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We propose a novel method to determine the structure of symbols for any family of polylogarithmic Feynman integrals. Using
the d log-bases and simple formulas for the leading order and next-to-leading contributions to the intersection numbers, we give a
streamlined procedure to compute the entries in the coefficient matrices of canonical differential equations, including the symbol
letters and the rational coefficients. We also provide a selection rule to decide whether a given matrix element must be zero. The
symbol letters are deeply related to the poles of the integrands and also have interesting connections to the geometry of Newton
polytopes. Our method can be applied to many cutting-edge multi-loop calculations. The simplicity of our results also hints at
the possible underlying structure in perturbative quantum field theories.
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1 Introduction

Perturbative quantum field theories (pQFTs) play a piv-
otal role in high-precision phenomenology of high energy
physics. In many perturbative calculations, one encounters
a class of analytic functions called multiple polylogarithms
(MPLs) [1, 2]. They can be mapped to symbols [3, 4], which
are sequences of d log Wi, where the Wi’s are algebraic func-
tions of kinematic variables known as symbol letters. For
a given scattering process, the complete set of symbol let-
ters is called the “alphabet”. The knowledge of the alphabet
can be used to bootstrap multi-loop integrals and amplitudes
[5-29]. This has stimulated extensive research on the con-
struction of symbol alphabets [14, 27, 30-40]. In particular,
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the symbol letters of one-loop integrals have been fully un-
derstood [41-46]. However, beyond one-loop, there are no
general results available. On the other hand, from experi-
ences in multi-loop calculations, the expressions of the sym-
bol letters usually turn out to be much simpler than those in
the intermediate steps of the calculations. Hence, in addition
to the phenomenological motivations, it is also theoretically
interesting to investigate the source of such simplicity and
to ask whether it implies the existence of simpler rules for
symbology.

The symbols in a polylogarithmic integral family are
deeply related to the method of canonical differential equa-
tions (CDEs) [47-51]. This method has become the most
streamlined approach to obtain analytic expressions of Feyn-
man integrals. One chooses a canonical basis of master
integrals with uniform transcendentality (UT) [51], and de-
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rives their differential equations with the help of integration-
by-parts (IBP) reduction [52]. These differential equations
are ϵ-factorized (where d = 4 − 2ϵ in dimensional regu-
larization) and are dubbed “canonical”. The entries of the
coefficient matrix, if can be written as total derivatives, di-
rectly give the symbol letters. The symbols of the solutions
to the CDEs can then be iteratively obtained order-by-order
in ϵ. However, converting the coefficient matrix elements
to total derivatives can be rather challenging in multivariate
situations. Moreover, the procedure of performing the IBP
reduction and deriving the CDEs offers little insight into the
origin of the symbol letters.

The method of intersection theory [53-56] provides an al-
ternative way to reduce the Feynman integrals to master in-
tegrals. It is also useful in the construction of UT bases with
d log-form integrands [51, 57-63] in the Baikov representa-
tion [64]. In both the computation of intersection numbers
and the construction of UT bases, information of poles in the
integrands plays a crucial role. In this paper, we show that the
information of poles also determines the symbol letters to a
certain extent. We employ the method of computing intersec-
tion numbers from higher-order partial differential equations
[56], and apply it to the differential equations of the UT bases
of refs. [58, 59]. We find that with the universal formulas
of the leading order (LO) and next-to-leading order (NLO)
contributions to intersection numbers, the symbol letters can
be generated by localizing the d log-integrands to the multi-
variate poles. We provide a streamlined procedure to derive
all symbol letters in an integral family, that involves the fac-
torization of degenerate poles, followed by simple algebraic
operations. This can be applied to many cutting-edge multi-
loop calculations in pQFTs.

2 Symbols from intersection theory

The Feynman integrals in the Baikov representation are hy-
pergeometric functions of the form:

I[u, φ] ≡
∫

uφ , (1)

where

u =
∏

i

[Pi(z)]βi , φ ≡ φ̂(z)
∧

j

dz j =
Q(z)∏

i Pai
i

∧
j

dz j . (2)

The sequence of Baikov variables is denoted by z =

(z1, . . . , zn). The polynomials Pi(z) include the Baikov vari-
ables themselves, and the Gram determinants G(q) ≡ det(qi ·
q j) of loop and external momenta. The exponents take the
general form βi = ni + miϵ + liδi, where ni,mi, li are rational
numbers, ϵ is the dimensional regulator, and δi is an optional

extra regulator. One usually needs to introduce δi into the
computation if mi = 0, ni is integer and Pi appears in the
denominator, e.g., when Pi is an inverse propagator. The nu-
merator Q(z) is an arbitrary polynomial of z. All integrals
with the same u form an integral family, within which one
can define IBP-equivalence classes of cocycles [53-56]:

⟨φL| ≡ φL ∼ φL +
∑

i

∇iξi , ∇i = dzi ∧ (∂zi + ω̂i), (3)

where ω ≡ ∑
i ω̂idzi with ω̂i ≡ ∂zi log(u). The dual space

consists of equivalence classes |φ⟩ of integrals I[u−1, φ]. The
intersection number between ⟨φL| and |φR⟩ is given by

⟨φL|φR⟩ =
∑

p
Resz=p (ψLφ̂R) , (4)

where ψL is a function satisfying ∇n · · · ∇1ψL = φL. The sum-
mation goes over all n-variable poles p determined by the
zeros of the polynomial factors Pi in u [65]. One complica-
tion is that some of these poles can be non-factorized, such
that the residue can not be computed variable-by-variable in
terms of zi. A non-factorized pole can also be degenerate,
roughly meaning that more than n factors vanish at the pole.
A simple example is u = zβ1

1 zβ2
2 (z1 + z2)β3 , for which the pole

p = (0, 0) is non-factorized and degenerate.
To compute the multivariate residues in the presence of

non-factorized poles, one can carry out a factorization proce-
dure [56]. The idea is similar in spirit to the method of sector
decomposition [66-72]. This involves a change of variables
(labelled by (α)) from z to x(α), such that the pole at z = p
corresponds to x(α) = ρ(α), and in the vicinity of the pole

u(x(α))
∣∣∣
x(α)→ρ(α) = ūα(ρ(α))

