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We present a study on the energy radiation rate and waveforms of the gravitational wave generated by coalescing spinless binary
systems up to the third post-Minkowskian approximation in the effective one-body theory. To derive an analytical expansion of
the null tetrad components of the gravitational perturbed Weyl tensor Ψ4 in the effective spacetime, we utilize the method pro-
posed by Sasaki et al. During this investigation, we discover more general integral formulas that provide a theoretical framework
for computing the results in any order. Subsequently, we successfully compute the energy radiation rate and waveforms of the
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parameters a2 and a3 in the effective metric.
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1 Introduction

Gravitational waveform templates play an important role in
the detection of gravitational wave events generated by co-
alescing binary systems [1-10]. The foundation of gravita-
tional waveform templates is the theoretical model of gravi-
tational radiation, in which the key point is studying the late-
stage dynamical evolution of a coalescing binary system.

Damour and Buonanno et al. [11,12] proposed an effective
one-body (EOB) theory that maps the real two-body problem
with masses m1 and m2 to a test particle of mass µ = m1m2

m1+m2

moving around an effective spacetime of mass M = m1 + m2

(and we denote the symmetric mass ratio as ν = µ/M). This
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theory enables the study of gravitational radiation produced
by merging binary systems. Based on the EOB theory with
the post-Newtonian (PN) approximation, Damour et al. [13]
provided an estimate of the gravitational waveforms emitted
throughout the inspiral, plunge, and coalescence phases [14].

To release the assumption that v/c is a small quantity,
in 2016, Damour et al. [15, 16] introduced another theo-
retical model by combining the EOB theory with the post-
Minkowskian (PM) approximation. Damour and Rettegno
[17] compared numerical relativistic (NR) data for equal-
mass binary black hole scattering with analytical predictions
based on the fourth PM (4PM) dynamics [18-25] and pointed
out that the reconstruction of PM information in terms of
EOB radial potentials leads to remarkable agreement with
NR data, especially when using radiation-reacted 4PM infor-
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mation. Therefore, this new model may lead to a theoret-
ically improved version of the EOB conservative dynamics
and may be useful in the upcoming era of high-signal-to-
noise-ratio gravitational wave observations.

The dynamical evolution of a coalescing binary system
for a spinless EOB theory can be described by the Hamil-
ton equation [26], and the Hamiltonian H[geff

µν ] is dependent
on the effective metric. The radiation reaction forces FR[geff

µν ]
and Fφ[geff

µν ] in the Hamilton equation can be described by the
energy radiation rate as follows: dE

dt =
1

4πG2ω2

∫
|Ψ B

4 |2r2dΩ
[14,27]. Furthermore, the “plus” and “cross” modes of grav-
itational waves are related to the null tetrad components of
the gravitational perturbed Weyl tensor Ψ B

4 in the Newman-
Penrose formalism as follows: Ψ B

4 =
1
2 (ḧ+ − iḧ×). Thus, as

long as we obtain the effective metric and the solution of Ψ B
4

in the Newman-Penrose formalism, we can calculate the en-
ergy radiation rate and construct gravitational waveforms.

In previous study, we attempted to develop a self-
consistent EOB theory for spinless and spinning binaries
based on the PM approximation [28-31]. Furthermore, in a
recent paper [32], we obtained the effective metric up to the
4PM order. We adopted the black hole perturbation method
used by Teukolsky et al. [33, 34] and decomposed all quan-
tities into background and perturbation (denoted with a su-
perscript B) parts in the Newman-Penrose formalism. After
choosing a shadow gauge [29, 35, 36] with Ψ1 and Ψ3 set to
0, we can decouple the equations for the null tetrad compo-
nents of the gravitational perturbed Weyl tensor Ψ B

4 . Subse-
quently, upon separating the variables in the equations, we
obtained a radial equation, which is the so-called Teukolsky-
like equation, and an angular equation that features spin-
weighted spherical harmonics.

This Teukolsky-like equation is more complex compared
with the Teukolsky equation in Kerr and Schwarzschild
spacetimes. We were unable to find a similar transformation
to convert the homogeneous Teukolsky-like equation into hy-
pergeometric or Heun equations; thus, we did not choose to
adopt the so-called MST [37, 38] method or the Heun func-
tion [39-44]. Instead, we follow the approach used by Sasaki.
Several researchers [45-57] have employed numerical meth-
ods to solve the Teukolsky equation and achieved significant
success by combining the EOB theory with numerical rela-
tivity.

We initially applied the Sasaki-Nakamura-Chandrasekhar-
like (S-N-C-like) transformation [35, 58] to convert the ho-
mogeneous Teukolsky-like equation into a homogeneous
Sasaki-Nakamura-like (S-N-like) equation [27, 38, 58, 59].
In an asymptotically flat spacetime, this homogeneous S-N-
like equation can be simplified to the Klein-Gordon equation.
Subsequently, we performed a Taylor expansion with respect
to η = 2GMω. The equation of the zeroth order is the spher-

ical Bessel equation, and its solutions are linear combina-
tions of the first and second kind spherical Bessel functions,
denoted as jℓ and nℓ, respectively, allowing us to construct
higher-order solutions based on the zeroth-order solution. By
performing an inverse transformation, we can deduce the so-
lutions of the homogeneous Teukolsky-like equation. This
framework enables us to construct the solutions of the in-
homogeneous Teukolsky equation, which includes a source
term, using Green’s function method.

