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Relaxation dynamics, essential for the structural evolution of non-equilibrium systems like glassy materials, remain enigmatic.
Here, we explore relaxation dynamics and viscoelastic properties in three types of metallic glasses with distinct β relaxation
behavior. In systems with significant β relaxation, stress relaxation and creep experiments reveal a transition from two-step to
one-step relaxation with rising temperature. However, such a phenomenon is absent in systems with weaker β relaxation. We
model the two-step relaxation process using a double Kohlrausch-Williams-Watts equation, and the obtained relaxation times
elegantly adhere to the Arrhenius relationship. By combining fitted activation energies with theoretical analysis, we conclusively
attribute these relaxation processes to β relaxation and α relaxation, respectively. Finally, we analyze the relaxation time spectra
of two processes and establish a comprehensive picture linking dynamic relaxation with viscoelasticity. Our study provides new
strategies for probing the complex relaxation behaviors of glasses from the perspective of viscoelasticity.
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1 Introduction

Glass, an amorphous solid, is typically formed by rapidly
cooling a supercooled liquid below its glass transition tem-
perature (Tg), leading to a non-equilibrium energy state that

manifests an intricate relaxation spectrum across a wide
range of temperatures and timescales [1-10]. Relaxation
dynamics plays a pivotal role in determining the character-
istics and potential applications of amorphous materials [9],
but understanding this complex phenomenon is one of the
most intricate issues in materials science and condensed
matter physics [1,6,8,9,11]. When cooling most glass-form-
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ing melts, the single relaxation process that occurs at ele-
vated temperatures becomes decoupled into distinct α and β
relaxation modes [1,2,6,12,13]. Above Tg, α relaxation
serves as the dominant relaxation in liquids [2,9] and it is
intimately tied to viscous flow and the glass transition, re-
flecting large-scale atomic restructuring [1,2,14,15]. As the
temperature falls below Tg, the atomic mobility decreases,
resulting in the freezing of α relaxation [1,2]. Thenceforth,
Johari-Goldstein relaxation or β relaxation, characterized by
a local motion in loosely packed isolated regions [9] and a
restricted dynamic nature [16], controls the evolution of
nanoscale heterogeneity [17] and structural relaxation
[18,19].
In the realm of physical aging and the glass transition, the

roles of α and β relaxations have been identified [17,20-24].
This naturally prompts the question: How does dynamic
relaxation manifest during deformation processes? Numer-
ous theoretical investigations have been conducted on the
viscoelastic response of metallic glasses (MGs) when sub-
jected to mechanical stimuli, employing various theoretical
frameworks such as the free volume [25], shear transition
zone [26], quasi-point defects [27], cooperative shear model
(CSM) [28], flow units model [29] among others. However,
few models have directly connected dynamic relaxation with
viscoelasticity, which hampers the understanding of the un-
derlying microscopic mechanisms. According to the CSM,
the β relaxation is associated with isolated flow units within
an elastic matrix, while the α relaxation is related to atomic
infiltration, which leads to the collapse of the enclosed ma-
trix and elastic breakdown [28,30]. Based on this back-
ground, a physical depiction of deformation in MGs
connected with the potential energy landscape was devel-
oped [31]. The equivalence of the activation energy of β
relaxation and the potential-energy barrier of STZs demon-
strated that they share a common microstructural origin [32].
The flow units model established inherent correlations
among the development of flow units, β relaxation, de-
formations, relaxation maps, and the energy landscape [33].
Additionally, the comparable stretched exponential behavior
of the α relaxation and stress relaxation indirectly corrobo-
rates the potential relationship between viscoelasticity and
dynamic relaxation [9,34]. Our previous research has iden-
tified two intriguing manifestations of β relaxation in stress
relaxation [35,36].
Dynamic mechanical analysis under small deformation

perturbations can effectively discern the multi-stage dynamic
relaxation processes in MGs [9,37-39]. However, in con-
ventional static viscoelastic deformations such as stress re-
laxation and creep, the influence of multi-stage relaxation
has not been observed. This limitation stems from the pre-
cision and sampling rate constraints of current viscoelastic
testing instruments, which hinder an accurate experimental
resolution at short time scales. In this context, two significant

questions need to be addressed: Understanding the role of
dynamic relaxation in viscoelasticity, probing α relaxation
below Tg in the glassy state, and assessing the impact of β
relaxation on the mechanical response.
In this article, we analyzed the relaxation dynamics of

viscoelastic deformation by combining dynamic mechanical
analysis with creep and stress relaxation experiments. We
selected three types of metallic MGs with different behaviors
of β relaxation and conducted experiments from room tem-
perature to temperatures above the β relaxation. Our research
reveals that the type of β relaxation significantly impacts the
viscoelastic deformation. In systems characterized by dis-
tinct β peaks, the single-step relaxation process observed at
high temperatures during static viscoelastic deformation
undergoes a transition towards a two-step relaxation process
at low temperatures. This transition is believed to be due to
the decoupling between β and α relaxation timescales. This
significant finding not only provides new insights into re-
laxation behavior in glassy systems but also establishes a
direct link between complex relaxation behavior and static
viscoelastic deformation.

2 Materials and methods

2.1 Sample preparation

The La20Ce20Y20Ni20Al20 (labeled as La1-MG) [40], La30-
Ce30Ni10Al20Co10 (La2-MG) [40], La60Ni15Al25 (La3-MG)
[41], Pd42.5Ni30Cu7.5P20 (Pd-MG) [42] and Zr50Cu34Ag8Al8
(Zr-MG) [43] were selected as the model alloys. To produce
the metallic glass ribbons, pure metals with a purity greater
than 99.99% were arc-melted in an argon atmosphere to
create master alloys. The melting process was repeated six
times to ensure the ingots were chemically homogeneous.
Finally, a single-roller melt-spinning technique was used
under an argon atmosphere to produce metallic glass ribbons
approximately 35 μm thick.

