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The roles of the lightest vector mesons ρ and ω in the multi-Skyrmion states are studied using the hidden local symmetry ap-
proach up to the next-to-leading order, including the homogeneous Wess-Zumino terms. The low-energy constants in the effective
field theory are determined using the Sakai-Sugimoto model and the flat-space five-dimensional Yang-Mills action. With only
two inputs, mρ and fπ, it is possible to determine all low-energy constants without ambiguity. The vector meson effects can be
investigated by sequentially integrating vector mesons, and their geometry can be elucidated by comparing the results using the
low-energy constants estimated from the Sakai-Sugimoto model and the flat-space five-dimensional Yang-Mills action. We found
that the ρ meson reduces the masses of the multi-Skyrmion states and increases the overlaps of their constituents, whereas the
ω meson repulses the constituents of the multi-Skyrmion states and increases their masses. Therefore, these vector mesons are
crucial in the Skyrme model approach to nuclei. We also found that the warping factor, an essential element in the holographic
model of QCD, affects the properties of the multi-Skyrmion states and cannot be ignored.
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1 Introduction

The Skyrme model [1, 2] as a nonlinear theory of mesons
based on the chiral symmetry breaking of QCD provides a
unified framework to study the single baryons, multi-baryon
states and nuclear matter [3-7] when the skyrmions are re-
garded as baryons in the limit of large number of colors
Nc [8-10].

In the Skyrmion approach to nuclear physics, it is found
that the vector mesons play indispensable roles [11-17]. The
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vector meson effects can be studied without ambiguity using
effective models in higher dimensions. Researchers [18-20]
showed the Skyrmion properties by dimensionally decon-
structing a five-dimensional holographic model, the Sakai-
Sugimoto model [21, 22], into a four-dimensional effective
theory of vector mesons, the hidden local symmetry (HLS)
approach [23-25]. In this approach, all the low-energy con-
stants (LECs) can be fixed with only two inputs fπ and mρ ex-
cept the parameter a, which proves that any physical quanti-
ties calculated with the HLS Lagrangian induced from hQCD
models are independent of it [20]. The inclusion of the ρ
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meson reduces the soliton mass, which brings the Skyrmion
closer to the Bogomol’nyi-Prasad-Sommerfield soliton; how-
ever, the ω meson increases the soliton mass. Similarly, us-
ing a (4 + 1)-dimensional Yang-Mills theory, which may be
written as a (3 + 1)-dimensional BPS Skyrme model, it is
found that the iso-vector hadron resonances ρ and a1 sup-
press the Skyrmion mass and the more resonances included
further suppression [26, 27].

The Skyrmion approach to the multi-Skyrmion states is
achieved using the product ansatz [1, 28, 29] or the rational
map ansatz [30-32] since the multi-Skyrmion states obtained
by extending the boundary conditions of hedgehog ansatz
are unstable [33]. A generic property of the multi-Skyrmion
states is that their shapes are not spherical like the B = 1
Skyrmion but have special symmetries. Moreover, it is found
that the states with large baryon numbers have a hollow struc-
ture in the chiral limit, and this hollow structure may be un-
stable when the physical pion mass is considered (see, e.g.,
ref. [34] for a review). Moreover, this hollow structure is
significant for understanding the possible multilayer struc-
ture of neutron stars [35] considering that Skyrmion mat-
ter at high density has a sheet structure composed of half-
skyrmions [36].

Regarding the standard Skyrme model, the multi-
Skyrmion states were investigated using the rational map
ansatz [30]. Although some states are not bound, another ap-
proach using different numerical algorithms did not find these
unbounded states [37]. When the Skyrme model is extended
to include the positive pion mass, the structure of the multi-
Skyrmion states is changed [38] and the α-cluster structure
of nuclei is found [34]. Moreover, when the Skyrme model
is extended to include the vector meson ρ using an effec-
tive (3+1)-dimensional BPS theory truncated from a (4+1)-
dimensional Yang-Mills theory, it is found that the masses of
the multi-Skyrmion states with baryon number upto B = 4
are suppressed [27,39]. In the same framework that includes
massive pions, the clustering structure of the light nuclei can
be obtained, and the binding energies are very close to the
nuclear data [40].