∏
i

[
x(α)

i − ρ
(α)
i

]γ(α)
i , (5)

where ūα(ρ(α)) is non-vanishing. This expression defines the
u-powers γ(α)

i for the variable change (α). Note that for each
degenerate pole p, one usually needs to sum over several
different factorization to correctly reproduce the multivariate
residue. To unify the notation, we also give a label (α) for al-
ready factorized poles. Hence the summation in eq. (4) is re-
placed by a summation over α with the residue at x(α) = ρ(α).
For the simple example u = zβ1

1 zβ2
2 (z1 + z2)β3 , one possible

variable change is z1 = x1, z2 = x1(x2 − 1). This leads to
u = xβ1+β2+β3

1 xβ3
2 (x2 − 1)β2 . We will discuss more about the

factorization of degenerate poles later.
With above discussions, we now study the CDE satisfied

by a d log basis {⟨φI |} constructed using the method of refs.
[58, 59]. For later convenience, we choose to keep only the
dimensional regulator ϵ and the regulators δi for propagators
in βi of eq. (2), and absorb all other powers into ai in φ. There
are two types of building blocks (which will be called the
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“rational-type” and the “sqrt-type” in the following):

d log(z − c) =
dz

z − c
,

d log(τ[z, c; c±]) =
√

(c − c+)(c − c−)dz
(z − c)

√
(z − c+)(z − c−)

,

τ[z, c; c±] ≡
√

c − c+
√

z − c− +
√

c − c−
√

z − c+√
c − c+

√
z − c− −

√
c − c−

√
z − c+

,

(6)

where c and c± are independent of z. The CDE is

⟨φ̇I | ≡ ⟨d̂φI + φI d̂ log u| = (
d̂Ω

)
IJ ⟨φJ | , (7)

where d̂ denotes the total derivative with respect to external
parameters, such as masses and scalar products (to distin-
guish, d is used for integration variables z). The matrix d̂Ω
contains all information about the symbol letters, and can be
computed by intersection numbers:(
d̂Ω

)
IK = ⟨φ̇I |φJ⟩

(
η−1)

JK , (8)

where η−1 is the inverse of the matrix η with elements ηIJ =

⟨φI |φJ⟩. Apparently,
(
d̂Ω

)
IK can be nonzero only if there exist

at least one J such that the two factors in the above formula
are both nonzero. Note that the d̂Ω matrix is independent
of the choice of the ket-basis. Here, we choose the ket-basis
with the same representatives as the bra-basis. This choice
is convenient for computing intersection numbers, and also
helps to reveal the selection rule to be discussed later.

We now consider the contributions from the factorized
pole x(α) = ρ(α) to the intersection number ⟨φL|φR⟩. Around
the pole, an n-form φ can be Laurent-expanded and organized
by the powers b = (b1, . . . , bn). Such a term can be written
as:

φ(b) = C(b)
∧

i

[
x(α)

i − ρ
(α)
i

]bi
dx(α)

i . (9)

In the computation of the intersection number, we know that
the contributing terms must have bL,i + bR,i ≤ −2 for all i. A
key point is that a d log-form φI or φJ exhibits only multivari-
ate simple poles, i.e., bi ≥ −1. The action of d̂ may generate
terms with one bi = −2. Hence, we only need to consider
two kinds of contributions. The LO contribution [55] has all
bL,i + bR,i = −2, and can be written as:

C(bL)
L C(bR)

R

γ̃(α)
1 · · · γ̃

(α)
n

, (10)

where γ̃(α)
i = γ(α)

i − bR,i − 1. The NLO contribution has one
bL, j + bR, j = −3 and the other bL,i + bR,i = −2, and can be
written as:

−
C(bL)

L C(bR)
R

γ̃(α)
1 · · · γ̃

(α)
n

∂ρ(α)
j

log
(
ūα(ρ(α))

)
γ̃(α)

j − 1
. (11)

Here and in the following, we treat each component of ρ(α)

as an independent external variable. They will be set to the
actual expressions in the symbol letters. The detailed deriva-
tion of the above results are given in Appendix A1.

From the above discussion, one finds that ⟨φ̇I |φJ⟩ can re-
ceive nonzero contributions from the pole x(α) = ρ(α) only if
bI and bJ satisfy either of the following two conditions. The
first condition is that one component bI,k + bJ,k = −1, while
all other bI,i = bJ,i = −1. We say that φI and φJ share the
(n − 1)-variable simple pole ((n − 1)-SP) for x(α)

k̂
, where the

subscript k̂ means that the kth variable is removed from the
sequence. The derivative ∂ρ(α)

k
in d̂ generates LO contribu-

tions to ⟨φ̇I |φJ⟩. Since C(bI )
I and C(bJ )

J may also depend on
ρ(α)

k , we need to perform an integration to get a total deriva-
tive. The contribution can then be written as:

−
γ(α)

k

γ(α) d̂
∫

C(bI )
I C(bJ )

J d̂ρ(α)
k , (12)

where γ(α) ≡ γ(α)
1 · · · γ

(α)
n . Note that here γi = γ̃i for

i , k. In many cases, the product C(bI )
I C(bJ )

J is proportional
to (ρ(α)

k − c)−1, and the integral simply gives rise to the letter
log(ρ(α)

k − c). The more complicated situations will be dis-
cussed in the next section, where we will show that the let-
ters can always be obtained via purely algebraic operations
without performing any integration.

The second condition for a nonzero contribution to ⟨φ̇I |φJ⟩
is bI = bJ = −1, i.e., φI and φJ share the n-variable simple
pole (n-SP) for x(α). The derivative d̂ now generates NLO
contributions. Using eq. (11), the sum of the NLO contribu-
tions are

C(−1)
I C(−1)

J

γ(α) d̂ log
(
ūα(ρ(α))

)
. (13)

Note that ūα(ρ(α)) still contains powers βi. After taking the
d̂ log, they become coefficients in front, and the remaining
arguments of the logarithms are the symbol letters. We also
note that if u has any z-independent constant factors such as
Pβ0

0 , it is automatically included in ūα.
We now turn to the matrix element ηIJ = ⟨φI |φJ⟩, which

receives LO contributions (10) if and only if φI and φJ share
an n-SP for at least one factorization (α) (hence, ηII is al-
ways nonzero). To understand when does (η−1)IJ , 0, we
introduce the concept of n-SP chains. If φI and φJ share an
n-SP, we say that they are n-SP related (denoted as φI ∼ φJ).
If φI ∼ φK and φI ∼ φJ , the three n-forms belong to an n-SP
chain. This concept straightforwardly generates to more than
three n-forms. One can see that if φI and φJ do not belong to
an n-SP chain, then (η−1)IJ = 0 1).