2.2 Mechanical tests

2.2.1 Dynamic mechanical analysis
A commercial dynamic mechanical analyzer (DMA, TA
850) was used to characterize the dynamic mechanical re-
laxation processes of the MGs. During the DMA experi-
ments, a sinusoidal stress was applied to the samples, and the
corresponding strain was measured. The storage modulus E′,

the loss modulus E″, and the loss factor E
Etan = were de-

termined. The DMA experiments of the MGs were con-
ducted in a tensile mode with a heating rate of 3 K/min and
driving frequencies of 1, 2, 4, and 8 Hz, as shown in Figure
S1 in the Supplementary Information.
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2.2.2 Stress relaxation and creep
Tensile stress relaxation and creep measurements were car-
ried out on ribbon samples using a TA Q850 DMA. The tests
were conducted over a consecutive range of temperatures,
from room temperature to the peak temperature of β re-
laxation Tβ. For the stress relaxation experiment, a constant
strain of 0.4% was rapidly applied to the sample and held for
30 min to record the stress decay. In the creep experiment, a
constant force of 4 N was applied, and the strain was re-
corded as a function of time. To minimize the effects of
thermal fluctuations, clamp thermal expansion, and ribbon
recovery, a 30-min stabilization period was implemented
after each temperature change. Additionally, to ensure the
accuracy of the strain value, the length of the sample was
measured before and after each test. Additional tests with
different strain and force values were also performed. Fur-
ther experimental details are presented in the Supplementary
Information.

3 Results

3.1 Mechanical spectrum and viscoelastic deformation

Figure 1(a)-(c) illustrate the temperature dependence of the
normalized loss modulus E E/ max determined by DMA. At
a driving frequency of 1 Hz, the maximum loss modulus
E max, which corresponds to the α relaxation peak, is ob-
served at Tα = 508, 585, and 719 K for the La1-MG, Pd-MG,
and Zr-MG, respectively. The β relaxation is evident as a
distinct peak for the La1-MG, a shoulder for the Pd-MG, and
an excess wing that is merged into the α relaxation for the
Zr-MG. The β relaxation is considered a reversible process
of atomic rearrangement in localized flow units, and a sig-
nificant β relaxation peak indicates that nanoscale localized
flow behavior occurs below the Tg [33]. In order to separate
the contribution of β and α relaxation in the temperature
spectrum, methods detailed in Supplementary Information
were used to fit the curves in Figure 1(a)-(c). The fitting of
the β relaxation is depicted by the blue region, whereas the
red region represents the contribution of the α relaxation. The
yellow gap area between the α and β peaks implies the oc-
currence of cooperative interactions.
MGs with different β relaxation behaviors also exhibit

different static viscoelastic properties. Figure 1(d)-(f) depict
the isothermal stress relaxation spectra of La1-MGs, Pd-MG
and Zr-MG obtained at increasing temperatures from room
temperature to 355, 500 and 510 K, respectively. The stress
σ(t) is normalized by its initial value at t = 0. La1-MGs
display a significant two-step decay process in their stress
relaxation curves, characterized by a shoulder transition in
the 1-100 s region that becomes more pronounced at lower
temperatures, indicating a decoupling of the relaxation pro-

cess in the glass state below Tβ. In contrast, Pd-MG and Zr-
MG exhibit a single relaxation process over a broad tem-
perature range. The observed phenomenon of decoupling
relaxation in the stress relaxation tests, which is present in all
three La-MGs with significant β relaxation peak (Figure S2),
indicates a close relationship between this phenomenon and
the degree of separation between β relaxation and α relaxa-
tion in the dynamic mechanical spectrum.
The stress relaxation spectra manifested in La-based MGs

bear a remarkable resemblance to the relaxation spectra
observed in density fluctuations in Lennard-Jones glasses
[44], colloidal suspensions [45], and molecular supercooled
liquids [46]. At high temperatures, the relaxation dynamics
exhibit a simple exponential decay, while at lower tem-
peratures, a two-stage decay behavior emerges. Consistently
with the predictions of the mode-coupling theory (MCT) for
the intermediate scattering function in liquids [15,47], the
initial rapid process, usually described by a single ex-
ponential decay, is attributed to restricted displacements of
particles in the local environment due to the cage effect,
while the subsequent slow process is characterized by a
stretching exponent decay. However, our study focuses on
stress relaxation in a completely different temperature range
in the deep nonequilibrium glassy state. The relaxation de-
coupling phenomenon observed in Figure 1 appears to be
closely related to the presence of the β, Johari-Goldstein type
relaxation and differs from the physical origin of the fast β
relaxation in MCT.
Similar phenomena can also be observed in another type of

viscoelastic deformation test. Figure 1(g)-(i) show the creep
curves of three different MGs in a logarithmic time scale. All
La-MGs with significant β relaxation exhibit a clear se-
paration of the creep process, as observed in the inset of the
normalized strain curves (Figure S2). The normalized strain
evolves from an evident shoulder-like behavior at low tem-
peratures to a concave function at high temperatures. In
contrast, the Zr-MG normalized strain curves collapse onto a
Kohlrausch-Williams-Watts (KWW) function for all the
temperatures, as shown by the black curve in the illustration,
demonstrating its time-temperature equivalence. Notably,
the Pd-MG exhibits a transition over temperature from a
single-step to a two-step relaxation of the normalized creep
curves. This can be attributed to the partial separation of α
and β relaxation in the dynamic relaxation spectra, which is
not discernible in stress relaxation but becomes visible in
creep.