However, due to the complexity of Green’s function
method and the fact that the integral formulas provided in the
previous work of Sasaki et al. [59] were insufficient for our
needs in computing higher-order solutions, we found some
new integral formulas presented in Supplementary materials
of this article, which are crucial for our journey toward cal-
culating higher-order solutions.

Sect. 2 introduces the effective metric of 3PM, while
sect. 3 discusses the solutions of the equation for Ψ B

4 in
the effective spacetime. Specifically, sect. 3.1 summarizes
the general structure of the solutions of the radial equation
(Teukolsky-like equation) of Ψ B

4 . Sect. 3.2 provides a com-
prehensive explanation of the calculation of the homoge-
neous S-N-like equation. Subsequently, we employ bound-
ary conditions to determine the amplitudes. Sect. 3.3 presents
the source terms for quasi-circular orbits; by combining the
homogeneous solutions provided in sect. 3.2 and utilizing
eq. (17), we can obtain the solution of Ψ B

4 under quasi-
circular orbits. In sect. 4, we present the energy radiation
rate dE

dt and the gravitational waveforms hℓm.

2 Effective metric for the EOB theory

In the EOB theory, the main idea is to map the two-body
problem onto an EOB problem, that is, a test particle orbits
around a massive black hole described by an effective met-
ric. With the help of the scattering angles, we found that the
effective metric for spinless binaries with radiation reaction
effects in the EOB theory, up to the 3PM approximation, can
be expressed as follows [32]:

ds2
eff = geff

µνdxµdxν

=
∆r

r2 dt2 − r2

∆r
dr2 − r2(dθ2 + sin2 θdφ2), (1)

with

∆r =r2 − 2GMr + a2(GM)2 + a3
(GM)3

r

=
1
r

(r − 2chGM)(r − 2c1GM)(r − 2c2GM), (2)
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the definitions of c1, c2, and ch are as follows:

c1 =
1
3
− 1

2

[
(1 − i

√
3)(Q +

√
P3 + Q2)

1
3

+ (1 + i
√

3)(Q −
√

P3 + Q2)
1
3

]
, (3)

c2 =
1
3
− 1

2

[
(1 + i

√
3)(Q +

√
P3 + Q2)

1
3

+ (1 − i
√

3)(Q −
√

P3 + Q2)
1
3

]
, (4)

ch =
1
3
+ (Q +

√
P3 + Q2)

1
3 + (Q −

√
P3 + Q2)

1
3 , (5)

where Q = 1
27 −

a2
24 −

a3
16 , P = 1

3

(
a2
4 −

1
3

)
and a2 and a3 are

dimensionless parameters expressed as follows:

a2 =
3(1 − Γ)(1 − 5 γ2)
Γ (3 γ2 − 1)

, (6)

a3 =
3

2(4γ2 − 1)

[
3 − 2 Γ − 3(15 − 8Γ)γ2 + 6(25 − 16Γ)γ4

Γ (3 γ2 − 1)

− 2P30 −
2χrr

3√
γ2 − 1

]
, (7)

in which γ = E
µ
= 1

2
E2−m2

1−m2
2

m1m2
is the Lorentz factor variable, E

is the real two-body energy [17,32], E is the effective energy,
Γ = E/M =

√
1 + 2ν(γ − 1) is the rescaled energy, and

P30 =
18γ2 − 1

2 Γ2 +
8 ν (3 + 12γ2 − 4γ4)

Γ2
√
γ2 − 1

arcsinh

√
γ − 1

2

+
ν

Γ2

(
1 − 103

3
γ − 48γ2 − 2

3
γ3

+
3 Γ (1 − 2γ2)(1 − 5γ2)

(1 + Γ)(1 + γ)

)
, (8)

χrr
3 = −

2ν
Γ2

γ(2γ2 − 1)2

3(γ2 − 1)3/2

{ (5γ2 − 8)
γ

√
γ2 − 1

+ 2(9 − 6γ2)arcsinh

√
γ − 1

2

}
. (9)

In eq. (7), the term χrr
3 , described by eq. (9), represents the

3PM radiation reaction effects, which shows that the struc-
ture of the effective spacetime is affected by the radiation re-
action effect.

3 Solutions of equation forΨB
4

in effective space-
time

In this section, we first present the formal solution of the ra-
dial equation for (Ψ B

4 ). Then, we transform the radial equa-
tion without source to the corresponding S-N-like equation,
and we look for its solution. At last, we work out the so-
lution of the radial equation of (Ψ B

4 ) with the source, which
describes the gravitational radiation induced by the motion
of an effective particle in an effective background.

3.1 Formal solution of the radial equation of ΨB
4

in ef-

fective spacetime

In the EOB theory for the spinless real two-body system, we
have found a decoupled equation of Ψ B

4 for the gravitational
perturbation in the effective spacetime (1) using the gauge
transform property of the tetrad components of the perturbed
Weyl tensors and separated the decoupled equation in the ra-
dial and angular parts, in which the radial part of Ψ B

4 is given
by [28, 29][
∆2

r

f

d
dr

( f
∆r

d
dr

)
− V(r)

]
Rlmω(r) = Tℓmω(r), (10)

with

f = −3GM
r3F4

,

V(r) = − r2ω(r2ω + 2i∆′r)
∆r

+ irω
(
5 +

2r3F1

∆r

)
− 3∆r

r2

− 3∆′r
r
+ 6rF1 − 2r2F4 + λF2,

Tℓmω(r) = −µ
∫ ∞

−∞
dteiωt−imφ(t)∆2

r

{
A0δ(r − r(t))

+
[
A1δ(r − r(t))

]′
+

[
A2δ(r − r(t))

]′′}
,

(11)

where the prime ′ denotes derivation with respect to r, and
A0 = Ann 0+Amn 0+Amm 0, A1 = Amn 1+Amm 1, and A2 = Amm 2.