1) (η−1)IJ is proportional to the IJ-minor of η. If φI and φJ do not belong to an n-SP chain, all terms in the minor vanish.
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Combining the condition for nonzero (η−1)IJ and that for
nonzero ⟨φ̇I |φJ⟩, we arrive at the selection rule for nonzero
entries in d̂Ω: (d̂Ω)IJ can be nonzero only if there exists at
least one φK belonging to an n-SP chain with φJ , and sharing
at least one n-SP or (n − 1)-SP with φI . This selection rule,
together with the expressions (12) and (13) of the symbol let-
ters, serves as the most important results of this paper.

Before closing this section, we show from our results that
the differential equation of the d log-basis is indeed canoni-
cal. Let us assign a transcendental weight of −1 to βi (con-
tains ϵ and δi) in eq. (2). Then, all γ(α)

i in eq. (5) have weight-
(−1). Since ηIJ has the form of eq. (10) (with γ̃(α)

i = γ(α)
i ),

the η−1 has weight −n. Eqs. (12) and (13) have the form of
a weight-(n − 1) coefficient times a weight-1 d̂ log. Using
eq. (8), one can see that (d̂Ω)IJ is a weight-(−1) coefficient
times a d̂ log. Hence, we have proved that d̂Ω is proportional
to ϵ when the regulators δi are taken to zero.

3 Structure of symbol letters

We now consider the computations of ⟨φ̇I |φJ⟩ leading to
eqs. (12) and (13) from a different perspective. The expan-
sion of φI and φJ in the form of eq. (9) helps to take the
n-variable residue at once. However, we can always choose
to take the (n− 1)-variable residue of x(α)

k̂
first using eq. (10),

and leave the dependence on x(α)
k un-expanded. The leftover

1-form of x(α)
k is a univariate d log-form. This operation ap-

plies to both (n − 1)-SP contributions (where k is fixed) and
the n-SP contributions (where one can freely choose any k).
Hence, the problem with the single variable z ≡ x(α)

k lies in all
contributions to the symbol letters. In this section, we work
out this univariate problem generically, and reveal the sur-
prisingly simple structure of symbol letters in the meantime.
Details of the derivation are given in Appendix A2.

To warm up, we first consider the case where c1 ≡ ρ(α)
k

is the pole in a rational-type d log. In general, there can be
further factors involving z after taking the (n − 1)-variable
residues. Without loss of generality, we take

u = Pβ0
0 (z − c1)β1 (z − c2)β2 (z − c3)β3 , (14)

and more factors can be easily added. The poles cα do not
necessarily correspond to the poles in the original multivari-
ate problem. Nevertheless, we can use the formulas from the
previous section to solve this univariate problem. The poles
and the corresponding u-powers are

cα ∈ {c1, c2, c3,∞} , γ(α) ∈
β1, β2, β3,−

3∑
i=1

βi

 , (15)

with α = 1, 2, 3, 4. The space has dimension 2, and the d log

basis can be constructed as:

φI ∈
{

dz
z − c1

,
dz

z − c2

}
. (16)

Each φI involves two poles, cI and c4 = ∞. The rele-
vant intersection numbers can be immediately obtained from
eqs. (10), (12) and (13):

⟨φ̇I |φI⟩ =
∑
α,I

γ(α)

γ(I) d̂ log(cI − cα) + ηIIβ0 d̂ log P0,

⟨φ̇I |φJ⟩ = −d̂ log(cI − cJ) + ηIJβ0 d̂ log P0,

(17)

and

η =


1
γ(1) +

1
γ(4)

1
γ(4)

1
γ(4)

1
γ(2) +

1
γ(4)

 . (18)

It is interesting to see that, after taking the (n − 1)-variable
residues, each symbol letter is either the difference between
two univariate poles, or the constant factor P0 in u.

We now turn to the case where ρ(α)
k appears in a sqrt-type

d log. We take (here we drop the constant factor P0 for sim-
plicity)

u = (z − c1)β1 (z − c2)β2 (z − c+)β3 (z − c−)β4 . (19)

The poles and their corresponding u-powers are

cα ∈ {c1, c2,∞, c+, c−},

γ(α) ∈
β1, β2,−

∑
i

βi, β3, β4

 . (20)

The d log basis {φI} can be constructed as:

d log τ[z, c1; c±], d log τ[z, c2; c±], d log τ[z,∞; c±] . (21)

Each φI has only one pole at cI . However, for intersection
numbers, the poles at c± can also contribute. We have

⟨φ̇I |φI⟩ =
1
γ(I) d̂ log(ūI(cI)) − d̂ log(c+ − c−)

+ d̂ log(cI − c+) + d̂ log(cI − c−), (22)

⟨φ̇I |φJ⟩ = ⟨φ̇J |φI⟩ = −d̂ log τ[cI , cJ; c±].

Again, it is interesting to note that the symbol letters (includ-
ing those in ūI) in eq. (22) takes the form of the difference
between two univariate poles, except the last one. However,
for the univariate problem, it is always possible to perform
a rationalization to get rid of the square-roots in the context
of polylogarithmic Feynman integrals. The last letter in eq.
(22) then becomes one of those in eq. (17). In this sense,
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we arrive at a surprisingly simple structure of symbol let-
ters: all symbol letters (except the constant factors in u) are
the difference between two univariate poles after taking the
(n − 1)-variable residues. Combining eqs. (17) and (22) with
the (n − 1)-variable residue already obtained, we have com-
pleted the derivation of symbol letters.

