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We present a study on the energy radiation rate and waveforms of the gravitational wave generated by coalescing spinless binary
systems up to the third post-Minkowskian approximation in the effective one-body theory. To derive an analytical expansion of
the null tetrad components of the gravitational perturbed Weyl tensor ¥y in the effective spacetime, we utilize the method pro-
posed by Sasaki et al. During this investigation, we discover more general integral formulas that provide a theoretical framework
for computing the results in any order. Subsequently, we successfully compute the energy radiation rate and waveforms of the
gravitational wave, which include the results of the Schwarzschild case and the correction terms resulting from the dimensionless

parameters a, and a3 in the effective metric.
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1 Introduction

Gravitational waveform templates play an important role in
the detection of gravitational wave events generated by co-
alescing binary systems [1-10]. The foundation of gravita-
tional waveform templates is the theoretical model of gravi-
tational radiation, in which the key point is studying the late-
stage dynamical evolution of a coalescing binary system.
Damour and Buonanno et al. [11,12] proposed an effective
one-body (EOB) theory that maps the real two-body problem
with masses m; and m; to a test particle of mass u = %
moving around an effective spacetime of mass M = m; + my
(and we denote the symmetric mass ratio as v = u/M). This
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theory enables the study of gravitational radiation produced
by merging binary systems. Based on the EOB theory with
the post-Newtonian (PN) approximation, Damour et al. [13]
provided an estimate of the gravitational waveforms emitted
throughout the inspiral, plunge, and coalescence phases [14].

To release the assumption that v/c is a small quantity,
in 2016, Damour et al. [15, 16] introduced another theo-
retical model by combining the EOB theory with the post-
Minkowskian (PM) approximation. Damour and Rettegno
[17] compared numerical relativistic (NR) data for equal-
mass binary black hole scattering with analytical predictions
based on the fourth PM (4PM) dynamics [18-25] and pointed
out that the reconstruction of PM information in terms of
EOB radial potentials leads to remarkable agreement with
NR data, especially when using radiation-reacted 4PM infor-
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mation. Therefore, this new model may lead to a theoret-
ically improved version of the EOB conservative dynamics
and may be useful in the upcoming era of high-signal-to-
noise-ratio gravitational wave observations.

The dynamical evolution of a coalescing binary system
for a spinless EOB theory can be described by the Hamil-
ton equation [26], and the Hamiltonian H [gff\f] is dependent
on the effective metric. The radiation reaction forces ?‘R[g;fyf
and 7, [gffvf] in the Hamilton equation can be described by the

energy radiation rate as follows: & = —— f [ZE2r2dQ
[14,27]. Furthermore, the “plus” and “cross” modes of grav-
itational waves are related to the null tetrad components of
the gravitational perturbed Weyl tensor S"f in the Newman-
Penrose formalism as follows: ¥# = 1(h, —ihy). Thus, as
long as we obtain the effective metric and the solution of ‘Pf
in the Newman-Penrose formalism, we can calculate the en-
ergy radiation rate and construct gravitational waveforms.

In previous study, we attempted to develop a self-
consistent EOB theory for spinless and spinning binaries
based on the PM approximation [28-31]. Furthermore, in a
recent paper [32], we obtained the effective metric up to the
4PM order. We adopted the black hole perturbation method
used by Teukolsky et al. [33,34] and decomposed all quan-
tities into background and perturbation (denoted with a su-
perscript B) parts in the Newman-Penrose formalism. After
choosing a shadow gauge [29, 35,36] with ¥} and ¥5 set to
0, we can decouple the equations for the null tetrad compo-
nents of the gravitational perturbed Weyl tensor ‘Pf . Subse-
quently, upon separating the variables in the equations, we
obtained a radial equation, which is the so-called Teukolsky-
like equation, and an angular equation that features spin-
weighted spherical harmonics.

This Teukolsky-like equation is more complex compared
with the Teukolsky equation in Kerr and Schwarzschild
spacetimes. We were unable to find a similar transformation
to convert the homogeneous Teukolsky-like equation into hy-
pergeometric or Heun equations; thus, we did not choose to
adopt the so-called MST [37, 38] method or the Heun func-
tion [39-44]. Instead, we follow the approach used by Sasaki.
Several researchers [45-57] have employed numerical meth-
ods to solve the Teukolsky equation and achieved significant
success by combining the EOB theory with numerical rela-
tivity.