Ann 0 = −
2 r4

√
2π∆2

r

Cnn F2 L +
1

[
L +

2

(
−2Yℓm(θ)

)]
,

Amn 0 =
r3

√
π∆r

Cmn

[(
1 + F2

) ir2ω

∆r
+

F2

r
− F′2 −

F′4
F4

]
×L †

2

(
−2Yℓm(θ)

)
,

Amm 0 =
r2

√
2π

Cmm −2Yℓm(θ)
[
i
( r2ω

∆r

)′
+

r4ω2

∆2
r

+
ir2ω

∆r

(1
r
+

F′4
F4

)
+

F′4
rF4
+

(F′4
F4

)′]
,

Amn 1 =
r3

√
π∆r

Cmn
(
1 + F2

)
L †

2

(
−2Yℓm(θ)

)
,

Amm 1 =
r2

√
2π

Cmm −2Yℓm(θ)
(
−2i

r2ω

∆r
+

1
r
+

F′4
F4

)
,

Amm 2 = −
r2

√
2π

Cmm −2Yℓm(θ),

(12)

the explicitly definitions of Fa (a = 1, 2, 3, 4), Ln (or L †
n ),

and Cb (b is nn or mn or mm ) can be found in ref. [29], and
−2Yℓm(θ) is the spin-weighted spherical harmonics [38, 60].



S. Long, et al. Sci. China-Phys. Mech. Astron. June (2024) Vol. 67 No. 6 260412-4

The radial equation, i.e., eq. (10), can be solved using
Green’s function method. That is, based on the homogeneous
solutions of eq. (10):

Rin
ℓmω →

 Btrans
ℓmω∆

2
r e−iωr∗ , for r → r+,

r3Bref
ℓmωeiωr∗ + r−1Bin

ℓmωe−iωr∗ , for r → +∞,
(13)

Rup
ℓmω →

 Cup
ℓmωeiωr∗ + ∆2

rCref
ℓmωe−iωr∗ , for r → r+,

Ctrans
ℓmω r3eiωr∗ , for r → +∞,

(14)

where r∗ denotes the tortoise coordinate defined by r∗ =∫
r2

∆r
dr. The inhomogeneous solution of the radial eq. (10)

can be expressed as follows:

Rℓmω =
1

2iωCtrans
ℓmωBinc

ℓmω

{
Rup
ℓmω

∫ r

r+
dr̃
fRin
ℓmω(r̃)Tℓmω(r̃)
∆2

r (r̃)

+ Rin
ℓmω

∫ ∞

r
dr̃
fRup
ℓmω(r̃)Tℓmω(r̃)
∆2

r (r̃)

}
, (15)

whereas the counterpart at infinity can be expressed as fol-
lows:

Rℓmω(r → ∞)→ r3eiωr∗

2iωBinc
ℓmω

∫ ∞

r+
dr̃

Tℓmω(r̃)Rin
ℓmω(r̃)

r̃3F4(r̃)∆2
r (r̃)

≡ Ẑℓmωr3eiωr∗ . (16)

As discussed in ref. [29], for the point source case, after a
lengthy calculation, we can obtain the expression for Ẑℓmω.
If we focus our attention just on the quasi-circular orbit, we
have Ẑℓmωn = Zℓmω δ(ω − ωn), in which

Zℓmω =
πνGM
iωBinc

ℓmω

[
A0fRin

ℓmω − A1
d
dr

(
fRin
ℓmω

)
+ A2

d2

dr2

(
fRin
ℓmω

)]
.

(17)

Then, the solution of Ψ B
4 is described by

Ψ B
4 =

1
R

∑
ℓmn

Ẑℓmωn

−2Yℓm√
2π

eiωn(r∗−t)+imφ. (18)

Eqs. (18) and (17) show that to get the explicit expression for
Ψ B

4 , we should work out Ai(i = 1, 2, 3), Binc
ℓmω, and Rin

ℓmω.

3.2 S-N-like equation and its solution of the third PM
approximation

In eq. (17), Rin
ℓmω is the solution of the homogeneous equa-

tion without the source term. To get the solution, we do not

treat the Teukolsky-like equation directly because the poten-
tial function in the equation is a long-range potential. In-
stead, we transform the radial equation, without source into
the S-N-like equation with a new function Xℓmω, which has a
short-range potential. Then, using the solution of Xin

ℓmω, we
find out Bin

ℓmω and Rin
ℓmω.