4 Factorization of degenerate poles and Newton
polytopes

As is evident, the first and the most important step of our
method is the factorization of degenerate poles. While this
can be done algorithmically following sector decomposition,
it is instructive to use an example to get some feeling about
the procedure. Let us consider the kite topology defined by

z1 = l21 − m2, z2 = (l2 − p)2 − m2, z3 = (l1 − l2)2,

z4 = l22, z5 = (l1 − p)2, p2 = s.
(23)

We impose cut on z1, z2, z3, and hence the u function is given
by u = zδ1

4 zδ2
5 [G(z4, z5)]−ϵ , with

G ≡ 4G(l1, l2, p)
∣∣∣∣
z1=z2=z3=0

= −2m6 + m4(s + z4 + z5)

+ m2(2z4z5 − sz4 − sz5) + z4z5(s − z4 − z5) . (24)

From u, we can determine the set of poles for (z4, z5):

p ∈
{
(0, 0), (m2,m2), (∞, 0), (0,∞), (∞,∞)

}
. (25)

Here we focus on the three-fold degenerate pole (∞, 0). The
complete results for this family are given in Appendix A3.
For convenience, we first introduce the variable change z4 =

1/t4, and rewrite u = t2ϵ−δ1
4 zδ2

5 G−ϵ∞0. Here

G∞0 ≡ t2
4 G(1/t4, z5) ≡ t4[r+(t4) − z5][z5 − r−(t4)] , (26)

where the last equal sign defines the two roots r±(t4) of G∞0

with respect to z5. Noting that

z5 − r−(t4) = z5 − m2(m2 − s)t4 + O(t2
4) , (27)

we find 3 factors in u vanishing when (t4, z5) = (0, 0): t4, z5

and z5 − r−(t4). There are 3 different factorizations, corre-
sponding to 3 ways to organize the 3 factors into 2 groups:

x(4) : ({t4}, {z5, z5 − r−(t4)}),
x(5) : ({t4, z5 − r−(t4)}, {z5}), (28)

x(6) : ({z5 − r−(t4)}, {t4, z5}).

As an example, for x(5) we have the variable change

t4 = x(5)
1 , z5 = x(5)

1 x(5)
2 , (29)

which leads to (see eq. (5))

ū5(ρ(5)) = [m2(m2 − s)]−ϵ , γ(5)
i ∈ {ϵ − δ1 + δ2, δ2} , (30)

where ρ(5) = (0, 0).
The integral family has four master integrals and exhibits

a symmetry under z4 ↔ z5 and δ1 ↔ δ2. The d log basis can
be constructed as:

φ1 =
dz4dz5

z4z5
, φ2 =

√
s(s − 4m2)
G dz4dz5,

φ3 =
z4 − m2

G dz4dz5 , φ4 =
z5 − m2

G dz4dz5.

(31)

With the variable change to x(5) and the expansion around
ρ(5), the leading terms of φ1 and φ3 are

φ(−1,−1)
1 =

dx(5)
1 dx(5)

2

x(5)
1 x(5)

2

,

φ(−1,0)
3 =

dx(5)
1 dx(5)

2

x(5)
1

[
ρ(5)

2 + m2(m2 − s)
] , ρ(5)

2 = 0.

(32)

Apparently, they share the (n − 1)-SP for x(5)
2̂

. We can then
immediately obtain the letter in ⟨φ̇1|φ3⟩ from eq. (12), or from
eq. (17) as the difference between two univariate poles:

m2(m2 − s) . (33)

We now make an interesting observation: the letter in
eq. (33) is just the ratio between the coefficient of t4 and that
of z5 in eq. (27) (as well as in G∞0). These two terms are the
leading ones in the limit t4 → 0 and z5 → 0. Newton poly-
topes provide a geometric view to study limits of multivariate
polynomials. A Newton polytope is the convex hull of the
exponent-vectors of a polynomial. This geometric view has
been used to study singularities of Feynman integrands. See,
e.g., ref. [73] for ultraviolet and infrared divergences, ref.
[74] for the method of regions [75], and ref. [76] for sector
decomposition [66-72]. These motivate us to understand the
symbol letters from Newton polytopes. The Newton poly-
tope of G∞0 is shown in Figure 1. It has five facets. Since
the components of the outer normal vector of facet Â are all
negative, this facet is degenerate and the corresponding poly-
nomial is exactly eq. (27). The letter (33) is essentially the
ratio of the two coefficients at the vertices of the degenerate
facet. The other (n − 1)-SP contributions of the form cI − cJ

to ⟨φ̇I |φJ⟩ follow a similar pattern.
Similar observations can also be made for the n-SP con-

tributions. There are two possibilities here. The first case is
when there is a degenerate facet, and then the coefficient at
one of its vertices gives the letter. For example, the contri-
bution from ρ(4) to ⟨φ̇1|φ1⟩ is given by the vertex (0, 1), and
the letter is d̂ log(−1) = 0; while the contribution from ρ(5) is
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Figure 1 (Color online) The Newton polytope of G∞0. Horizontal and
vertical axes are the power of t4 and z5.

given by the vertex (1, 0), and the letter is the same as
eq. (33). The second possibility is when there is no degener-
ate facet. In this case, the origin (0, 0) must be a vertex of the
polytope, and its coefficient gives a letter. For example, the
contributions from p = (0, 0) to ⟨φ̇1|φ1⟩ are related to vertex
(0, 0) of the polytope corresponding to G(z4, z5). Hence, the
letter is given by the constant term of eq. (24):

G(0, 0) = m4(s − 2m2) . (34)

We have checked that the other contributions do not give
rise to new letters, and eqs. (33) and (34) are already the full
set of letters in this simple example.

The example discussed above is simple with only two
integration variables and only involving rational letters de-
pending on two kinematic variables. We emphasize that our
method can be applied to problems with more variables and
with irrational letters as well. In particular, we have tested
our method in multivariate one-loop examples with irrational
letters, and find agreement with existing results. Applications
in more complicated multi-loop examples are in progress and
will be presented in a forthcoming article.

5 Summary and outlooks

In this paper, we propose a novel method to determine the
structure of symbols for any family of polylogarithmic Feyn-
man integrals using intersection theory. The procedure is
purely algebraic, involving factorization of degenerate poles
and computation of residues at simple poles. The compu-
tation of intersection numbers also gives the rational coeffi-
cients in the CDEs, and hence completely determines the lat-
ter. In particular, we have found a selection rule for nonzero
entries in the CDEs.