We initially applied the Sasaki-Nakamura-Chandrasekhar-
like (S-N-C-like) transformation [35, 58] to convert the ho-
mogeneous Teukolsky-like equation into a homogeneous
Sasaki-Nakamura-like (S-N-like) equation [27, 38, 58, 59].
In an asymptotically flat spacetime, this homogeneous S-N-
like equation can be simplified to the Klein-Gordon equation.
Subsequently, we performed a Taylor expansion with respect
to n = 2GMw. The equation of the zeroth order is the spher-
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ical Bessel equation, and its solutions are linear combina-
tions of the first and second kind spherical Bessel functions,
denoted as j, and ny, respectively, allowing us to construct
higher-order solutions based on the zeroth-order solution. By
performing an inverse transformation, we can deduce the so-
lutions of the homogeneous Teukolsky-like equation. This
framework enables us to construct the solutions of the in-
homogeneous Teukolsky equation, which includes a source
term, using Green’s function method.

However, due to the complexity of Green’s function
method and the fact that the integral formulas provided in the
previous work of Sasaki et al. [59] were insufficient for our
needs in computing higher-order solutions, we found some
new integral formulas presented in Supplementary materials
of this article, which are crucial for our journey toward cal-
culating higher-order solutions.

Sect. 2 introduces the effective metric of 3PM, while
sect. 3 discusses the solutions of the equation for ‘Pf in
the effective spacetime. Specifically, sect. 3.1 summarizes
the general structure of the solutions of the radial equation
(Teukolsky-like equation) of ‘Pf . Sect. 3.2 provides a com-
prehensive explanation of the calculation of the homoge-
neous S-N-like equation. Subsequently, we employ bound-
ary conditions to determine the amplitudes. Sect. 3.3 presents
the source terms for quasi-circular orbits; by combining the
homogeneous solutions provided in sect. 3.2 and utilizing
eq. (17), we can obtain the solution of ’}’f under quasi-
circular orbits. In sect. 4, we present the energy radiation
rate %—f and the gravitational waveforms /gy,.

2 Effective metric for the EOB theory

In the EOB theory, the main idea is to map the two-body
problem onto an EOB problem, that is, a test particle orbits
around a massive black hole described by an effective met-
ric. With the help of the scattering angles, we found that the
effective metric for spinless binaries with radiation reaction
effects in the EOB theory, up to the 3PM approximation, can
be expressed as follows [32]:

dsZ; = ngfdx“ dx”

A, r? 2 20102 2 2
= _Zdt - A—dr —-r (dg + sin gd&p ), (1)
r r

with

GM)?
A, =r* = 2GMr + a,(GM)* + @u
.

=%(r —2c,GM)(r = 2¢i:GM)(r —2¢c,GM), 2)
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the definitions of ¢, ¢z, and ¢, are as follows:
e =3 5|01 =i VBQ + VT 0P}

+(1+iV3)(0 - VP + 0V, 3)
c2 =% - %[(1 +iV3)(Q+ VP + 00

+(1-1V3)(Q - VP + Q%)) “
1 1 1
=3 +(Q+ VP + 0 +(Q - VP + 0D, )
where 0 = L -2 -4 p = %(% - %) and a, and a3 are

dimensionless parameters expressed as follows:

31 - )1 =597

a2 - r(3’y2_ 1) ’ (6)
b3 3-2T -3(15-8T)y? + 6(25 — 16 )y*
T 242 - 1) rGy:-1)
2y ]
—2P30—— s (7)
Vy2-1

2 0 0
lc‘)—ml—m2

in whichy = f =3 is the Lorentz factor variable, &

is the real two-body energy [17,32], E is the effective energy,
I'=E/M = /1 +2v(y — 1) is the rescaled energy, and

p _1872—1 +8v(3+1272—4y4)arcsinh y—-1
VTR -1 2
v 103 2
—(1- ==y -48y* - =y
+r2( 3 /7Y T3
3T (1 =295 - 5)/2)) ®
A+D)+7)
b 2y -1 (Y -8) [
’“"53@2—1)3/2{ y o Vot
2 : y-1
+ 2(9 — 6y")arcsinh T} ©)]

In eq. (7), the term y7%", described by eq. (9), represents the
3PM radiation reaction effects, which shows that the struc-
ture of the effective spacetime is affected by the radiation re-
action effect.