3.2 Model for mechanical relaxation

The glass relaxation behaviors are generally found to follow
a KWW function [48]:

f t t( ) = exp[ ( / ) ], (1)KWW
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where τ is the relaxation time and βKWW a dimensionless
stretched exponent satisfying 0 < βKWW < 1, the case βKWW =
1 corresponds to a simple exponential decay.
For the two-step relaxation processes mentioned earlier, a

single-KWWequation does not work. Therefore, we adopted
a double KWW function as the fitting model [5], which as-
sumes that both relaxation processes are described by stretch
exponentials:

t A t

A t

( ) / = exp ( / )

+(1 )exp ( / ) , (2)

0 slow

fast

slow

fast

{ }
{ }

( )

( )

t A t

A t

( ) / = 1 exp /

+(1 ) 1 exp / , (3)
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fast
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fast

where A is the strength of slow relaxation process, slow and
fast are the relaxation times of the slow and fast relaxation

process, respectively, slow and fast are the stretched ex-
ponents, 0 is the initial stress from experimental data, and ε0
is the strength of anelastic strain obtained from the fitting.
Eq. (2) is utilized to fit stress relaxation curves, while eq. (3)
is employed to fit creep data. Fitting details are given in
Figure S3.

3.3 Relation between dynamic and mechanical re-
laxations

As shown in the inset of Figure 2(a) for a KWW relaxation
process, the relaxation time τ is the minimum of the rate of
change function, and βKWW represents the degree of stretch of
the curve. Therefore, we can identify the fast relaxation and
determine its relaxation time by analyzing the behavior of
dσ/dln(t). This method reduces the number of fitting para-
meters and makes the fitting results more accurate.
Figure 2(a) illustrates the evolution of La1-MG’s fast re-

Figure 1 (Color online) The dynamic relaxation spectra and deformation behaviors of three prototypical MGs with different β relaxation features, namely
La20Ce20Y20Ni20Al20, Pd42.5Cu30Ni7.5P20 and Zr50Cu34Ag8Al8. From left to right, the panels correspond to the respective three MGs. Panels (a)-(c) show the
normalized loss modulus E′′/E′′max, where the blue region and the red region correspond to the KWW fitting of the β relaxation and the α relaxation process,
respectively, and the yellow region is the cooperative interaction area and other processes. Panels (d)-(f) illustrate the normalized stress relaxation curves,
with the corresponding semi-log plot shown in the insets. Panels (g)-(i) depict the creep strain evolution at different temperatures, with the inset showing the
normalized strain.
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laxation with temperature, transitioning from a distinct val-
ley at low temperatures to a shoulder-like pattern at higher
temperatures. Notably, for curves with shoulder features,
direct extraction of relaxation time is not feasible. Instead,
parameters need to be obtained by fitting the corresponding
stress relaxation curve, which can affect the reliability of the
result. To maintain precision, our study focuses solely on the
temperature range where significant fast relaxation occurs,
typically around 20 K below the peak temperature of β re-
laxation Tβ. It is commonly accepted that the stretched ex-
ponent βKWW reveals the heterogeneous characteristics of
structural relaxation dynamics [49,50]. Experimental mea-
surements and molecular dynamics simulations in gorilla

glass and MGs have demonstrated a stretched exponential
decay with βKWW = 3/7 at room temperature [48,51,52]. We
adopt this value for the slow relaxation when the experi-
mental time window does not permit a proper characteriza-
tion of the slow component.
Based on the constraints on the fitting parameters men-

tioned above, we obtain a good fit for the stress relaxation
data, as shown in Figure 2(b) and Figure S6. The evolution of
the fitting relaxation times with 1000/T for stress relaxation
of three La-based MGs is shown in Figure 2(c). All three La-
based MGs exhibit a separation of fast and slow relaxation
processes, where the relaxation time of the fast process is
between 1-100 s, and that of the slow process is between

Figure 2 (Color online) Two-step relaxation phenomenon in stress relaxation and creep. (a) The temporal evolution of the logarithmic derivative of stress
with respect to time, dσ/dln(t), at different temperatures. The presence of a valley on the curve indicates the existence of a relaxation time. Inset shows the
characteristics of individual KWW functions and the time evolution of dσ/dln(t), where βKWW = 0.5, τ = 1. (b) Experimental data and fitting curves using eq.
(2) for stress relaxation below the β relaxation temperature. (c) The logarithm of the two relaxation times (τslow and τfast) as a function of temperature for the
three La-based MGs, where the black dashed lines represent the best fit to τ. (d) The temperature dependence of the fitting parameters A and βKWW in eq. (2).
(e) The creep data (scatter plot) of the La1-MG at different temperatures, along with the fitting curve (solid line) according to eq. (3). Inset shows the
normalized strain. (f) Arrhenius plot of the relaxation times τslow and τfast. The diamond-shaped green points in the black box indicate the divergent data. (g)
Activation energies of two distinct processes obtained by stress relaxation in the three systems. (h) The activation energies of fast and slow relaxation
processes. The error bars denote fitting uncertainty.
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105-109 s. Both lnτfast and lnτslow exhibit significant linear
relationships with the inverse temperature. As shown in
Figure 2(g), the activation energies of the fast relaxation
process for the three La-based MGs are obtained through
Arrhenius fitting and are found to be 66.47, 74.26 and
57.66 kJ/mol, which is close to the activation energy of β
relaxation obtained from DMA (as supported by Figure S7).
The activation energies of the slow relaxation process were
found to be 93.97, 91.01 and 133.87 kJ/mol, respectively.
Surprisingly, their values are smaller than the activation
energy of the α relaxation process obtained by the DMA
technique [7,9,53], as will be analyzed in detail in the dis-
cussion section.
The fitting parameters A and the stretching exponent βKWW

are presented in Figure 2(d). At room temperature, fast re-
laxation accounts for only about 6% of the entire process. As
the temperature increases, the proportion of the slow re-
laxation process in the entire relaxation gradually increases
until the fast process is no longer distinguishable at a certain
temperature, resulting in a transition from two-step relaxa-
tion to single-step relaxation. The white diamond symbols in
the right part of Figure 2(d) represent the fixed parameter
βslow = 3/7, while βfast shows an increasing trend with in-
creasing temperature. It is noteworthy that in the La1-MG
and La3-MG, the parameter βfast quickly reaches the upper
limit of 1. The upper limit is set artificially because the
stretching exponent relaxation will turn into a “compression”
exponent when βKWW > 1. This anomalous compression de-
cay has been observed in the microscopic dynamics of var-
ious systems, including soft matter [54], colloidal glasses
[45], and MGs [5,55-57], and is attributed to ballistic particle
motion driven by randomly distributed local stress dipoles
[56]. Normally, the compressed relaxation process is weakly
influenced by temperature, with activation energy below
0.1 eV, indicating the dominance of local stress [5,55-57].
However, the fast relaxation observed in this work exhibits a
higher activation energy and is more influenced by tem-
perature. Consequently, it is proposed that this relaxation
process undergoes a transition from stretching exponential
relaxation to simple Debye relaxation as temperature increases
rather than becomes a compressed exponential relaxation.
Pioneering work found that creep deformation in MGs is