Our results also reveal some interesting structures under-
lying the symbol letters. We find that all symbol letters are

either the constant factors in the u-function, or the differ-
ences between univariate poles after taking the residues for
the other variables. We also take a first glance at the possi-
ble relationship between the symbol letters and the Newton
polytopes associated with the polynomial factors in the u-
function. We hope that these algebraic and geometric struc-
tures can be used to further simplify the calculation of symbol
letters, and provide insights about the mathematical structure
of QFT.

In recent years, there have been enormous efforts to extend
the concept of pure functions to Feynman integrals beyond
the polylogarithmic cases (see, e.g., refs. [77,78]). It is inter-
esting to see whether our method can be generalized to those
cases as well. Moreover, since differential equations can be
regarded as iterative reduction relations [79], our result also
serves as a development towards simplifying the reduction
procedure, and shows the connection between the analytic
and algebraic structures of Feynman integrals.
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Appendix

A1 Intersection numbers from factorized poles

In this Appendix, we review the calculation of intersection
numbers that leads to the leading-order (LO) and next-to-
leading order (NLO) contributions (10) and (11). For the
moment we will suppress the superscript (α) labeling the fac-
torization transformations, and assume x = ρ is already a fac-
torized pole. Around this pole, the u function can be written
as:

u(x) = ū(x)
∏

i

[
xi − ρi

]γi , (a1)
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where ū(x) can be Taylor-expanded as:

ū(x) = ū(ρ) +
∑

i

(xi − ρi)
[
∂

∂xi
ū(x)

]
x=ρ

+
1
2

∑
i, j

(xi − ρi)(x j − ρ j)
[

∂2

∂xi∂x j
ū(x)

]
x=ρ
+ · · · .

(a2)

The n-form φL can be similarly decomposed as:

φL =
∑
bL

φ(bL)
L ≡

∑
bL

C(bL)
L

∧
i

(xi − ρi)bL,i dxi , (a3)

where bL = (bL,1, . . . , bL,n) denotes a vector of powers. The
covariant derivative ∇i with respect to xi is defined as:

∇i = dxi ∧ (∂xi + ωi) , (a4)

where

ωi ≡ ∂xi log(u) =
γi

xi − ρi
+ ∂xi log(ū) . (a5)

We now need to look for a function ψL which satisfies
∇n · · · ∇1ψL = φL around the pole. The above equation is
linear in ψL and φL. Hence we can decompose the solution
as:

ψL =
∑
bL

ψ(bL)
L , ∇n · · · ∇1ψ

(bL)
L = φ(bL)

L . (a6)

We can write the Ansatz for ψ(bL)
L as:

ψ(bL)
L =C(bL)

L

A(0) +
∑

j

A(1)
j (x j − ρ j)

+
1
2

∑
j,k

A(2)
j,k (x j − ρ j)(xk − ρk) + · · ·

∏
i

(xi − ρi)bL,i+1.

(a7)

Plugging the above into eq. (a6), the covariant derivatives
give rise to∏

i

∇i

ψ(bL)
L

= C(bL)
L

∏
i

(xi − ρi)bL,i


×

A(0)
∏

i

(γi + bL,i + 1) +
∑

j

(x j − ρ j)
[
A(1)

j (γ j + bL, j + 2)

+A(0)∂ρ j ū(ρ)
]∏

i, j

(γi + bL,i + 1) + · · ·
 . (a8)

Hence, we find that the coefficients are given by

A(0) =
1∏

i(γi + bL,i + 1)
, A(1)

j = −
A(0)∂ρ j log(ū(ρ))
γ j + bL, j + 2

. (a9)

It is now straightforward to compute the intersection num-
bers. Supposing that φR is given by

φR =
∑
bR

φ(bR)
R ≡

∑
bR

C(bR)
R

∧
i

(xi − ρi)bR,i dxi , (a10)

the contribution from the factorized pole x = ρ to the inter-
section number between φ(bL)

L and φ(bR)
R is given by

Resx=ρ
(
ψ(bL)

L φ(bR)
R

)
= Resx=ρC(bL)

L C(bR)
R

∏
i

(xi − ρi)bL,i+bR,i+1

×
A(0) +

∑
j

A(1)
j (x j − ρ j) + · · ·

 .
(a11)

When bL + bR = −2, the A(0) term gives rise to the so-called
LO contribution (eq. (10)):

Resx=ρ
(
ψ(bL)

L φ(bR)
R

)
=

C(bL)
L C(bR)

R∏
i γ̃i

, (a12)

where γ̃i = γi − bR,i − 1. When all bL,i + bR,i = −2 except one
bL, j + bR, j = −3, the A(1)

j term gives rise to the so-called NLO
contribution (eq. (11)):

Resx=ρ
(
ψ(bL)

L φ(bR)
R

)
= −

C(bL)
L C(bR)

R ∂ρ j log(ū(ρ))
(γ j + bL, j + 1)

∏
i γ̃i

. (a13)

At this point, it is worth noting that the contributions
in eqs. (a12) and (a13) are invariant under a simultaneous
rescaling of u, φ(bL)

L and φ(bR)
R . In terms of the powers γi, bL,i

and bR,i, this rescaling amounts to the shifts:

γi → γi + ξi , bL,i → bL,i − ξi , bR,i → bR,i + ξi . (a14)

The shifts do not change the values of bL,i + bR,i, γi + bL,i and
γi −bR,i, and hence the expressions for the LO and NLO con-
tributions are manifestly invariant. In the case bL + bR = −2,
we can employ this freedom to make bL → −1 and bR → −1,
i.e., both φ(bL)

L and φ(bR)
R have only simple poles. The inter-

section numbers in this situation are well-understood in ref.
[55], and agree with eq. (a12).

As a special case of the above general formulas, we con-
sider the intersection numbers ⟨φ̇I |φJ⟩, where both φI and φJ

are d log-forms. We again expand φI as:

φI =
∑

bI

φ(bI )
I ≡

∑
bI

C(bI )
I

∧
i

(xi − ρi)bI,i dxi , (a15)

and similarly for φJ . For each bI and ρ j, there is a term in φ̇I

given by

−(γ j + bI, j) d̂ρ j C(bI )
I

∧
i

(xi − ρi)bI,i−δi j dxi . (a16)

Hence, setting bL,i = bI,i − δi j and bR,i = bJ,i, we can read-
ily use eqs. (a12) and (a13) to compute the residues. If
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bL = bR = −1 (which means bI, j = 0, i.e., (n − 1)-SP),
the term gives rise to a LO contribution

−
γ j∏
i γi

C(bI )
I C(bJ )

J d̂ρ j . (a17)

On the other hand, if bI = bJ = −1 (i.e., n-SP), the term
leads to a NLO contribution

C(−1)
I C(−1)

J∏
i γi

∂ρ j log(ū(ρ)) d̂ρ j . (a18)

A2 Reduction to univariate problems

In the previous section, we’ve seen that in the computation
of ⟨φ̇I |φJ⟩ for d log-forms φI and φJ , the contributing terms
φ(bI )

I and φ(bJ )
J share at least (n − 1)-variable simple poles.