3 Solutions of equation for ¥ f in effective space-

time

In this section, we first present the formal solution of the ra-
dial equation for (S”f). Then, we transform the radial equa-
tion without source to the corresponding S-N-like equation,
and we look for its solution. At last, we work out the so-
lution of the radial equation of (Y’f) with the source, which
describes the gravitational radiation induced by the motion
of an effective particle in an effective background.
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3.1 Formal solution of the radial equation of &"f in ef-

fective spacetime

In the EOB theory for the spinless real two-body system, we
have found a decoupled equation of Wf for the gravitational
perturbation in the effective spacetime (1) using the gauge
transform property of the tetrad components of the perturbed
Weyl tensors and separated the decoupled equation in the ra-
dial and angular parts, in which the radial part of S”f is given
by [28,29]

[ATZ%(Aid%) - vm] Rino() = Tonol1), (10)
with
__GmM
PFy’
rro(rrw + 2iA’ . 21F 3A,
v(r)=_%+lr (5+ © ‘)— =
- 3f; +6rF) — 21°F4 + AF,, an

Tfmw(r) = _,uf dteiwtiimtp(t)Aiz’{Aoé(r - r(t))

+ [A160r = r(e))] + [A2d(r = re))] ),

where the prime ’ denotes derivation with respect to r, and
Ao = Auno+Amno+ Ao, A1 = Agin1 Az 1, and Ag = Ago.

24
AnnOZ_—CnnF2g+ $+ —ZY(m(g) )
mA% 1[ 2( )]
3 ir‘re  F, F
Am,, =—Cm,, 1+ F)—+ —=-F, - —
0= n |1+ F) Aty PR
X L5 2Yim(®)),
2 Pov rro?
Asiio = —— Crm 2 Yem@)|i(—) + —
0 N 2Yem( )[1( Ar) A2
(12)
irza) 1 Fé/l Fi Fé/l ’
+ —+ =)+ —=+(=) |,
Ar (r F4) rF4 (F4)]
3
Aiint = —— Cin(1 + F)) L ( -2Yim(0)),
1 NN ( 2) 2( 2¥em( ))
r? rPo 1 Fj
At = —— Ci 2 Yen(0)(-215— + — + =),
1= 5= Hen®(275=+ 7+ )
2
Ao = ——— Gz 2Yen(6),
V21

the explicitly definitions of F, (a = 1,2,3,4), %, (or i”,j),
and C;, (b is nn or mn or mm ) can be found in ref. [29], and
—2Y,(6) is the spin-weighted spherical harmonics [38, 60].
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The radial equation, i.e., eq. (10), can be solved using
Green’s function method. That is, based on the homogeneous
solutions of eq. (10):

trans A 2 ,—iwr*
. B Ave s for r - ry, |
R[mm 3 £ ior 1 pi L ( 3)
"B et 4 T BN e for r — +o00,

{mw {mw

CP giwr 4 AZCrel g-iwr” | for p s
tmw r~ tmw ’ +
R¥® (14)

{mw e P
C}rr;‘l‘::r%”‘” , for r — 400,

where r* denotes the tortoise coordinate defined by r* =
f #dr. The inhomogeneous solution of the radial eq. (10)
can be expressed as follows:

1 u " fRin AT oo (T
Reme Z.—-{pr f dFM
21 wctrans Binc mw . Ar(r)

tmw ™ tmw

o spUP [~ ~
f dFTRgmw(r)szw(r)}’ (15)

+ R
AZ(7)

{mw
whereas the counterpart at infinity can be expressed as fol-
lows:

Rt’mm(r g Oo) -

r3ei°”* foo dF T[mw(?)R?:nw(?)
2iwB™® . PF4(F)AX(F)

{mw

= Zimor € (16)

As discussed in ref. [29], for the point source case, after a
lengthy calculation, we can obtain the expression for Zg,.
If we focus our attention just on the quasi-circular orbit, we
have mewn = Zpmew 0(w — w,), in which

2

TwGM i d o d i
Zmo = M[AOTR{"W -A E(TR{’mw) + Azﬁ(fR{’mw)]'
(17
Then, the solution of ?’f is described by
1 X LY
V= = Lo, i 0 (18)