mainly composed of viscoelastic and viscoplastic relaxation
[58-60]. At low temperatures, the viscoelastic relaxation
strength during creep is linearly proportional to the applied
stress and is fully recoverable upon unloading [59]. In this
study, creep was conducted between room temperature and
the Tβ for 1800 s, with a very small viscoplastic strain
component, allowing eq. (3) with an upper deformation limit
to accurately fit the data and effectively distinguish the two
relaxation processes. The creep experiment results of
La1-MG and the fitting results are shown in Figure 2(e) and
Figure S8, where the fitting curve shows a nice fit and a

transition from fast relaxation to slow relaxation. As the
temperature increases, the fast relaxation process gradually
weakens. The fitted relaxation time shows an Arrhenius re-
lationship with temperature, similar to stress relaxation. The
stretching exponent βKWW and relaxation strength A are also
consistent with the stress relaxation results. It is worth noting
that the green diamond points inside the black box in Figure
2(f) exhibit a relaxation time that reaches the upper limit of
the fitting range. This is because the experimental tempera-
ture is much lower than the β relaxation, and the curve shows
a transition plateau at 1800 s. In this case, during the ex-
perimental time, only the fast relaxation process was
reached, resulting in the different fitting result of the slow
relaxation process. This also demonstrates the perfect de-
coupling of the two-step relaxation process during creep
deformation. The activation energies obtained from the Ar-
rhenius fitting are shown in Figure 2(h). For the fast process
are 61.87, 79.17, 76.05 kJ/mol and for the slow process are
111.19, 122.10, 105.97 kJ/mol. These values are totally
comparable with the ones obtained in the stress relaxation
tests.
To gain a deeper understanding of the two-step relaxation

process during stress relaxation and creep in La-based MGs,
we conducted stress relaxation experiments at different
strains and creep experiments under various loads. Re-
markably, all tests remained within the elastic range. As
shown in Figure 3(a) and (f), the two sets of curves largely
overlap after normalizing all curves. The double KWW
function fitting parameters for stress relaxation experiments
are presented in Figure 3(b) and (c), with all parameters
being fairly similar when the strain is below 0.8%, indicating
that our chosen experimental parameters were within the
linear elastic regime. The initial stresses obtained at different
strains also exhibit consistent characteristics. The evolution
of dσ/dln(t) demonstrates that the transition from fast re-
laxation to slow relaxation became faster when increasing
strain above 0.8%, which indicates the sensitivity of the rapid
relaxation processes to viscoelastic deformation. The fitting
results of creep curves under different loads also show that
the experimental parameters of 4 N remain within the linear
viscoelastic range. We also conducted creep experiments
under different temperatures and loads of 2, 4, 6, and 8 N to
obtain the activation energy changes of the fast relaxation
process, as shown in Figure 3(h). The specific experimental
results are shown in Figure S10. We found that the activation
energy of the fast process slightly increases with increasing
load, which seems to contradict our understanding of thermal
activation. This study proposes that larger forces can activate
more micro-defects, while creep deformation under smaller
loads excites fewer atomic movements. Even with more
stress activation assistance, creep deformation under larger
loads still requires more thermal energy to excite atomic
movements in response to its macroscopic deformation.
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4 Discussion

As mentioned earlier, it is essential to discuss the physical
mechanisms underlying the two-step relaxation process
during the viscoelastic deformation of MGs. In other two-
step relaxation studies, Luo et al. [5] attributed the fast re-
laxation to ballistic motion facilitated by local stress at the
atomic scale, while the slow relaxation corresponds to larger-
scale and more dynamic atomic structural rearrangement.
The dynamics of the glass-forming liquid Ca0.4K0.6(NO3)1.4
[61] were interpreted in line with the MCT [14,15,47],
suggesting that the fast relaxation is related to cage dynamics
in glasses, while the slow relaxation is related to α relaxation.
Yuan et al. [62] found that the fast relaxation is caused by
local segmental motion of the surface, while the slow re-
laxation is the result of internal body segmental dynamics. In
our study, we found a close relationship between fast re-
laxation and β relaxation. First, the two-step relaxation
process only exists in systems with a significant separation

between the β and α relaxation, while Zr-based MGs with an
excess wing exhibit only a single stretched relaxation pro-
cess. Second, relaxation decoupling in viscoelastic de-
formation occurs at temperatures of 10-20 K below but close
to the Tβ. Third, the fast relaxation observed in viscoelastic
deformation in La-based MGs has an activation energy ex-
tremely close to β relaxation as determined by DMA. Figure
4 shows the relaxation time calculated from DMA, creep,
and stress relaxation curves in La1-MG. Aligning and over-
laying the two fast relaxation times τfast with the β relaxation
times τβ, all relaxation times overlap essentially, demon-
strating their common physical origin. Hence, it is reason-
able to attribute the fast relaxation to β relaxation.
Identifying the physical origin of the slow process in creep

and stress relaxation is challenging because the calculated
activation energy does not match with any expected relaxa-
tion processes. α relaxation is typically frozen below Tg in
glasses and cannot be detected within the frequency range of
DMA [2,9]. According to the Tool-Narayanaswamy-Moy-