Without loss of generality, we denote these (n − 1) variables
as x1̂ = (x2, . . . , xn), and denote the remaining variable as
z ≡ x1. In the computation of intersection numbers, one may
take the (n − 1)-variable residues at x1̂ = ρ1̂ first, and deal
with the single variable z in the last step.

To see how that works, we assume that both φL and φR

have simple poles at x1̂ = ρ1̂. They can then be written as:

φL = fL(z, x1̂) dz
n∧

i=2

(xi − ρi)−1 dxi,

φR = fR(z, x1̂) dz
n∧

i=2

(xi − ρi)−1 dxi,

(a19)

where fL and fR are regular at x1̂ = ρ1̂. The u(x) function
can also be written as:

u(x) = ū(z, x1̂)
n∏

i=2

[
xi − ρi

]γi . (a20)

To compute ⟨φL|φR⟩, we need to find a ψL satisfying
∇n · · · ∇1ψL = φL in the vicinity of the pole. Due to the sim-
ple pole structure, it is straightforward to perform the inver-
sion of ∇i for i = 2, . . . , n. This leads to

∇1ψL =
fL(z, ρ1̂) dz
γ2 · · · γn

+ O((x1̂ − ρ1̂)0) , (a21)

where the higher-power terms do not contribute since φR has
simple poles. Hence, the computation of the n-variable in-
tersection number is equivalent to a univariate problem with

u(z) ≡ ū(z, ρ1̂) , φL ≡
fL(z, ρ1̂) dz
γ2 · · · γn

, φR ≡ fR(z, ρ1̂) dz .

(a22)

Now, we may collect all contributions to ⟨φ̇I |φJ⟩ from the
(n − 1)-variable simple pole at x1̂ = ρ1̂ and an additional
pole (not necessarily simple) for the variable z = x1. This

allows us to study the symbol letters using only univariate
d log-constructions and intersection numbers.

We first look at the case of rational-type d log-forms. The
u-function can be factorized into

u(z) = Pβ0
0

ν+1∏
α=1

(z − cα)βα . (a23)

There are ν + 2 different poles for z:

ρ(α) ∈ {c1, . . . , cν+1,∞} , γ(α) ∈
β1, . . . , βν+1,−

ν+1∑
α=1

βα

 .
(a24)

For this u-function, there are ν independent integrands. They
can be chosen as φI = dz/(z − cI) for I = 1, . . . , ν. We need
to consider two kinds of intersection numbers: ⟨φ̇I |φI⟩ and
⟨φ̇I |φJ⟩ with I , J. For the first kind, we take ⟨φ̇1|φ1⟩ as
an example. For that we need to consider ∂ρ(1)φ1, ∂ρ(α)φ1 for
α , 1, and the symbol letters contained in P0. Here with an
abuse of the notation, ∂ρφ actually denotes ∂ρ(uφ)/u. Using
the formulas for LO and NLO contributions to intersection
numbers, we have⟨
∂c1φ1

∣∣∣φ1
⟩
=

⟨
(1 − β1) dz
(z − c1)2

∣∣∣∣∣ dz
z − c1

⟩
=

1
β1
∂c1 log (ū1(c1)) ,

⟨
∂cαφ1

∣∣∣φ1
⟩
=

⟨
βα dz

(z − c1)(cα − z)

∣∣∣∣∣ dz
z − c1

⟩
=
βα
β1
∂cα log(c1 − cα) =

1
β1
∂cα log (ū1(c1)) ,

(a25)

where

ū1(z) = Pβ0
0

ν+1∏
α=2

(z − cα)βα . (a26)

From the above results, one may easily reconstruct ⟨φ̇1|φ1⟩
in the form of d̂ logs, which coincides with eq. (13) and the
first line of eq. (17). For ⟨φ̇I |φJ⟩, we only need to consider
the contributions from ∂cIφI and ∂cJφI , as well as from P0.
Using the formula for LO intersection numbers, we have⟨
∂cIφI

∣∣∣φJ
⟩
= (1 − βI)

⟨
dz

(z − cI)2

∣∣∣∣∣ dz
z − cJ

⟩
= −∂cI log(cI − cJ) ,⟨

∂cJφI

∣∣∣φJ
⟩
= −βJ

⟨
dz

(z − cI)(z − cJ)

∣∣∣∣∣ dz
z − cJ

⟩
= −∂cJ log(cI − cJ) .

(a27)

These agree with the results in eq. (12) and the second line
of eq. (17)

We now move to sqrt-type d log-forms. The u-function is
given by

u(z) = Pβ0
0 (z − c+)β+ (z − c−)β−

ν−1∏
α=1

(z − cα)βα . (a28)
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There are again ν + 2 different poles for z:

ρ(α) ∈ {c1, . . . , cν−1,∞, c+, c−} ,

γ(α) ∈
β1, . . . , βν−1,−

ν−1∑
α=1

βα − β+ − β−, β+, β−

 . (a29)

The two poles c± are singled out to remind us that there is al-
ways a factor of

√
(z − c+)(z − c−) in the integrands accord-

ing to the second equation in eq. (6), which we reproduce
here:

d log(τ[z, c; c±]) ≡ d log
√

c − c+
√

z − c− +
√

c − c−
√

z − c+√
c − c+

√
z − c− −

√
c − c−

√
z − c+

=

√
(c − c+)(c − c−) dz

(z − c)
√

(z − c+)(z − c−)
. (a30)

At this point, we note that the square root of a linear function
is related to that of a quadratic function via a variable change.
For example, setting z = 1/t + c+, we have

dz
√

(z − c+)(z − c−)
=

dt
t
√

1 + t (c+ − c−)
. (a31)

Hence, we do not have to consider the linear function case
separately.