R tmn m

Egs. (18) and (17) show that to get the explicit expression for
P8, we should work out A;(i = 1,2,3), BI _and R}"

tmw’ tmw*

3.2 S-N-like equation and its solution of the third PM

approximation
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treat the Teukolsky-like equation directly because the poten-
tial function in the equation is a long-range potential. In-
stead, we transform the radial equation, without source into
the S-N-like equation with a new function X¢,,,, which has a
short-range potential. Then, using the solution of X"

> ) tmw®
find out By, ~and R} .

we

3.2.1 S-N-like equation and relation between RI[I;n , and X}‘,‘n ”

Taking an S-N-C-like transformation as"):

1/2
X(r) = rf a(NR(r) + '% R’(r)), (19)
where
42
a(r) = 6A—2r + V() + Zirw+ir2wA—r _re ,
g A A 0)
B(r) = A(=2ir*w — 4% - Ar% +A),

and considering the coordinate transformation r — r,, the
radial equation (eq. (10)) without the source term (7', = 0)
can be rewritten as the so-called S-N-like equation, as fol-
lows:

Xpr = FXr —UX=0, @1)
with
_AY
2 9
A v (22)
_ 2r 2 Ay
U = r4U+G +G, 3 yG’
where
_ B BYy B;, B
7—a(a+ Ar - A—r?)— A—r(a’ + A—%V(r)),
A7 B_BYY Y( B _BY
0= -5 7) Sl 55 ) v e
Ar Arf’ Ar’

rBoo2rfF 2

The asymptotic solution of X}“ can be expressed as follows:

trans ,—iwr* * _
Xpry={0c e T T (24)
Agulelwr +A1€ne—1wr , r* — +00.

Meanwhile, the inverse transformation is described by the
following expression:

1 / ’ A A ’
I 17), R is the solution of the h R =~ (a+ﬁ——£f—)—132X(r)—£( 1j2X(r))].
n eq. (17), Ry, is the solution of the homogeneous equa- A AT AN
tion without the source term. To get the solution, we do not (25)
1) Because the physical quantities we are concerned with are related to the ¢, m, and w, for any £, w dependsonmand m = -, -+ 1,..., 0,..., €—-1,¢.

Thus, we shall henceforth represent the subscript labels {mw of these physical quantities simply as € or drop the subscript for the sake of brevity and clarity.
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Using a method similar to that used in refs. [38,61], the co-
efficient A} in eq. (24) is related to B in eq. (13) as follows:

in 1 in
B = _WA[' (26)

3.2.2 Solution oin["

We now look for the solution of X}“ and amplitude Ai[n of the
S-N-like equation. The method employed in this subsection
is based on the work of Sasaki et al. [38] and Mino et al.
[59]. We first take the following ansatz:

X' = e 9@ z¢,(2), @7)

3
G

where z = wr, n = 2GMw, b, Cave=ay b, =

3 3
2 bh

h
(c2—c1)(ca—cp)’ and

ECE Dk

2
#(2) = f(rA(:) —w)dr

=n(biIn(z — c1n) + by In(z — con) — by In(z — cp1)).
(28)

With this choice of the phase function, &, is regular and fi-
nite at z = nc,. Then, we determine that eq. (21) can be
expressed as follows:

LOTg) =LV [&] + L2 [&] + LY [&] + OGi),  (29)

with
2.2 +1
Lo & 2d o aeeby
dz2  zdz 2
o1 1+3m+2izg 4+ + 250D g
S zdZ? 2 &z = ’
- @
L(2>:_a_2d_2+ i, b\d
4z22dz2 \2 ¢ 2 )dz
&g, WP (30)
+|— 4+ =077 + ,
(Z2 z ¢ 74 )
& 3)
L<3)=_a3d_2 o iw, )4
823d2 \22 £ ¢ #)dz
3

where the definitions of a,’ and other terms are shown in

(n)
¢
Supplementary materials.