Figure 3 (Color online) (a) Stress relaxation profiles of the La1-MG at 335 K with different initial strains, fitted with eq. (2). (b), (c) display the dependence
of the relaxation time and stretched exponent versus strain, respectively. (d) The initial stress σ0 as a function of strain. (e) The temporal evolution of dσ/dln(t)
under varying strains. (f) The creep curves of the La1-MG under different stresses, with the normalized strains in the inset, for better comparison of the
relaxation time variations. (g) Relaxation times are for fast and slow processes. (h) Comparison of the activation energies for the fast relaxation process under
2, 4, 6, 8 N.
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nihan theory (TNM) and the random first-order transition
theory (RFOT) [14], the energy barrier of the quenched
glasses is almost independent of temperature, and the tem-
perature dependence of the relaxation time in frozen glasses
should follow the simple Arrhenius law. In the RFOT theory,
the activated transition allows starting from any initial local
state. This means that the apparent activation energy below
Tg will be significantly smaller than that above the glass
transition. The large apparent activation energy above Tg
depends on the temperature dependence of configurational
entropy [14]. It has also been found in other glasses that there
is no super-Arrhenius behavior in the non-equilibrium state
below Tg [63-65]. If we ignore the relaxation time limit
caused by aging [63], it is acceptable to relate the slow re-
laxation process in this study to the α relaxation. In Figure 4,
the stress relaxation times τslow obtained above Tg show a
Vogel-Fulcher-Tammann (VFT) relationship with tempera-
ture, similar to the α relaxation times τα obtained by DMA
(the raw data is presented in Figures S11 and S12), indicating
that α relaxation drives stress relaxation at high temperatures.
It is noteworthy that we examined the stability of fitting
parameters at small relaxation fractions in the Supplemen-
tary Information (as shown in Figures S4-S6). In the domi-
nant region of β relaxation where 1000/T > 2.8, the α
relaxation constitutes less than 20% of the experimental
time. By employing a parameter-fixing approach, we can
obtain an upper bound on the relaxation time during stress
relaxation, which also accounts for the observed increase in
slope near 1000/T = 2.8. In DMA and static viscoelastic tests,
there is a difference between single thermal activation and
thermomechanical activation. Stress lowers the activation
energy barrier and localizes defect activation. Cooperative
atomic motion decreases in the glassy state compared with

the supercooled liquid state. Thus, the activation energy for
slow relaxation in creep and stress relaxation tests is much
lower than that for α relaxation in DMA.
The β and α relaxation processes can be modeled as

stretched exponential relaxations in viscoelastic deforma-
tion, which fully considers the relaxation time distribution
in the relaxation process. Then, the relaxation time dis-
tribution during stress relaxation can be extracted using the
activation energy spectrum model [34,66]. The change of
stress with temperature and time can be expressed as

t P E E T t E( ) = ( ) ( , , )d
0

+
, P E E( )d represents the overall

property change resulting from all activation processes
within the energy range from E E E+ d ,

E T t t E kT( , , ) = 1 exp[ exp( / )]0 is the characteristic
annealing function, where 0 is the Debye frequency 1013 s−1.
The relaxation time of defects with active energy E is

t E kT= = exp( / ) / 0, and the distribution of ln is
H P E E t t t(ln ) = ( )d / dln = d ( ) / dln . Figure 5(a) shows
the relaxation time distribution during stress relaxation at
different temperatures for La2-MG. Two peaks appear in the

Figure 4 (Color online) The relaxation map of the La1-MG. The plot
shows α relaxation and β relaxation times determined from DMA (τβ and
τα), alongside the fast and slow relaxation times from creep and stress
relaxation (SR) processes as functions of reciprocal temperature. The da-
shed lines are the VFT curves. Inset is the result of aligning and over-
lapping two fast relaxations with the β relaxation.

Figure 5 (Color online) (a) The distribution of the relaxation times for the
La2-MG during stress relaxation. The fast portion is considered as β re-
laxation and the slow one is α relaxation. (b) Schematic illustration of the
response of metallic glass external stimuli (strain, stress, temperature). In a
very short time, the modulus, compliance, and loss factors remain ap-
proximately constant. The system approximates an elastic matrix. With the
prolonged influence of temperature or stress, partial atomic motions man-
ifest as β relaxation. At sufficiently long times or very high temperatures,
particles undergo large-scale cooperative motion, and α relaxation occurs.
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relaxation time spectrum, with a high peak near 106 s, which
accounts for about 95% of the contribution from α relaxation.
The constant stretching exponent β exhibits the same shape
on the relaxation spectrum, with the curve shifting leftward
as the relaxation time decreases. A small and rather flat peak
appears near 10 s, representing the contribution from β re-
laxation. As the temperature increases, the stretching ex-
ponent β increases, and the relaxation peak becomes
narrower and shifts leftward. The β relaxation has a typical
wideband feature in the frequency domain [67], and the
dispersion width increases with decreasing temperature
[68,69]. This property indicates that β relaxation comprises a
distribution of elementary processes. The β relaxation is
generally considered a symmetric distribution process in the
frequency domain [68], but in the range of viscoelastic de-
formation studied in this paper, the contribution of the β
relaxation is small. It is then acceptable to use the non-
symmetric KWW to approximately describe the β relaxation
process. As the temperature increases, β relaxation gradually
merges with α relaxation due to its smaller activation energy,
and its contribution becomes progressively smaller.
Based on the above analysis, we can establish a physical

picture that couples the dynamic relaxation with the vis-
coelastic deformation. As shown in Figure 5(b), when me-
tallic glass-formers in the glassy state are subjected to
external stimuli (strain, stress, temperature), the effects of
ballistic motion and cage confinement are neglected since the
experimental time scale is much longer than this type of
atomic motions, so the system’s modulus, compliance, and
loss factor remain approximately constant. The system pre-
sents itself as a stable elastic matrix. Within the range of
10-100 s or Tβ, a subset of atoms in the elastic matrix re-
sponds to external stimuli with string-like motions, com-
monly considered as slow β relaxation [70]. Next, if the
experimental temperature is low enough, the modulus or
compliance will exhibit a plateau, which represents the
transition from β relaxation to α relaxation during the de-
formation process. Finally, the particles undergo large-scale
atomic cooperative motion, which is the α relaxation, at a
sufficiently long time or high temperature.
Finally, we would like to discuss the impact of this work on

other types of glasses. Similar viscoelastic behavior is
commonly observed in polymer glasses [71,72]. In systems
with high molecular weight, the relaxation modulus and
compliance as a function of time exhibit a rubber plateau,
which is believed to be formed by chain entanglement dy-
namics, showing the transition from the glassy state to the
rubber state and then to terminal flow [72]. However, there is
no rubber plateau in systems with low molecular weight.
Coincidentally, low molecular weight systems often exhibit
less pronounced secondary relaxation processes, which is
consistent with the findings in this paper. Therefore, it is
reasonable to explore a connection between dynamic re-

laxation and viscoelasticity between metallic and polymeric
glasses.