For each I = 1, . . . , ν − 1, there is an independent inte-
grand φI = d log(τI) ≡ d log τ[z, cI ; c±]. The νth independent
integrand is associated with the pole ρ(ν) = ∞, and is given
by

φν = d log(τν) ≡ d log τ[z,∞; c±]

= d log
√

z − c− +
√

z − c+√
z − c− −

√
z − c+

=
dz

√
(z − c+)(z − c−)

. (a32)

The intersection numbers ⟨φ̇I |φJ⟩ can now be computed as
usual. Taking ⟨φ̇1|φ1⟩ as an example. We need to consider the
derivatives with respect to c1, c± and cα for α = 2, . . . , ν − 1.
We have

∂c1φ1 =
1 − β1

(z − c1)2 +
β1

2

[
1

c1 − c+
+

1
c1 − c−

]
1

z − c1

+ O
(
(z − c1)0

)
,

φ1 =
1

z − c1
− 1

2

[
1

c1 − c+
+

1
c1 − c−

]
+ O

(
(z − c1)1

)
,

∂c±φ1 =
1/2 − β±

z − c±
φ1,

∂cαφ1 = −
βα

z − cα
φ1.

(a33)

There are two terms in ∂c1φ1, leading to both LO and NLO
contributions from the pole c1 to the intersection number:

⟨
∂c1φ1

∣∣∣φ1
⟩
=

1
β1
∂c1 log ū1(c1)

+ ∂c1 log(c1 − c+) + ∂c1 log(c1 − c−) . (a34)

The intersection number ⟨∂c±φ1|φ1⟩ receive LO contributions
from the pole c1 as well as c±, which are given by

⟨
∂c±φ1

∣∣∣φ1
⟩
=
β± − 1/2

β1
∂c± log(c1 − c±)

− ∂c± log(c± − c∓) + ∂c± log(c1 − c±) . (a35)

Finally, the intersection number ⟨∂cαφ1|φ1⟩ for α=2, . . . , ν−1
receive LO contributions only from the c1 pole:

⟨∂cαφ1|φ1⟩ =
βα
β1
∂cα log(c1 − cα) =

1
β1
∂cα ū1(c1) . (a36)

Combining the above results, we can reproduce the first equa-
tion in eq. (22). Similarly, ∂cI , ∂c j , and ∂c± give the same
contribution as shown in the second equation in eq. (22).

Alternatively, one may perform a variable change to ratio-
nalize the square root, and compute the intersection numbers
in the same way as the rational case. The relevant variable
change is simply

z =
c+(τν + 1)2 − c−(τν − 1)2

4τν
, (a37)

where the variable τν is defined in eq. (a32). The poles for
the new variable τν can be written in terms of a set of new
constants:

tI ≡ τ[∞, cI ; c±] =
√

cI − c+ +
√

cI − c−√
cI − c+ −

√
cI − c−

. (a38)

The d log integrands can then be rewritten as d log(τν) and

d log(τI) = d log(τν − tI) − d log
(
τν −

1
tI

)
. (a39)

As promised, all integrands are of the rational-type, and the
symbol letters can be read off using the existing results.

A3 Details of the kite topology

In this Appendix, we show the details of the kite topology
discussed in sect. 4. The relevant polynomials are given by
(with z1 = z2 = z3 = 0)

G(z4, z5) ≡ 4G(l1, l2, p) = −2m6 + m4(s + z4 + z5)

+ m2(2z4z5 − sz4 − sz5) + z4z5(s − z4 − z5),

G1(z5) ≡ −4G(l1, p) = (z5 − s)2 + m4 − 2m2(z5 + s),

(a40)

and the u-function is

u(z4, z5) = zδ1
4 zδ2

5 [G(z4, z5)]−ϵ . (a41)



J. Chen, et al. Sci. China-Phys. Mech. Astron. February (2024) Vol. 67 No. 2 221011-11

To reveal the singularities at ∞, we employ the variable
changes z4 = 1/t4 and z5 = 1/t5. The resulting polynomi-
als are

G∞∞ ≡ t2
4t2

5 G (1/t4, 1/t5) = (−2m6 + m4s)t2
4t2

5

+ (m4 − m2s)t4t2
5 + (m4 − m2s)t2

4t5 + 2m2t4t5

+ st4t5 − t4 − t5,

G∞0 ≡ t2
4 G (1/t4, z5) = −2m6t2

4 + m4st2
4 + m4t4

+ m4t2
4z5 − m2st4 − m2st2

4z5 + 2m2t4z5 + st4z5

− t4z2
5 − z5,

G0∞ ≡ t2
5 G (z4, 1/t5) = G∞0(t4 → t5, z5 → z4).

(a42)

The four master integrals can be expressed as d log-forms

φ1 = d log(z4) ∧ d log(z5),

φ2 = d log(τ[z4,m2; r1;±]) ∧ d log
(

z5 − r5+

z5 − r5−

)
,

φ3 = −d log(τ[z4,∞; r1;±]) ∧ d log
(

z5 − r5+

z5 − r5−

)
,

φ4 = −d log(τ[z5,∞; r1;±]) ∧ d log
(

z4 − r4+

z4 − r4−

)
,

(a43)

where the various roots of quadratic polynomials are given
by

r1;± ≡ r±[G1; z5], r4±(z5) ≡ r±[G; z4],

r5±(z4) ≡ r±[G; z5], r5+(∞) = ∞,
r5−(∞) = 0, r5±(m2) = m2.

(a44)

Note that φ3 and φ4 are related by an exchange symmetry
under z4 ↔ z5, that we will employ later.