3.2.1 S-N-like equation and relation between Rin
ℓmω and Xin

ℓmω

Taking an S-N-C-like transformation as1):

X(r) =
r f 1/2

∆r

(
α(r)R(r) +

β(r)
∆r

R′(r)
)
, (19)

where

α(r) = 6
∆r

r2 + V(r) + 2irω + ir2ω
∆r
′

∆r
− r4ω2

∆r
,

β(r) = ∆r(−2ir2ω − 4
∆r

r
− ∆r
f′

f
+ ∆r),

(20)

and considering the coordinate transformation r → r∗, the
radial equation (eq. (10)) without the source term (Tℓmω = 0)
can be rewritten as the so-called S-N-like equation, as fol-
lows:

X,r∗r∗ −F X,r∗ −U X = 0, (21)

with

F =
∆r

r2

γ′

γ
,

U =
∆r

r4 U +G2 +G,r∗ −
∆r

r2

γ′

γ
G,

(22)

where

γ = α
(
α +
β′

∆r
− β
∆r

f′

f

)
− β
∆r

(
α′ +

β

∆2
r

V(r)
)
,

U =
∆2

r

β

((
2α+

β′

∆r
− β
∆r

f′

f

)′
− γ
′

γ

(
α+
β′

∆r
− β
∆r

f′

f

))
+ V(r), (23)

G =
∆r

r3 +
∆rf
′

2r2f
− ∆r

′

r2 .

The asymptotic solution of Xin
ℓ can be expressed as follows:

Xin
ℓ (r) =

 Atrans
ℓ e−iωr∗ , r∗ → −∞,

Aout
ℓ eiωr∗ + Ain

ℓ e−iωr∗ , r∗ → +∞.
(24)

Meanwhile, the inverse transformation is described by the
following expression:

R(r) =
1
γ

[(
α +
β′

∆r
− β
∆r

f′

f

)
∆r

rf1/2
X(r) − β

∆r

(
∆r

rf1/2
X(r)

)′]
.

(25)

1) Because the physical quantities we are concerned with are related to the ℓ, m, and ω, for any ℓ, ω depends on m and m = −ℓ,−ℓ + 1, . . . , 0, . . . , ℓ − 1, ℓ.
Thus, we shall henceforth represent the subscript labels ℓmω of these physical quantities simply as ℓ or drop the subscript for the sake of brevity and clarity.
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Using a method similar to that used in refs. [38, 61], the co-
efficient Ain

ℓ in eq. (24) is related to Bin
ℓ in eq. (13) as follows:

Bin
ℓ = −

1
4ω2 Ain

ℓ . (26)

3.2.2 Solution of Xin
ℓ

We now look for the solution of Xin
ℓ and amplitude Ain

ℓ of the
S-N-like equation. The method employed in this subsection
is based on the work of Sasaki et al. [38] and Mino et al.
[59]. We first take the following ansatz:

Xin
ℓ = e−iϕ(z)zξℓ(z), (27)

where z = ωr, η = 2GMω, b1 =
c3

1
(c1−c2)(c1−ch) , b2 =

c3
2

(c2−c1)(c2−ch) , bh =
c3

h
(c1−ch)(ch−c2) , and

ϕ(z) =
∫ (

r2ω

∆r
− ω

)
dr

= η(b1 ln(z − c1η) + b2 ln(z − c2η) − bh ln(z − chη)).
(28)

With this choice of the phase function, ξℓm is regular and fi-
nite at z = ηch. Then, we determine that eq. (21) can be
expressed as follows:

L(0) [ξℓ] = ηL(1) [ξℓ] + η2L(2) [ξℓ] + η3L(3) [ξℓ] + O(η4), (29)

with

L(0) =
d2

dz2 +
2
z

d
dz
+

[
1 − ℓ(ℓ + 1)

z2

]
,

L(1) =
1
z

d2

dz2 +
1 + 2

3 a2 + 2iz
z2

d
dz
−

4 + z2 +
a2(ℓ2+ℓ+2)

3 − iz
z3 ,

L(2) = − a2

4z2

d2

dz2 +

(
i

z2 a
(2)
ℓ
+
b

(2)
ℓ

z3

)
d
dz

+

(
c

(2)
ℓ

z2 +
i

z3 d
(2)
ℓ
+
e

(2)
ℓ

z4

)
,

L(3) = − a3

8z3

d2

dz2 +

(
a

(3)
ℓ

z2 +
i

z3 b
(3)
ℓ
+
c

(3)
ℓ

z4

)
d
dz

+

(
i

z2 d
(3)
ℓ
+
e

(3)
ℓ

z3 +
i

z4 f
(3)
ℓ
+
g

(3)
ℓ

z5

)
,

(30)

where the definitions of a(n)
ℓ

and other terms are shown in
Supplementary materials.

In the low-frequency limit and noting that η = 2GMω only
appears on the right-hand side of eq. (29), we may look for
the solution of the ξℓ(z) perturbative in terms of η, i.e.,

ξℓ(z) =
∞∑

n=0

ηnξ(n)
ℓ

(z), (31)

and we obtain the recursive equation from eq. (29) as follows:

L(0)[ξ(n)
ℓ

] = W (n)
ℓ
, (32)

where

W (0)
ℓ
= 0, (33)

W (n)
ℓ
=

n∑
i=1

L(i)[ξ(n−i)
ℓ

], n = 1, 2, 3. (34)

The solution of ξ(0)
ℓ

can be expressed as a linear com-
bination of the spherical Bessel functions jℓ and nℓ, i.e.,
ξ(0)
ℓ
= α(0) jℓ + β(0)nℓ. Because nℓ does not match with the

horizon solution at the leading order of η, we should take
β(0) = 0. Furthermore, because the constant α(0) represents
the overall normalization of the solution, which can be cho-
sen arbitrarily, we set α(0) = 1. That is, for the zeroth-order
solution, we have f (0)