5 Conclusion

In summary, our study highlights a close correlation between
dynamic relaxation and viscoelastic deformation. In the
stress relaxation and creep processes of MGs, the presence of
β relaxation leads to the occurrence of a two-step relaxation
process. Both relaxation processes follow the Arrhenius re-
lationship, corresponding respectively to β and α relaxations.
Model analysis reveals that the rapid process associated with
β relaxation undergoes a transition from a stretched ex-
ponential relaxation to a simple Debye relaxation, while the
slow relaxation maintains a consistent profile. The insights
gained from this research hold significant implications for
the design and development of novel glasses with tailored
viscoelastic properties.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 51971178, and 52271153), the Natural Science Basic
Research Plan for Distinguished Young Scholars in Shaanxi Province
(Grant No. 2021JC-12), the Fundamental Research Funds for the Central
Universities (Grant No. D5000220034). Yun-Jiang Wang acknowledges the
support from the National Natural Science Foundation of China (Grant No.
12072344). Eloi Pineda acknowledges the support from the research project
PID2020-112975GB-I00 funded by MCIN/AEI/10.13039/501100011033
and from Generalitat de Catalunya, AGAUR (Grant No. 2021SGR00343). Si
Lan acknowledges the partial support from the Natural Science Foundation
of China (Grant No. 52222104).

Conflict of interest The authors declare that they have no conflict of
interest.

Supporting Information
The supporting information is available online at http://phys.scichina.com
and https://link.springer.com. The supporting materials are published as
submitted, without typesetting or editing. The responsibility for scientific
accuracy and content remains entirely with the authors.

1 K. L. Ngai, Relaxation and Diffusion in Complex Systems (Springer,
New York, 2011).

2 P. G. Debenedetti, and F. H. Stillinger, Nature 410, 259 (2001).
3 T. Vogt, and T. Shinbrot, Phys. Rev. Appl. 3, 050001 (2015).
4 W. Kauzmann, Chem. Rev. 43, 219 (1948).
5 P. Luo, P. Wen, H. Y. Bai, B. Ruta, and W. H. Wang, Phys. Rev. Lett.

118, 225901 (2017).
6 C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W.

Martin, J. Appl. Phys. 88, 3113 (2000).
7 J. C. Qiao, Q. Wang, J. M. Pelletier, H. Kato, R. Casalini, D. Crespo,

E. Pineda, Y. Yao, and Y. Yang, Prog. Mater. Sci. 104, 250 (2019).
8 M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
9 W. H. Wang, Prog. Mater. Sci. 106, 100561 (2019).
10 M. Jiang, Sci. China-Phys. Mech. Astron. 63, 106131 (2020).
11 F. H. Stillinger, and P. G. Debenedetti, Annu. Rev. Condens. Matter

Phys. 4, 263 (2013).
12 G. P. Johari, J. Chem. Phys. 58, 1766 (2003).
13 G. P. Johari, and M. Goldstein, J. Chem. Phys. 53, 2372 (2003).

256111-9G. H. Xing, et al. Sci. China-Phys. Mech. Astron. May (2024) Vol. 67 No. 5

http://phys.scichina.com
https://springerlink.bibliotecabuap.elogim.com
https://doi.org/10.1038/35065704
https://doi.org/10.1103/PhysRevApplied.3.050001
https://doi.org/10.1021/cr60135a002
https://doi.org/10.1103/PhysRevLett.118.225901
https://doi.org/10.1063/1.1286035
https://doi.org/10.1016/j.pmatsci.2019.04.005
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1016/j.pmatsci.2019.03.006
https://doi.org/10.1007/s11433-020-1598-0
https://doi.org/10.1146/annurev-conmatphys-030212-184329
https://doi.org/10.1146/annurev-conmatphys-030212-184329
https://doi.org/10.1063/1.1679421
https://doi.org/10.1063/1.1674335


14 V. Lubchenko, and P. G. Wolynes, Annu. Rev. Phys. Chem. 58, 235
(2007).

15 L. M. C. Janssen, Front. Phys. 6, 97 (2018).
16 Y. Chen, Z. Ye, K. Wang, J. Huang, H. Tong, Y. Jin, K. Chen, H.

Tanaka, and P. Tan, Nat. Phys. 19, 969 (2023).
17 F. Zhu, H. K. Nguyen, S. X. Song, D. P. B. Aji, A. Hirata, H. Wang, K.

Nakajima, and M. W. Chen, Nat. Commun. 7, 11516 (2016).
18 L. Hu, and Y. Yue, J. Phys. Chem. C 113, 15001 (2009).
19 W. Chu, Z. Wang, N. Ren, B. Dong, J. Yu, P. Guan, Y. Liu, Y. Yue, and

L. Hu, Sci. China-Phys. Mech. Astron. 66, 246112 (2023).
20 X. Monnier, S. Marina, X. Lopez de Pariza, H. Sardón, J. Martin, and

D. Cangialosi, Polymers 13, 954 (2021).
21 D. Cangialosi, V. M. Boucher, A. Alegría, and J. Colmenero, Phys.

Rev. Lett. 111, 095701 (2013).
22 X. Monnier, D. Cangialosi, B. Ruta, R. Busch, and I. Gallino, Sci.