In the low-frequency limit and noting that 7 = 2GMw only
appears on the right-hand side of eq. (29), we may look for

the solution of the &,(z) perturbative in terms of 7, i.e.,

() = Y el @), 31)
n=0
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and we obtain the recursive equation from eq. (29) as follows:

0)emy — y
L )[g[n 1= W€" , (32)
where
W =o, Gy
Wéﬂ) — Z L(l')[é.‘;"*i)], n=1,2,3. (34)
i=1

The solution of fﬁ,o) can be expressed as a linear com-
bination of the spherical Bessel functions j, and ny, i.e.,
520) = a9, + fOn,. Because n; does not match with the
horizon solution at the leading order of 1, we should take
BY = 0. Furthermore, because the constant o”) represents
the overall normalization of the solution, which can be cho-
sen arbitrarily, we set ” = 1. That is, for the zeroth-order
solution, we have f[(O) = je and gi,o) = 0. Then, one can im-
mediately write the integral expression for g—"ﬁ,") (where n > 0).
Noting that jn,’ — ngj;’ = 1/z2, we derive the expression of
23) for 5 > 1 as follows:

f) =ny fz dz(zzjfwéﬁ)) —Je fz dZ(ZZWWEﬁ))- (35)

In general, 52@ can be decomposed into the real and imag-
inary parts 55@ = t,(ﬁ) + ig(f), in which

Z 4
[<ﬁ> = m}f dz(zzj[Re[Wéﬁ)])—jgf dz(zzngRe[Wéﬁ)]),

(36)
g =n f (2 mw) - f ),
(37)
with
8
Re[W/”] = ) (Re[LON1 - Im[LONgf ™)), (38)

I
—_

L

(W) =" (Im[LO) 7771 + Re[ LN 1), (39)
i=1

where Re[x] and Im[x] are the real and imaginary parts of
x, respectively. Using the previously presented formula and
the method discussed in Supplementary materials, after some
tedious calculations, we derive closed analytical formulas of
the ingoing-wave S-N-like function for arbitrary ¢ to the first
order of 7. At the second order of 7%, we can calculate results
for any order utilizing eq. (36). However, generalizing these
results to encompass all values of ¢ is unattainable. There-
fore, for the higher-order results, we only provide results for
specific values of ¢, for £ = 2,3 to r]2 order, and for £ = 2 to
1> order. We express the real parts as follows:

o (€= D(+3) ([ £-4 N
¢ T+ nee+ ) T \2ece+ ) Tee-1

Je-1
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-2
. ' 1 .
+ Reojo — 2Dy + Z (Z + )R[,m./m

_a_z( C+30+4 _82
3\ e+ ) T 2ee+ 1)

m+1

Lt 2]5—1),

(40)

where R,,; is the Lommel polynomial (R, = —Ry, for
m < k), expressed as follows:

Rm,k = Zz(nmjk - jmnk) (m > k)

mel
[ [¢ )

RS ] (—l)r(m—k—l—r)!r(m +1- r) (2)"’"12’
S orim—k—=1-2n)(k+3+r)\2 |

(41)

Bj is the generalized integral sinusoidal function, and D{ is
the generalized spherical Bessel function from refs. [38,59]
or see Supplementary materials.

o _(_ 1934 450 257 113)
2 1890z ~ 14z 1008z 420z)”"
17a5  10a, 59a; 1) .
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1890z 63z 336z 7z
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945 T21 126 210/ 72 10F
3242
+ 2 D% + a3 1o
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32a3 2a, S5a3 107
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945 21 ' 63  105) 3

10 2(12 i 14612 i
= -2 |+ =2V -
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6Dy’ 5D ‘
0 2 nnj

- +4D, ",
3z 2

389,
7072

- % jo(Inz)? + (42)

o _(204) 6354, .\
3 81z 727 9z

197a3 , 1093a,
1134z = 168z

.\ 253 19,
189z 840z
( 5a2 a2
+ jalnz S s i

378 42 168 42
25a%
+( 2 _

405612 25a3 65
n
63z 28z 28z 6z) "

53 ay Saz 13\ . (13 8az\ i
_ 2z L _ T 7 Dnj T e Dnj
+( 180 "21 84 21 4+(3 63) 2
50655 1. . .
~ i
2042 oA+
opi/ 3Dy
z z

_415ay 323)
1008z © 49z )72

65ay 1)
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1 1612 nj
42 7
30D
+—+
Z

(43)
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The corresponding imaginary parts are expressed as follows:

1)

g, =jelnz, (45)
T,
g(€2) = él)lnz ] + gf), (46)
Tl i~ Taje
g =fPInz- — - 2ot ] (Inz)* + ¢, 47)
with
Ty =1+¢ —(c1 + )1 — ),
T, = C1C2(—C1 —C + 3) + 2(61 - 1)6‘1 + 2(6‘2 —Der+ 1,
(48)
where g(") for £ = 2 can be expressed as follows:
2a Sa a a
®) 2 3 2 . 2.
I B IS 2. 49
2 (81 +108+180]J3+30J1 “49)
4a2  ay 5a ;
3) 2 2 3 nj
-2 _Z2_251p
2 ( 81 90 54 )
N 176a§_ 1469a§+40aza3 _Sa; 18laz). a
2835: 3780z T 189: 24z 252z )15
5a3 83a2 2 1
N 2 2 0d203+ @, 3a3 i
1701z 3780z 567z 144z 252z
22a3 @ Saa; a
2 2 203 3
et =+ —+ |
2835 T 105 189 56) J2me
44a3 296a3 10aras a» 37Tas
+|- + - +—=+ no
945z 945z 63z 12z 63z
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Inserting these expressions into eq. (27) and expanding the
result with respect to 77, we find that

Xm

tmw

=X+ nxD + X + P XY, 1)
where

X(O) =zjes

X(l) =z {fl),

X2 _Z[ @) jg(ln 2 +ic?)], (52)

T, .
X?) =Z[f;3) + Eﬁl)(lnz)z - 7]( Inz+g, D nz + 1;'(3)]

3.2.3 Coefficient of amplitude Aié,n

Noting e=(-b1InG-cimy+by InG-coy+by InG-cim) = g=iz" gz PN 1,

taking the expressions of the spherical Hankel functions of
the first and second kinds h(;) and hf) as:
i)t’+1

—00 eiz
WY = jp +ing — ()1 =, (53)
Z
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700 —iz
h;z) = j,—ing — i’"! e—, (54)
z
and using the asymptotic behavior of B; and D? in ref. [59],
we obtain the following expression:

Am =1 [+le—1n(]n 27]+elg) [7][7([0)—7'[7] p((l)+7]3(p(z)—nzp(”+p(4)R1Z(3))]

T 2 (1) O
X{l - 577-{-77 [2(elg+ln2)l’g +4, ﬁ]
g 4 g + el + 23] (55)

where elg is the EulerGamma constant (elg = 0.57721---),
RiZ(n) is the Riemann zeta function (RiZ(3) = 1.202--.),
and the coefficients of Aizn are

—90as + 75a3 + 963

15 - 2a, 3242
PO = o 2 220

9 = P 3780 .

0 —292a3+1962a2 — 765ara; 17824, +3564a3+1566
Py = 34992 :
0 32a3 — 90a + 75a3 + 963 o1

2 11340 » P T3

a _ _ —37612 - 5a3 + 150 ) _ _i
% 108 » % 16’

o _ ~176a3-216a3-600az03-+7770az + 645a3 — 31500
% 45360 :
and

) —32a3 +90a; — 753 — 963
@ = 3780

17643 + 21642 + 600a-raz + 405a
2 2 G i) (56)
226307

3.3 Quasi-circular orbit on the equatorial plane around
an EOB

In this section, we consider a quasi-circular orbit. In this
case, we assume that the orbit lies on the equatorial plane
(0 = m/2) without loss of generality. By setting V,.(r9) =
oV,[0r(ry) = 0, the effective energy E and effective angular
momentum L are given by

V2[a3(GM)? + ro(as(GM)? + ro(rg — 2GM))]

Elu= ,
/ﬂ ro \/70\/5(13(GM)3 + 2]’0(2(12(GM)2 + r()(}"() - SGM))

(57)

ro V=3a3(GM)3 + 2GMry(ro — a;GM) 58)

 \5a3(GMY + 2r02ax(GM)® + ro(ro — 3GM))

where r is the orbital radius. By defining

N DIl + D +2)
2V27A,

obem =
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15a3(GM)?* + 8a,GMry — 612
X 3 ) 2 0 OOY[m (E,O)XF(%E,
5613(GM)2 +4a,GMry — 6}’8 2
2NT-DTC+2)
-tbon = ———(—————
VZTU‘Q

5a3(GM)2 +3a:GMry — 372
X

s Yo (53.0) 20 L,
(5a3(GM)>+4a,GMro—6r)