ℓ
= jℓ and g(0)

ℓ
= 0. Then, one can im-

mediately write the integral expression for ξ(n)
ℓ

(where n > 0).
Noting that jℓnℓ′ − nℓ jℓ′ = 1/z2, we derive the expression of
ξ

(β)
ℓ

for β ≥ 1 as follows:

ξ
(β)
ℓ
=nℓ

∫ z

dz
(
z2 jℓW

(β)
ℓ

)
− jℓ

∫ z

dz
(
z2nℓW

(β)
ℓ

)
. (35)

In general, ξ(β)
ℓ

can be decomposed into the real and imag-
inary parts ξ(β)

ℓ
= f (β)
ℓ
+ ig(β)

ℓ
, in which

f (β)
ℓ
= nℓ

∫ z

dz
(
z2 jℓRe[W (β)

ℓ
]
)
− jℓ

∫ z

dz
(
z2nℓRe[W (β)

ℓ
]
)
,

(36)

g(β)
ℓ
= nℓ

∫ z

dz
(
z2 jℓIm[W (β)

ℓ
]
)
− jℓ

∫ z

dz
(
z2nℓIm[W (β)

ℓ
]
)
,

(37)

with

Re[W (β)
ℓ

] =
β∑

i=1

(
Re[L(i)][ f (β−i)

ℓ
] − Im[L(i)][g(β−i)

ℓ
]
)
, (38)

Im[W (β)
ℓ

] =
β∑

i=1

(
Im[L(i)][ f (β−i)

ℓ
] + Re[L(i)][g(β−i)

ℓ
]
)
, (39)

where Re[x] and Im[x] are the real and imaginary parts of
x, respectively. Using the previously presented formula and
the method discussed in Supplementary materials, after some
tedious calculations, we derive closed analytical formulas of
the ingoing-wave S-N-like function for arbitrary ℓ to the first
order of η. At the second order of η2, we can calculate results
for any order utilizing eq. (36). However, generalizing these
results to encompass all values of ℓ is unattainable. There-
fore, for the higher-order results, we only provide results for
specific values of ℓ, for ℓ = 2, 3 to η2 order, and for ℓ = 2 to
η3 order. We express the real parts as follows:

f (1)
ℓ
=

(ℓ − 1)(ℓ + 3)
2(ℓ + 1)(2ℓ + 1)

jℓ+1 −
(
ℓ2 − 4

2ℓ(2ℓ + 1)
+

2ℓ − 1
ℓ(ℓ − 1)

)
jℓ−1

https://www.sciengine.com/SCPMA/doi/10.1007/s11433-023-2354-1
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+ Rℓ,0 j0 − 2Dn j
ℓ
+

ℓ−2∑
m=1

(
1
m
+

1
m + 1

)
Rℓ,m jm

− a2

3

( ℓ2 + 3ℓ + 4
2(ℓ + 1)(2ℓ + 1)

jℓ+1 −
ℓ2 − ℓ + 2
2ℓ(2ℓ + 1)

jℓ−1

)
, (40)

where Rm,k is the Lommel polynomial (Rm,k = −Rk,m for
m < k), expressed as follows:

Rm,k = z2(nm jk − jmnk) (m > k)

=−
[ (m−k−1)

2 ]∑
r=0

(−1)r(m−k−1−r)!Γ
(
m + 1

2 − r
)

r!(m − k − 1 − 2r)!Γ
(
k + 3

2 + r
) (

2
z

)m−k−1−2r

,

(41)

BJ is the generalized integral sinusoidal function, and DJ
ℓ

is
the generalized spherical Bessel function from refs. [38, 59]
or see Supplementary materials.
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+

45a2

14z
− 257a3

1008z
− 113

420z

 j1

+
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+
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+
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+
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+
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+
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+
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+
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+
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14a2

45
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3 −
389 j0
70z2

− 1
2

j2(ln z)2 +
6Dn j

0

z
−

5Dn j
2

3z
+ 4Dnn j

2 , (42)

f (2)
3 =

20a2
2

81z
− 635a2

72z
+

5a3
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 j0

+

−197a2
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+
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+
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49z

 j2

+

 2a2
2
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+

1
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 j4
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2
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+
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 + 4Dnn j
3

+
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+
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2
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+
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(
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3
− 8a2

63

)
Dn j
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+
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4 −
5065 j1
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1
2

j3(ln z)2 +
65n0

6z2
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30Dn j

0
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9Dn j

1

z
−

3Dn j
3

z
. (43)

f (3)
2 =

(
9
4
− a2

30

)
j1(ln z)2 +

(
7a2

90
− 1

12

)
j3(ln z)2

+ Dn j
2 (ln z)2 +

(
−

16a3
2

14175
+

5a2
2

63
− a3a2

378

− 887a2
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+

5a3
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+
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140
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c2

1 + (c2 − 1)(c1 + c2)
z
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(

2
3
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3

+

 16a3
2
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−
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2
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+
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+
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+
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2
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+
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+
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+
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+
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+
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+
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2
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+
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+
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25200
+
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18144
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)
j3 +

(
−

11a3
2

142884
+
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2

476280
− 43a3a2

95256

− 277a2

105840
+

1
504
− 109a3

45360

)
j5 +

(
193a3

2

10206
−

110a2
2

1701

+
1033a3a2

27216
+

6911a2

5670
+

48353a3

90720
− 3(ln z)2

2

− 2539
3780

)
n0 +

(
−

32a3
2

1215
+

65a2
2
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− 5a3a2
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945