Adv. 6, eaay1454 (2020).
23 W. Bing, X. Q. Gao, and J. C. Qiao, Rare Met. Mater. Eng. 53, 70

(2024).
24 Y. J. Duan, M. Nabahat, Y. Tong, L. Ortiz-Membrado, E. Jiménez-

Piqué, K. Zhao, Y. J. Wang, Y. Yang, T. Wada, H. Kato, J. M. Pelletier,
J. C. Qiao, and E. Pineda, Phys. Rev. Lett. 132, 056101 (2024).

25 F. Spaepen, Acta Metall. 25, 407 (1977).
26 A. S. Argon, Acta Metall. 27, 47 (1979).
27 R. Rinaldi, R. Gaertner, L. Chazeau, and C. Gauthier, Int. J. Non-

Linear Mech. 46, 496 (2011).
28 M. D. Demetriou, J. S. Harmon, M. Tao, G. Duan, K. Samwer, and W.

L. Johnson, Phys. Rev. Lett. 97, 065502 (2006).
29 Z. Wang, and W. H. Wang, Natl. Sci. Rev. 6, 304 (2019).
30 D. Pan, A. Inoue, T. Sakurai, and M. W. Chen, Proc. Natl. Acad. Sci.

USA 105, 14769 (2008).
31 J. S. Harmon, M. D. Demetriou, W. L. Johnson, and K. Samwer, Phys.

Rev. Lett. 99, 135502 (2007).
32 H. B. Yu, W. H. Wang, H. Y. Bai, Y. Wu, and M. W. Chen, Phys. Rev.

B 81, 220201 (2010).
33 Z. Wang, B. A. Sun, H. Y. Bai, and W. H. Wang, Nat. Commun. 5,

5823 (2014).
34 B. Sun, W. Cao, Z. Wang, B. Sun, and W. Wang, Phys. Rev. B 105,

014110 (2022).
35 Y. J. Duan, L. T. Zhang, J. C. Qiao, Y. J. Wang, Y. Yang, T. Wada, H.

Kato, J. M. Pelletier, E. Pineda, and D. Crespo, Phys. Rev. Lett. 129,
175501 (2022).

36 Q. Hao, E. Pineda, Y. J. Wang, Y. Yang, and J. C. Qiao, Phys. Rev. B
108, 024101 (2023).

37 S. Y. Liang, L. T. Zhang, B. Wang, Y. J. Wang, E. Pineda, and J. C.
Qiao, Intermetallics 164, 108115 (2024).

38 L. T. Zhang, Y. J. Duan, D. Crespo, E. Pineda, Y. J. Wang, J. M.
Pelletier, and J. C. Qiao, Sci. China-Phys. Mech. Astron. 64, 296111
(2021).

39 L. Zhang, Y. Wang, Y. Yang, and J. Qiao, Sci. China-Phys. Mech.
Astron. 66, 286111 (2023).

40 W. Jiang, and B. Zhang, J. Appl. Phys. 127, 115104 (2020).
41 Z. Wang, H. B. Yu, P. Wen, H. Y. Bai, and W. H. Wang, J. Phys.-

Condens. Matter 23, 142202 (2011).

42 N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Zeng, and A.
Inoue, Intermetallics 30, 19 (2012).

43 Q. K. Jiang, X. P. Nie, Y. G. Li, Y. Jin, Z. Y. Chang, X. M. Huang, and
J. Z. Jiang, J. Alloys Compd. 443, 191 (2007).

44 W. Kob, and J. L. Barrat, Phys. Rev. Lett. 78, 4581 (1997).
45 P. Ballesta, A. Duri, and L. Cipelletti, Nat. Phys. 4, 550 (2008).
46 N. Petzold, and E. A. Rössler, J. Chem. Phys. 133, 124512 (2010).
47 S. P. Das, Rev. Mod. Phys. 76, 785 (2004).
48 R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. J.

Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro,
Phys. Rev. Lett. 110, 265901 (2013).

49 A. Arbe, J. Colmenero, M. Monkenbusch, and D. Richter, Phys. Rev.
Lett. 81, 590 (1998).

50 J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).
51 Y. Yu, M. Wang, D. Zhang, B. Wang, G. Sant, and M. Bauchy, Phys.

Rev. Lett. 115, 165901 (2015).
52 Y. T. Sun, R. Zhao, D. W. Ding, Y. H. Liu, H. Y. Bai, M. Z. Li, and W.

H. Wang, Nat. Commun. 14, 540 (2023).
53 F. Zhu, G. H. Xing, G. J. Lyu, L. T. Zhang, Y. J. Wang, Y. Yang, J. M.

Pelletier, and J. C. Qiao, Int. J. Plast. 164, 103588 (2023).
54 E. E. Ferrero, K. Martens, and J. L. Barrat, Phys. Rev. Lett. 113,

248301 (2014).
55 B. Ruta, Y. Chushkin, G. Monaco, L. Cipelletti, E. Pineda, P. Bruna, V.

M. Giordano, and M. Gonzalez-Silveira, Phys. Rev. Lett. 109, 165701
(2012).

56 Z. Evenson, B. Ruta, S. Hechler, M. Stolpe, E. Pineda, I. Gallino, and
R. Busch, Phys. Rev. Lett. 115, 175701 (2015).

57 P. Luo, M. X. Li, H. Y. Jiang, R. Zhao, F. Zontone, Q. S. Zeng, H. Y.
Bai, B. Ruta, and W. H. Wang, Phys. Rev. B 102, 054108 (2020).

58 A. I. Taub, Acta Metall. 28, 633 (1980).
59 A. I. Taub, and F. Spaepen, J. Mater. Sci. 16, 3087 (1981).
60 G. Ding, F. Jiang, X. Song, L. H. Dai, and M. Q. Jiang, Sci. China-

Phys. Mech. Astron. 65, 264613 (2022).
61 P. Luo, Y. Zhai, P. Falus, V. García Sakai, M. Hartl, M. Kofu, K.