A, T
—obgy = 71Y€m(§,0)L2,

24 E
P, = 75a3(GM)* + 10a3(GM)*ro(11a,GM — 18r) (59)

+4r5(8a5(GM)* = 21a,GMry + 9rp),
B, = roA,(8azry + 30a3GM) + 6a313(GM)?
- 8ara3ry(GM)* — 1543(GM)*,

we obtain

1
Ay =—" {20bfm +4i_1bgp

. r3
i (1 N 2GMry
21%

T+ 303, P,

r

X (6a2r(2) +30a3:GMrg — 5a2a3(GM)2))}

3
—2bpuwr,
— 0 [r(z) - GMr,
z

GM x B, 1
+ 5 + Siwrg
15a3(GM)? + 8a,GMry — 6ry 2

GMA? - (24313 + 15a3GMro — 5a2a3(GM)2)}}

+ 61 5
r(z)a)(15a3(GM)2 + 8a,GMry — 6r(2))
(60)
by 2GMro(6ay73+30a3GMro—S5aa3(GM)?)
Al =i 21+
140) Pr
b (| GM - (156GM +4ay) irgw
ro 15a3(GM)? + 8a;GMry - 6r2 A, )’
(61)
b
Ay =-— 22‘ . (62)

4 Energy radiation rate and gravitational wave-
forms

Inserting the aforementioned result of A;(i = 1,2, 3), Bi{,“, and
Ri;‘ into eq. (17), we can obtain the following expression:

mewo = Zé%iizfmwos (63)

v
Z(EZZZ — (_1)5+E+1m2

mn;i;vf+f+ﬁoyg,e,,m<7r/2,so), (64)
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. 8m E+D(+2) B
o | ere N w-n €=0

Mom = 167 \/ QL + 1)(£ +2)(% — m?)

a-narne-1n° b
(65)

where we define v = (GMQ)'/3, wy = mQ, € = 1 when
{+m=1,and € = 0 when £ + m = 0. We can divide the
higher-order term mewu into two parts: the ngn)wo is computed
in the Schwarzschild case [62] and the Zéﬁl)n is the 2PM and
3PM perturbation terms:

—(im)l
m) s o

T =28+ 78

tmw tmwy

(66)

The explicit expression of ngl)wo is presented in Supplemen-
tary materials. In the test particle limit, i.e., v — 0, we note
that Zéﬁ)wo vanishes completely because a, and az approach
0. That is, our results revert to the Schwarzschild case in the
test particle limit.

In eq. (18), utilizing the symmetry of the spin-weighted
spherical harmonics, Y, _,(Z,0) = (=1)*** ¥;,(Z,0), we
know that Zy_, = (—I)KZ;mw, where Z; is the complex
conjugate of Zg,,. In terms of the amplitude Z;,,,,, we find
from eq. (18) that the gravitational waveform [14,27,58] at

infinity is given by

oY L

hy —ihy = Z Ry =8 glen (" =D time (67)
T 27

with

I =2 g ) B 68

fm__w tmwy — fm+ tm? ( )
0

where

S) _ 1 (NeHES) ®) _ (NOZ®

h[m - hfm Z[mwo’ h[m - ht’m mewg’ (69)

GMy
AN = Tn§2c5+f(v)vf+foYg_f,_m(ﬂ/z, @) (70)

The energy loss rate along any orbit, in polar coordinates, can
be expressed as dEzgtﬁer] = RFrlgN] + ¢ Folgeh]. By simply
replacing the radial component with zero, an excellent ap-
proximation of the radiation reaction forces can be obtained
[26]. Thus, from eq. (67), we know that, for given energy w,,,
the energy loss rate [14,27] for the “plus” and “cross” modes
of the gravitational wave is described by the following ex-

pression:

dE[ge] l(dE) SR
=== gy, (71)
dt 2\ dr N;;
with
I, =85 + ED, (72)
| ZNO Z65) 2
([i) _ Cmwy " tmw (73)

MG} (%)N |
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(R) _ tmwy
tm
2 ez
2nG2} (4),
5(S)  F(R)x F(R)  5(S)* R) 5 (R)*
X {Z[mwozt’mwo + mew Zt’ma)o + Z(mwngmwo} (74)

where (dE/df)y = 32v*v'%/5 is the Newtonian quadrupole
luminosity and the superscript * denotes the complex con-
jugation of the corresponding expression. In Figure 1, we
present the curves of I, and 133 as the symmetric mass ra-
tio v takes different values.