The poles and the relevant variables after factorization are
given as:

(0, 0) : x(1), (m2,m2) : x(2,3), (∞, 0) : x(4,5,6),

(0,∞) : x(7,8,9), (∞,∞) : x(10,11,12).
(a45)

The factorization transformations are related to the following
grouping of the 3 factors in the u-function:

x(2) : ({z4 − m2, z5 − r5+}, {z5 − r5−}),
x(3) : ({z4 − m2, z5 − r5−}, {z5 − r5+}),
x(4) : ({t4}, {z5, z5 − r−[G∞0; z5]}),
x(5) : ({t4, z5 − r−[G∞0; z5]}, {z5}),
x(6) : ({z5 − r−[G∞0; z5]}, {t4, z5}),
x(7) : ({t5}, {z4, z4 − r−[G0∞; z4]}), (a46)

x(8) : ({t5, z4 − r−[G0∞; z4]}, {z4}),
x(9) : ({z4 − r−[G0∞; z4]}, {z4, t5}),

x(10) : ({t4}, {t5, t4 − r+[G∞∞; t4]}),

x(11) : ({t4, t4 − r+[G∞∞; t4]}, {t5}),
x(12) : ({t4 − r+[G∞∞; t4]}, {t4, t5}).

The explicit transformations for the pole (m2,m2) are

z4 → x(2)
1 x(2)

2 + r+[G(x(2)
1 , x(2)

2 ); x(2)
1 ] , z5 → x(2)

2 ,

z5 → x(3)
1 x(3)

2 + r+[G(x(3)
1 , x(3)

2 ); x(3)
2 ] , z4 → x(3)

2 .
(a47)

For the pole (∞, 0):

t4 → x(4)
1 x(4)

2 , z5 → x(4)
2 ,

t4 → x(5)
1 , z5 → x(5)

1 x(5)
2 , (a48)

t4 → x(6)
1 x(6)

2 + r+[G∞0(x(6)
1 , x(6)

2 ); x(6)
1 ] , z5 → x(6)

2 .

The factorization transformations of the pole (0,∞) is sim-
ilar as the above due to the z4 ↔ z5 symmetry, and we do
not show them explicitly. Finally, for the pole (∞,∞), we
have

t4 → x(10)
1 x(10)

2 , t5 → x(10)
2 , (a49)

t4 → x(11)
1 , t5 → x(11)

1 x(11)
2 , (a50)

t4 → x(12)
1 x(12)

2 + r+[G∞∞(x(12)
1 , x(12)

2 ); x(12)
1 ] , t5 → x(12)

2 .

(a51)

Note that in all the above transformations, we have shifted
the pole to ρ(α) = (0, 0). Namely, the u-function can be writ-
ten as:

u(x(α)) = ūα(x(α))
(
x(α)

1

)γ(α)
1

(
x(α)

2

)γ(α)
2 . (a52)

The corresponding u-powers are given by (recall that γ(α) =

γ(α)
1 γ(α)

2 )

γ(1) = δ1δ2 , γ(2,3) = (−2ϵ)(−ϵ),

γ(7,8,9) = γ(4,5,6)
∣∣∣∣
δ1↔δ2

γ(4) = (ϵ − δ1 + δ2) (2ϵ − δ1) ,

γ(10) = (3ϵ − δ1 − δ2) (2ϵ − δ1) ,

γ(5) = (ϵ − δ1 + δ2) δ2 , γ(11) = (3ϵ − δ1 − δ2) (2ϵ − δ2) ,

γ(6) = (ϵ − δ1 + δ2) (−ϵ) , γ(12) = (3ϵ − δ1 − δ2) (−ϵ).

(a53)

The residues C(−1)
I of φI at each ρ(α) are given by

φ1 : {1, 0, 0,−1, 1, 0,−1, 1, 0, 1,−1, 0},
φ2 : {0,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
φ3 : {0, 0, 0, 1, 0,−1, 0, 0, 0,−1, 0, 1},
φ4 : {0, 0, 0, 0, 0, 0, 1, 0,−1, 0, 1,−1}.

(a54)

The zero entries mean that the corresponding integrands are
not singular at those poles.
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The elements of the η-matrix, ηIJ = ⟨φI |φJ⟩ can be easily
obtained using eq. (10). The inverse matrix is given by

η−1 =

δ1δ2 (−δ1 − δ2 + ϵ)
ϵ

0 −2δ1δ2 −2δ1δ2

0 ϵ2 0 0

−2δ1δ2 0 −2ϵ (δ2 + ϵ) −ϵ (δ1 + δ2 + ϵ)

−2δ1δ2 0 −ϵ (δ1 + δ2 + ϵ) −2ϵ (δ1 + ϵ)


.

(a55)

For the symbol letters contained in (d̂Ω)13 = ⟨φ̇1|φJ⟩
(
η−1)

J3,
we need to compute ⟨φ̇1|φ1⟩, ⟨φ̇1|φ3⟩ and ⟨φ̇1|φ4⟩. Due to the
exchange symmetry, ⟨φ̇1|φ4⟩ can be obtained from ⟨φ̇1|φ3⟩ by
δ1 ↔ δ2.

According to eq. (a54), the term ⟨φ̇1|φ1⟩ receives n-SP con-
tributions from the poles ρ(1,5,8). Note that ρ(4,7,10,11) gives
d log C = 0 and does not contribute to the symbol letters. In
the contributing poles, ρ(8) are apparently related to ρ(5) by
the exchange symmetry. Therefore, the genuinely indepen-
dent contributions to ⟨φ̇1|φ1⟩ are that from ρ(1):

− ϵ

δ1δ2

(
2 log(m2) + log(s − 2m2)

)
, (a56)

and that from, e.g., ρ(5):

− ϵ

(ϵ − δ1 + δ2)δ2

(
log(m2) + log(s − m2)

)
. (a57)

The term ⟨φ̇1|φ3⟩ receives (n − 1)-SP contributions from
ρ(4,5,7,8). Again, the only independent non-zero contribution
comes from, e.g., ρ(5), and can be written as:

1
ϵ − δ1 + δ2

(
log(m2) + log(s − m2)

)
. (a58)

Combining ⟨φ̇1|φJ⟩ and
(
η−1)

J3, we are ready to obtain the
result for (d̂Ω)13. For simplicity we take δ1 = δ2 = δ. In this
case ⟨φ3| = ⟨φ4| and we have only 3 master integrals. The
result reads

(d̂Ω)13 = 4ϵ
(
2 log(s − 2m2) − 3 log(s − m2) + log(m2)

)
.

(a59)

It is interesting to note that the result does not depend on δ.
We have checked this result by comparing it to the differ-
ential equations obtained from the traditional IBP, and find
agreement. All other elements in (d̂Ω) can be easily read out
since the integrands are 0-form or 1-form after maximal cut.
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