+
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− 2455a3

3024

)
n2 +

(
32a3

2
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−
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2

2835
+
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81

+
824a2

4725
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)
Dn j
−4 +

(
−

32a3
2

14175
−

2a2
2

45

− a3a2
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+

7468a2

1575
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)
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−2

+

−19a2
2

567
+

59a2
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− 2629
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− 103a3

1512

 Dn j
0

+

(
1402a2

2

19845
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+
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5292
+

16949
4410

)
Dn j

2

+

 17a2
2

6615
+

20a2
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+

59a3

1176
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 Dn j
4

+

−64a2
2

945
+
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 Dn j j
2

+

−64a2
2

945
+
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−1 +

(
4a2
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The corresponding imaginary parts are expressed as follows:

g(1)
ℓ
= jℓ ln z, (45)

g(2)
ℓ
= f (1)
ℓ

ln z − T1

z
jℓ + ς

(2)
ℓ
, (46)

g(3)
ℓ
= f (2)
ℓ

ln z −
T1 f (1)

ℓ

z
− T2 jℓ

2z2 +
1
3

jℓ(ln z)3 + ς(3)
ℓ
, (47)

with

T1 = 1 + c2
1 − (c1 + c2)(1 − c2),

T2 = c1c2(−c1 − c2 + 3) + 2(c1 − 1)c1 + 2(c2 − 1)c2 + 1,
(48)

where ς(n)
ℓ

for ℓ = 2 can be expressed as follows:

ς(2)
2 =

2a2
2

81
+

5a3

108
+

a2

180

 j3 +
a2

30
j1, (49)

ς(3)
2 =

−4a2
2
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− a2
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− 5a3

54

 Dn j
3

+

176a3
2

2835z
−

1469a2
2

3780z
+

40a2a3

189z
− 5a2

24z
− 181a3

252z

 j1−
a2

15
Dn j

1

+

 5a3
2

1701z
+

83a2
2

3780z
+

20a2a3

567z
+

a2

144z
+

13a3

252z

 j3

+

 22a3
2

2835
+

a2
2

105
+

5a2a3

189
+

a3

56

 j2 ln z

+

−44a3
2

945z
+

296a2
2

945z
− 10a2a3

63z
+

a2

12z
+

37a3

63z

n0

+

− 44a3
2

2835
−

2a2
2

105
− 10a2a3

189
− a3

28

Dn j
−3 . (50)

Inserting these expressions into eq. (27) and expanding the
result with respect to η, we find that

Xin
ℓmω = X(0)

ℓ
+ ηX(1)

ℓ
+ η2X(2)

ℓ
+ η3X(3)

ℓ
, (51)

where

X(0)
ℓ
=z jℓ,

X(1)
ℓ
=z f (1)

ℓ
,

X(2)
ℓ
=z

[
f (2)
ℓ
+

1
2

jℓ(ln z)2 + iς(2)
ℓ

]
,

X(3)
ℓ
=z

[
f (3)
ℓ
+

1
2

f (1)
ℓ

(ln z)2 − T1

z
jℓ ln z + ς(2)

ℓ
ln z + iς(3)

ℓ

]
.

(52)

3.2.3 Coefficient of amplitude Ain
ℓ

Noting e−iη(−b1 ln(z−c1η)+b2 ln(z−c2η)+bh ln(z−chη)) = e−iz∗eiz z→∞−→ 1,
taking the expressions of the spherical Hankel functions of
the first and second kinds h(1)

ℓ
and h(2)

ℓ
as:

h(1)
ℓ
= jℓ + inℓ

z→∞−−−−→ (−i)ℓ+1 eiz

z
, (53)

h(2)
ℓ
= jℓ − inℓ

z→∞−−−−→ iℓ+1 e−iz

z
, (54)

and using the asymptotic behavior of BJ and DJ
ℓ

in ref. [59],
we obtain the following expression:

Ain
ℓ =

1
2

iℓ+1e−iη(ln 2η+elg)ei
[
ηp(0)
ℓ
−πη2 p(1)

ℓ
+η3

(
p(2)
ℓ
−π2 p(3)

ℓ
+p(4)
ℓ

RiZ(3)
)]

×
{
1 − π

2
η + η2

[
2(elg + ln 2)p(1)

ℓ
+ q(1)
ℓ
+

5π2

24

]
+ η3

[
πq(2)
ℓ
+ π3q(4)

ℓ
+ π(elg + ln 2)q(3)

ℓ

]}
, (55)

where elg is the EulerGamma constant (elg = 0.57721 · · · ),
RiZ(n) is the Riemann zeta function (RiZ(3) = 1.202 · · · ),
and the coefficients of Ain

2 are

p(0)
2 =

15 − 2a2

9
, p(1)

2 =
32a2

2 − 90a2 + 75a3 + 963
3780

,

p(2)
2 =

−292a3
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,
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2 =
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2 =
1
3
,
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2 =
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2 = −

1
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,

q(2)
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−176a3
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,

and
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2 =
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2 + 90a2 − 75a3 − 963
3780

− i
176a3

2 + 216a2
2 + 600a2a3 + 405a3

22680π
. (56)