Then, we determine the radiation reaction forces for the
“plus” and ““cross” modes of the gravitational wave as fol-
lows:

dE[geT]
circ llV
Foelgg M~ TR
0 €
( ) DR+ E), (75)
(=2 m=1
where F) = 8(5)/ and F® = S(R)/l

{m

Egs. (67), (71), and (75) indicate that all of the gravita-
tional waveforms, the energy radiation rate, and the radiation
reaction forces are based on the effective spacetime.

5 Conclusions

In this study, we investigate the waveforms and energy ra-
diation rate of gravitational waves generated by coalescing
spinless binary systems up to 3PM approximation in the
EOB theory. We focus on the radiation reaction forces in
the Hamilton equation which can be described by the en-
ergy radiation rate E = @ f |S’ff [?r2dQ and the “plus”
and “cross” modes of gravitational waves, which are related
to the null tetrad components of the gravitational perturbed
Weyl tensor by SUB z(hJr ihy). Clearly, to find the energy

radiation rate and construct gravitational waveforms, the key
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step is to seek the solution of ?’f . Therefore, the main task
of this study is to solve the decoupled and separated equa-
tions of the null tetrad components of gravitational perturbed
Weyl tensor ¥2 in the effective spacetime by employing the
Green’s function method.

To achieve this goal, noting that the potential function in
the radial Teukolsky-like equation is a long-range potential,
we first transform it into an S-N-like equation, which has a
short-range potential. Then, by expanding the homogeneous
S-N-like equation with n = 2GMw, where w denotes the an-
gular frequency of the wave, we derive closed analytical ex-
pressions for the solutions of each order. These solutions are
essential for constructing the Green function and asymptotic
amplitude. The lowest-order solution is expressed as a linear
combination of spherical Bessel functions, which allows us
to perform iterative calculations to obtain higher-order solu-
tions. This approach simplifies the problem and enables us
to efficiently study the radial Teukolsky-like equation. In the
calculation process, we use a low-frequency approximation
and considered the conditions of quasi-circular orbits. These
conditions are represented by the relationships z « v, 17 oc 3
and w = mQ. As a result, the obtained results are accurate to
O(V~26=2-¢) which means that the accuracy of the results
of this study reaches the 4.5PN order [62, 63].

This article also presents a more general integral formula
than that given by Sasaki’s group [59], which can be ex-
tended to higher orders or even arbitrary orders without ad-
ditional treatments. In Supplementary materials, the general
integral formulas, which can theoretically derive the series
solution of the homogeneous S-N-like equation to any order,
are presented. However, when constructing the general so-
lution of the nonhomogeneous equation using Green’s func-
tion method, it is necessary to specify the amplitude at in-
finity, which requires finding the asymptotic behavior of B,
as z — oo. Although we know what needs to be done at
each step, we have not yet been able to implement our ideas

0.32
0.30
0.28;—
0.26}_=

0.152 0.156

0
v=0.001
—v=0.005

0.00 0.05 0.10 0.15

0.00 0.05 0.10 0.15

Figure 1 (Color online) I1z,, = Iy, V2, v) with respect to v2 and v, where the curve of v = 0 corresponds to the 4.5PN result obtained for the Schwarzschild
case. The figure on the left is for IToy = Iy (v2, v), and the right one is for 133 = 3302, v).
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using a computer, but we can obtain specific results through
complex calculations. Therefore, combining the outstand-
ing works of Sasaki et al. with the useful formulas pre-
sented in Supplementary materials, we have confidence that
this method will yield good results in the future.

From the analysis provided, it is evident that the effec-
tive metric degenerates into the Schwarzschild case in the test
particle limit (v — 0). This limit is characterized by vanish-
ing of the coefficients a, and a3. Therefore, the gravitational
waveforms and energy radiation rate calculated in this study
were divided into two parts: the Schwarzschild part and the
correction part related to PM parameters a, and a3. Handling
spinning binary systems will involve additional complexities.
However, the results of this paper and the listed mathematical
techniques will be valuable for understanding the energy flux
and waveforms in spinning binary systems.
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