Nakajima, A. Faraone, and Y. Z, Nat. Commun. 13, 2092 (2022).
62 H. Yuan, J. Yan, P. Gao, S. K. Kumar, and O. K. C. Tsui, Sci. Adv. 8,

eabq5295 (2022).
63 J. Zhao, S. L. Simon, and G. B. McKenna, Nat. Commun. 4, 1783

(2013).
64 V. V. Ginzburg, Soft Matter 16, 810 (2020).
65 G. B. McKenna, and J. Zhao, J. Non-Crystal. Solids 407, 3 (2015).
66 M. R. J. Gibbs, J. E. Evetts, and J. A. Leake, J. Mater. Sci. 18, 278

(1983).
67 Y. B. Yang, Q. Yang, D. Wei, L. H. Dai, H. B. Yu, and Y. J. Wang,

Phys. Rev. B 102, 174103 (2020).
68 K. L. Ngai, S. Capaccioli, M. Paluch, and L. Wang, Philos. Mag. 100,

2596 (2020).
69 B. Wang, Z. Y. Zhou, P. F. Guan, H. B. Yu, W. H. Wang, and K. L.

Ngai, Phys. Rev. B 102, 094205 (2020).
70 H. B. Yu, R. Richert, and K. Samwer, Sci. Adv. 3, e1701577 (2017).
71 C. B. Roth, Ed., Handbook of Chemistry and Physics (CRC Press,

Boca Raton, 2017).
72 G. B. McKenna, and S. L. Simon, Macromolecules 50, 6333 (2017).

256111-10G. H. Xing, et al. Sci. China-Phys. Mech. Astron. May (2024) Vol. 67 No. 5

https://doi.org/10.1146/annurev.physchem.58.032806.104653
https://doi.org/10.1038/s41567-023-02016-4
https://doi.org/10.1038/ncomms11516
https://doi.org/10.1021/jp903777f
https://doi.org/10.1007/s11433-022-2061-2
https://doi.org/10.3390/polym13060954
https://doi.org/10.1103/PhysRevLett.111.095701
https://doi.org/10.1103/PhysRevLett.111.095701
https://doi.org/10.1126/sciadv.aay1454
https://doi.org/10.1126/sciadv.aay1454
https://doi.org/10.1103/PhysRevLett.132.056101
https://doi.org/10.1016/0001-6160(77)90232-2
https://doi.org/10.1016/0001-6160(79)90055-5
https://doi.org/10.1016/j.ijnonlinmec.2010.11.004
https://doi.org/10.1016/j.ijnonlinmec.2010.11.004
https://doi.org/10.1103/PhysRevLett.97.065502
https://doi.org/10.1093/nsr/nwy084
https://doi.org/10.1073/pnas.0806051105
https://doi.org/10.1073/pnas.0806051105
https://doi.org/10.1103/PhysRevLett.99.135502
https://doi.org/10.1103/PhysRevLett.99.135502
https://doi.org/10.1103/PhysRevB.81.220201
https://doi.org/10.1103/PhysRevB.81.220201
https://doi.org/10.1038/ncomms6823
https://doi.org/10.1103/PhysRevB.105.014110
https://doi.org/10.1103/PhysRevLett.129.175501
https://doi.org/10.1103/PhysRevB.108.024101
https://doi.org/10.1016/j.intermet.2023.108115
https://doi.org/10.1007/s11433-021-1722-y
https://doi.org/10.1007/s11433-023-2121-2
https://doi.org/10.1007/s11433-023-2121-2
https://doi.org/10.1063/5.0002225
https://doi.org/10.1088/0953-8984/23/14/142202
https://doi.org/10.1088/0953-8984/23/14/142202
https://doi.org/10.1016/j.intermet.2012.03.020
https://doi.org/10.1016/j.jallcom.2007.04.188
https://doi.org/10.1103/PhysRevLett.78.4581
https://doi.org/10.1038/nphys1000
https://doi.org/10.1063/1.3478533
https://doi.org/10.1103/RevModPhys.76.785
https://doi.org/10.1103/PhysRevLett.110.265901
https://doi.org/10.1103/PhysRevLett.81.590
https://doi.org/10.1103/PhysRevLett.81.590
https://doi.org/10.1088/0034-4885/59/9/003
https://doi.org/10.1103/PhysRevLett.115.165901
https://doi.org/10.1103/PhysRevLett.115.165901
https://doi.org/10.1038/s41467-023-36300-x
https://doi.org/10.1016/j.ijplas.2023.103588
https://doi.org/10.1103/PhysRevLett.113.248301
https://doi.org/10.1103/PhysRevLett.109.165701
https://doi.org/10.1103/PhysRevLett.115.175701
https://doi.org/10.1103/PhysRevB.102.054108
https://doi.org/10.1016/0001-6160(80)90129-7
https://doi.org/10.1007/BF00540316
https://doi.org/10.1007/s11433-021-1878-4
https://doi.org/10.1007/s11433-021-1878-4
https://doi.org/10.1038/s41467-022-29778-4
https://doi.org/10.1126/sciadv.abq5295
https://doi.org/10.1038/ncomms2809
https://doi.org/10.1039/C9SM01575B
https://doi.org/10.1016/j.jnoncrysol.2014.08.012
https://doi.org/10.1007/BF00543836
https://doi.org/10.1103/PhysRevB.102.174103
https://doi.org/10.1080/14786435.2020.1781276
https://doi.org/10.1103/PhysRevB.102.094205
https://doi.org/10.1126/sciadv.1701577
https://doi.org/10.1021/acs.macromol.7b01014

	Correlating dynamic relaxation and viscoelasticity in metallic glasses 
	Introduction ction
	Materials and methods thods
	Sample preparation aration
	Mechanical tests l tests
	Dynamic mechanical analysis  analysis
	Stress relaxation and creep and creep


	Results  ults 
	Mechanical spectrum and viscoelastic deformation rmation
	Model for mechanical relaxation axation
	Relation between dynamic and mechanical relaxations xations

	Discussion ssion
	Conclusion usion