3.3 Quasi-circular orbit on the equatorial plane around
an EOB

In this section, we consider a quasi-circular orbit. In this
case, we assume that the orbit lies on the equatorial plane
(θ = π/2) without loss of generality. By setting Vr(r0) =
∂Vr/∂r(r0) = 0, the effective energy E and effective angular
momentum L are given by

E/µ =

√
2
[
a3(GM)3 + r0

(
a2(GM)2 + r0(r0 − 2GM)

)]
r0
√

r0
√

5a3(GM)3 + 2r0
(
2a2(GM)2 + r0(r0 − 3GM)

) ,
(57)

L/µ =
r0

√
−3a3(GM)3 + 2GMr0(r0 − a2GM)√

5a3(GM)3 + 2r0
(
2a2(GM)2 + r0(r0 − 3GM)

) , (58)

where r0 is the orbital radius. By defining

0bℓm =
√

(ℓ − 1)ℓ(ℓ + 1)(ℓ + 2)

2
√

2π∆r
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×
15a3(GM)2 + 8a2GMr0 − 6r2
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2
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0
(
8a2

2(GM)2 − 21a2GMr0 + 9r2
0
)
,
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)
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we obtain
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·
{

20bℓm + 4i−1bℓm

[
1 +

i
2
ω

r3
0

∆r

(
1 +

2GMr0

Pr

× (
6a2r2

0 + 30a3GMr0 − 5a2a3(GM)2))]
− 2i

−2bℓmωr3
0

∆2
r

[
r2

0 −GMr0

+
GM × Br

15a3(GM)2 + 8a2GMr0 − 6r2
0

+
1
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0
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(60)

A1 =i−1bℓm
r0

1+ 2GMr0

(
6a2r2

0+30a3GMr0−5a2a3(GM)2
)

Pr


− −2bℓm

r0

1 + GM · (15a3GM + 4a2r0)
15a3(GM)2 + 8a2GMr0 − 6r2

0

+ i
r3

0ω

∆r

 ,
(61)

A2 = − −2bℓm
2
. (62)

4 Energy radiation rate and gravitational wave-
forms

Inserting the aforementioned result of Ai(i = 1, 2, 3), Bin
ℓ , and

Rin
ℓ into eq. (17), we can obtain the following expression:

Zℓmω0 = Z(N,ϵ)
ℓmω0

Z̃ℓmω0 , (63)

Z(N,ϵ)
ℓmω0
= (−1)ℓ+ϵ+1m2 ν

2M
n(ϵ)
ℓmvℓ+ϵ+6

0Yℓ−ϵ,−m(π/2, φ), (64)

n(ϵ)
ℓm =


(im)ℓ

8π
(2ℓ + 1)!!

√
(ℓ + 1)(ℓ + 2)
ℓ(ℓ − 1)

, ϵ = 0,

−(im)ℓ
16π

(2ℓ + 1)!!

√
(2ℓ + 1)(ℓ + 2)(ℓ2 − m2)
(2ℓ − 1)(ℓ + 1)ℓ(ℓ − 1)

, ϵ = 1,

(65)

where we define v = (GMΩ)1/3, ω0 = mΩ, ϵ = 1 when
ℓ + m = 1, and ϵ = 0 when ℓ + m = 0. We can divide the
higher-order term Z̃ℓmω0 into two parts: the Z̃(S )

ℓmω0
is computed

in the Schwarzschild case [62] and the Z̃(R)
ℓmω0

is the 2PM and
3PM perturbation terms:

Z̃ℓmω0 = Z̃(S )
ℓmω0
+ Z̃(R)

ℓmω0
. (66)

The explicit expression of Z̃(R)
ℓmω0

is presented in Supplemen-
tary materials. In the test particle limit, i.e., ν → 0, we note
that Z̃(R)

ℓmω0
vanishes completely because a2 and a3 approach

0. That is, our results revert to the Schwarzschild case in the
test particle limit.

In eq. (18), utilizing the symmetry of the spin-weighted
spherical harmonics, sYℓ,−m(π2 , 0) = (−1)s+ℓ

sYℓm(π2 , 0), we
know that Zℓ(−m)ω = (−1)ℓZ∗ℓmω, where Z∗ℓmω is the complex
conjugate of Zℓmω. In terms of the amplitude Zℓmω, we find
from eq. (18) that the gravitational waveform [14, 27, 58] at
infinity is given by

h+ − ih× =
∑
ℓm

hℓm
−2Yℓm√

2π
eiω0(r∗−t)+imφ, (67)

with

hℓm = −
2
Rω2

0

Zℓmω0 = h(S )
ℓm + h(R)

ℓm , (68)

where

h(S )
ℓm = h(N,ϵ)

ℓm Z̃(S )
ℓmω0
, h(R)

ℓm = h(N,ϵ)
ℓm Z̃(R)

ℓmω0
, (69)

h(N,ϵ)
ℓm =

GMν
R n(ϵ)

ℓmcℓ+ϵ(ν)vℓ+ϵ0Yℓ−ϵ,−m(π/2, φ). (70)

The energy loss rate along any orbit, in polar coordinates, can

be expressed as
dE[geff

µν ]
dt = ṘFR[geff

µν] + φ̇Fφ[geff
µν]. By simply

replacing the radial component with zero, an excellent ap-
proximation of the radiation reaction forces can be obtained
[26]. Thus, from eq. (67), we know that, for given energy ωn,
the energy loss rate [14,27] for the “plus” and “cross” modes
of the gravitational wave is described by the following ex-
pression:

dE[geff
µν]

dt
=

1
2

(
dE
dt

)
N

∞∑
ℓ=2

ℓ∑
m=1

Πℓm, (71)

with

Πℓm =E(S )
ℓm + E

(R)
ℓm , (72)

