτ

]
,

Cmm =
1

2ρ̄∗2Σṫ

[
i sin θ

(
aE − L

sin2 θ

)
+ Σ

dθ
dτ

]2

,

(67)

where ṫ = dt/dτ. Now we expand eq. (3.30) of ref. [49] for
Tℓmω(r) to the second order in the rotation parameter a, i.e.,

Tℓmω(r) = T (0)
ℓmω(r) + aT (1)

ℓmω(r) + a2T (2)
ℓmω(r), (68)

with

T (0)
ℓmω(r) =

1
2π

∫ +∞

−∞
dt

∫
dΩT (0)

4 ei(ωt−mφ) −2Y∗ℓm(θ)
√

2π
,

T (1)
ℓmω(r) =

1
2π

∫ +∞

−∞
dt

∫
dΩT (1)

4 ei(ωt−mφ) −2Y∗ℓm(θ)
√

2π
,

T (2)
ℓmω(r) =

1
2π

∫ +∞

−∞
dt

∫
dΩT (2)

4 ei(ωt−mφ) −2Y∗ℓm(θ)
√

2π
.

(69)

For a source bounded in a finite range of r, it is convenient to
rewrite the source as:

T (0)
ℓmω(r) = − m0G

∫ ∞

−∞
dteiωt−imφ(t)

(
∆0

)2 {(
A(0)

nn0 + A(0)
mn0

+A(0)
mm0

)
× δ(r − r(t)) +

[(
A(0)

mn1 + A(0)
mm1

)
δ(r − r(t))

]′
+

[
A(0)

mm2δ(r − r(t))
]′′}

, (70)

T (1)
ℓmω(r) = − m0G

∫ ∞

−∞
dteiωt−imφ(t)

(
∆0

)2 {(
A(1)

nn0 + A(1)
mn0

+A(1)
mm0

)
× δ(r − r(t)) +

[(
A(1)

mn1 + A(1)
mm1

)
δ(r − r(t))

]′
+

[
A(1)

mm2δ(r − r(t))
]′′}

, (71)

T (2)
ℓmω(r) = − m0G

∫ ∞

−∞
dteiωt−imφ(t)

(
∆0

)2 {(
A(2)

nn0 + A(2)
mn0

+A(2)
mm0

)
× δ(r − r(t)) +

[(
A(2)

mn1 + A(2)
mm1

)
δ(r − r(t))

]′
+

[
A(2)

mm2δ(r − r(t))
]′′}

, (72)

and the explicit expressions of Ai
nn0, Ai

mn0, Ai
mm0, Ai

mn1, Ai
mm1

and Ai
mm2 are given in Supplementary Material.

4.2 Analytical solution of ψB
4 with source in effective

spacetime

Inserting eq. (29), the solution Rin
ℓmω and eq. (68) into

eq. (22), we obtain Z̃ℓmω as:

Z̃ℓmω =
∑

n

δ (ω − ωn) Zℓmω, (73)

with

Zℓmω =
πνGM
iωBinc

ℓmω

[
A0 f (r)Rin

ℓmω(r) − A1

(
f (r)Rin

ℓmω(r)
)′

+A2

(
f (r)Rin

ℓmω(r)
)′′]

r0,θ0
, (74)

where ωn = mΩ, A0 = Ann0+Amn0+Amm0, A1 = Amn1+Amm1,
A2 = Amm2 (see Supplementary Material for details), and
(r0, θ0) are the values of (r, θ) on the geodesic trajectory. Eq.
(74) can also be rewritten in another intuitive form that is
given by

Zℓmω = Z(NS )
ℓmω + Z(q)

ℓmω + Z(q2)
ℓmω, (75)

https://www.sciengine.com/SCPMA/doi/10.1007/s11433-024-2415-y
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where Z(NS )
ℓmω represents the part that does not relate to spin.

That is, Zℓmω can also be written as the expansion of the rota-
tion parameter a, when a→ 0, the result will degenerate into
the nonspinning case [62].

Then, in particular, ψB
4 at r → ∞ is obtained from eq. (6)

as:

ψB
4 =

1
r

∑
ℓmn

Zℓmωn

−2Yℓm√
2π

eiωn(r∗−t)+imφ. (76)

5 Energy flux and waveform for plus and cross
modes of gravitational wave

Based on eq. (76), we find that the energy flux of the gravi-
tational radiation can be described by

dE
dt
=

∫
1

16πG

(
ḣ2
+ + ḣ2

×
)

r2dΩ =
∞∑
ℓ=2

ℓ∑
m=1

∣∣∣Zℓmωn

∣∣∣2
2πGω2

n
. (77)

The reduced RRF is given by [66]

F̂ = 1
νMΩ|r × P|

dE
dt

P, (78)

where ν is the symmetric mass ratio, P represents the mo-
mentum vector of the effective particle, and Ω = |r × ṙ|/r2

denotes the dimensionless orbital frequency. For the quasi-
circular case without precession, noting that | r× P |≈ pφ, so
the reduced RRF can be explicitly expressed as:

F̂ = 1
νMΩ

∞∑
ℓ=2

ℓ∑
m=1

∣∣∣Zℓmωn

∣∣∣2
2πGω2

n

P
pφ
. (79)

On the other hand, it is well known that the plus and cross
modes of the GW can be expressed in terms of spin-weighted
s = −2 spherical harmonics [67]:

h+ − ih× =
∞∑

l=2

l∑
m=−l

hlm −2Ylm√
2π

eiωn(r∗−t)+imφ. (80)

Therefore, by comparing eq. (80) with the solution (76) of
ψB

4 , we can easily deduce the waveform, which is given by

hℓm = −
2

rω2
n

Zℓmωn = h(N,ϵ)
ℓm ĥℓm, (81)

where h(N,ϵ)
ℓm represents the Newtonian contribution, and ϵ de-

notes the parity of the multipolar waveform.
The next two figures seek to demonstrate a comparative

analysis of our calculation results with those from other
works, specifically for ĥℓm of GWs at a given “r” that does
not evolve over time.

In Figure 1, we present the curves of the dominant
ĥ22(q, ν, v2) mode as the parameter q takes three different val-
ues, demonstrating that our results are essentially consistent
with the results in ref. [68]. While Figure 2 shows the curves
of ĥ22(q, ν, v2) for different symmetric mass ratios ν. Both
achieve accuracy up to v9 (where we define v = 3√GMΩ),
with our results aligning with the Schwarzschild case at v9

when setting the correction parameters and rotation parame-
ter to zero.

Since Zℓmω is obtained in the effective metric (1), eqs. (77),
(79), and (81) indicate that the energy flux, reduced RRF, and
the waveform are constructed in terms of effective spacetime.

6 Conclusions

It is known that nonspinning binary systems are largely theo-
retical constructs, as real-world conditions involve rotation
to some extent. From a practical perspective, it is essen-
tial to develop gravitational waveform templates that account
for spin binaries. Therefore, as a theory for building a tem-
plate of gravitational waveforms, it is particularly important
to consider the case of spinning binaries.

To construct the gravitational waveform template for the
radiation generated by merging compact object binary sys-
tems, we must focus on the late dynamical evolution of the
system governed by the Hamilton equation. This involves an-

Figure 1 (Color online) These images depict the comparative analysis of the curves of ĥ22 conducted independently by this article and ref. [68]. The values
from left to right are q = 0.001, 0.005, 0.01, respectively.
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Figure 2 (Color online) These images show the curves of ĥ22 across five distinct symmetric mass ratios, with parameter q ranging from 0.001 to 0.01.

alyzing the Hamiltonian and the RRF of the binary system.
Based on previous work [48, 63], we have built up an effec-
tive rotating metric for a real spinning two-body system and
constructed an improved SCEOB Hamiltonian. This Hamil-
tonian models a spinning test particle’s orbit around a mas-
sive rotating black hole, as described by the aforementioned
metric. The null tetrad component of the perturbed Weyl ten-
sor ψB

4 relates to the plus and cross modes of the GWs as
ψB

4 =
1
2 (ḧ+ − iḧ×) at infinity. This relationship is crucial for

calculating the GW energy flux and, by extension, the RRF.
The key step is to find the solution of ψB

4 .

Although the decoupled equation [49] initially appears
inseparable, insights from analyzing the LIGO-Virgo strain
data proposed by Renolds et al. [56] reveal that most spin
systems involve slowly spinning black holes, namely a < 0.1.
This enables us to separate the equation into radial and angu-
lar parts within a slowly rotating background, closely approx-
imating spherical symmetry. Thus, we have further obtained
the variable separation form of the decoupled equation up
to the second order with respect to the rotation parameter a,
and this method can, in principle, be extended to any order.
By rewriting the trigonometric function in terms of the spin-
weighted spherical harmonics and leveraging their character-
istics, we have extracted an analytical solution for the radial
equation through certain transformations. Utilizing the null
tetrad component of the perturbed Weyl tensor ψB

4 , we have
derived analytical expressions for the reduced RRF and the
waveform for the plus and cross modes of the GWs. At this
point, the late-stage dynamic evolution of the binary system
becomes clear and distinct.

It is worth noting that our results can be decomposed into
several components. Aside from the basic Schwarzschild
background, these include elements related to the rotation
parameter a, the correction parameter a2 and a3, and their
coupling terms. Specifically, when a → 0, the result will be
reduced to the case of ref. [62], while a2, a3 → 0, the re-
sult will be consistent with the Kerr background. If all these
parameters approach 0, the model simplifies to the simplest
Schwarzschild case. Meanwhile, the improved reduced EOB

Hamiltonian presented in ref. [49], along with the reduced
RRF and the waveform for the plus and cross modes of the
GW, are all obtained within the same physical model. These
components collectively form a SCEOB theory for spinning
black-hole binaries based on the PM approximation.

Moving forward, we aim to extend these results to a higher
order to improve the accuracy and facilitate comparisons
with data produced by numerical relativistic methods. Con-
currently, we plan to plot the corresponding waveforms.
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