E(S )
ℓm =

| Z(N,ϵ)
ℓmω0

Z̃(S )
ℓmω0
|2

2πG2ω2
0

(
dE
dt

)
N

, (73)
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E(R)
ℓm =

| Z(N,ϵ)
ℓmω0
|2

2πG2ω2
0

(
dE
dt

)
N

×
{
Z̃(S )
ℓmω0

Z̃(R)∗
ℓmω0
+ Z̃(R)

ℓmω0
Z̃(S )∗
ℓmω0
+ Z̃(R)

ℓmω0
Z̃(R)∗
ℓmω0

}
, (74)

where (dE/dt)N = 32ν2v10/5 is the Newtonian quadrupole
luminosity and the superscript ∗ denotes the complex con-
jugation of the corresponding expression. In Figure 1, we
present the curves of Π22 and Π33 as the symmetric mass ra-
tio ν takes different values.

Then, we determine the radiation reaction forces for the
“plus” and “cross” modes of the gravitational wave as fol-
lows:

F circ
φ [geff

µν] ≃
1
φ̇

dE[geff
µν]

dt

=
1
2

(
dE
dt

)
N

∞∑
ℓ=2

ℓ∑
m=1

(
F(S )
ℓm + F(R)

ℓm

)
, (75)

where F(S )
ℓm = E

(S )
ℓm /

1
φ̇

and F(R)
ℓm = E

(R)
ℓm /

1
φ̇

.
Eqs. (67), (71), and (75) indicate that all of the gravita-

tional waveforms, the energy radiation rate, and the radiation
reaction forces are based on the effective spacetime.

5 Conclusions

In this study, we investigate the waveforms and energy ra-
diation rate of gravitational waves generated by coalescing
spinless binary systems up to 3PM approximation in the
EOB theory. We focus on the radiation reaction forces in
the Hamilton equation, which can be described by the en-
ergy radiation rate dE

dt =
1

4πGω2

∫
|Ψ B

4 |2r2dΩ and the “plus”
and “cross” modes of gravitational waves, which are related
to the null tetrad components of the gravitational perturbed
Weyl tensor by Ψ B

4 =
1
2 (ḧ+ − iḧ×). Clearly, to find the energy

radiation rate and construct gravitational waveforms, the key

step is to seek the solution of Ψ B
4 . Therefore, the main task

of this study is to solve the decoupled and separated equa-
tions of the null tetrad components of gravitational perturbed
Weyl tensor Ψ B

4 in the effective spacetime by employing the
Green’s function method.

To achieve this goal, noting that the potential function in
the radial Teukolsky-like equation is a long-range potential,
we first transform it into an S-N-like equation, which has a
short-range potential. Then, by expanding the homogeneous
S-N-like equation with η = 2GMω, where ω denotes the an-
gular frequency of the wave, we derive closed analytical ex-
pressions for the solutions of each order. These solutions are
essential for constructing the Green function and asymptotic
amplitude. The lowest-order solution is expressed as a linear
combination of spherical Bessel functions, which allows us
to perform iterative calculations to obtain higher-order solu-
tions. This approach simplifies the problem and enables us
to efficiently study the radial Teukolsky-like equation. In the
calculation process, we use a low-frequency approximation
and considered the conditions of quasi-circular orbits. These
conditions are represented by the relationships z ∝ v, η ∝ v3

and ω = mΩ. As a result, the obtained results are accurate to
O(v9−2(ℓ−2)−ϵ), which means that the accuracy of the results
of this study reaches the 4.5PN order [62, 63].

This article also presents a more general integral formula
than that given by Sasaki’s group [59], which can be ex-
tended to higher orders or even arbitrary orders without ad-
ditional treatments. In Supplementary materials, the general
integral formulas, which can theoretically derive the series
solution of the homogeneous S-N-like equation to any order,
are presented. However, when constructing the general so-
lution of the nonhomogeneous equation using Green’s func-
tion method, it is necessary to specify the amplitude at in-
finity, which requires finding the asymptotic behavior of BJ

as z → ∞. Although we know what needs to be done at
each step, we have not yet been able to implement our ideas
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Figure 1 (Color online) Πℓm = Πℓm(v2, ν) with respect to v2 and ν, where the curve of ν = 0 corresponds to the 4.5PN result obtained for the Schwarzschild
case. The figure on the left is for Π22 = Π22(v2, ν), and the right one is for Π33 = Π33(v2, ν).
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using a computer, but we can obtain specific results through
complex calculations. Therefore, combining the outstand-
ing works of Sasaki et al. with the useful formulas pre-
sented in Supplementary materials, we have confidence that
this method will yield good results in the future.

From the analysis provided, it is evident that the effec-
tive metric degenerates into the Schwarzschild case in the test
particle limit (ν → 0). This limit is characterized by vanish-
ing of the coefficients a2 and a3. Therefore, the gravitational
waveforms and energy radiation rate calculated in this study
were divided into two parts: the Schwarzschild part and the
correction part related to PM parameters a2 and a3. Handling
spinning binary systems will involve additional complexities.
However, the results of this paper and the listed mathematical
techniques will be valuable for understanding the energy flux
and waveforms in spinning binary systems.
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