Although many accesses to the multi-Skyrmion states have
been conducted in the literature, there are still some ambigui-
ties, which are as follows: What is the effect of the iso-scalar
vector meson ω, which is responsible for repulsive force in
nuclear physics on the multi-baryon states with baryon num-
ber B > 2? Are the characters of the multi-Skyrmion states
changed when the ρ is considered an independent degree of
freedom or integrated out from the theory such that its effect
is hidden in the Skyrme parameter? What is the influence of
the geometry in the five-dimension that affects the values of
the LECs? In this research, we have systematically clarified
these ambiguities using the rational map ansatz and leave the

discussion of the structures of the multi-Skyrmion states at
global minima to future work.

We used the HLS approach for the vector mesons in (3+1)-
dimension developed in the nonlinear realization of chiral
symmetry [23-25]. The Lagrangian is considered up to
the next-to-leading order, including the homogeneous Wess-
Zumino (hWZ) terms responsible for the omega meson ef-
fect. To control the ambiguities for the LECs, we resort
to the effective models in (4+1)-dimension, i.e., the Sakai-
Sugimoto (SS) model and the (4+1)-dimensional Yang-Mills
theory (BPS model). We could check the resonance effects
by integrating the resonance in order by comparing the re-
sults from the HLS with the LECs fixed using a certain effec-
tive model. Moreover, the difference between the results ob-
tained using the LECs yielded from the SS and BPS models
shows the effect of the warping factor in the five dimensions.

The rest of this paper is arranged as follows. In sect. 2,
we outlined the effective field theory used in this work and
rational map ansatz up to baryon number B = 8. In sect. 3,
we listed our numerical results and compared these values
obtained from different models. Our conclusion and discus-
sion are given in sect. 4. The expression of the masse of the
multi-Skyrmion state is shown in Appendix.

2 The hidden local symmetry approach for vec-
tor mesons

To see the effects of the vector mesons rho and omega on
the multi-Skyrmion states, among a variety of effective ap-
proaches, we used the HLS method to include these vector
mesons in the chiral effective theory [23-25]. We considered
the HLS up to the next-to-leading order, including the hWZ
terms, which are responsible for the contribution from omega
meson.

The full symmetry considered in this research is Gfull =

[S U(2)L × S U(2)R]chiral × [U(2)V ]HLS with [U(2)V ]HLS being
the HLS. The HLS Lagrangian with symmetry Gfull can be
written in terms of the Maurer-Cartan 1-forms

α̂⊥µ =
1
2i

(
DµξR · ξ†R − DµξL · ξ†L

)
,

α̂∥µ =
1
2i

(
DµξR · ξ†R + DµξL · ξ†L

)
, (1)

with the chiral fields ξL,R, which in the unitary gauge are writ-
ten as:

ξ†L = ξR ≡ ξ = eiπ/2 fπ , (2)

where π = π ·τ with τ being the Pauli matrices. Without con-
sidering the external sources, we obtain the covariant deriva-
tive as:

DµξL,R =
(
∂µ − iVµ

)
ξL,R, (3)
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with Vµ being the gauge boson of the HLS. After breaking
the HLS and in the unitary gauge, the field Vµ is expressed in
terms of the vector meson fields as:

Vµ =
g
2

(
ωµ + ρµ

)
, (4)

with

ρµ = ρµ · τ =
 ρ0

µ

√
2ρ+µ√

2ρ−µ − ρ0
µ

 . (5)

In addition to the two Maurer-Cartan 1-forms α̂⊥,∥,µ, due to
the gauge field of the HLS, the third block in the construction
of the HLS Lagrangian is the field strength tensor

Vµν = ∂µVν − ∂νVµ − i
[
Vµ,Vν

]
. (6)

With the above discussion, the HLS Lagrangian, which
will be used in this study up to O(p4) as in ref. [25], can be
constructed

L =L(2) +L(4) +Lanom. (7)

The leading order Lagrangian, the O(p2) terms, L(2) in the
chiral limit, which will be considered in this study

L(2) = f 2
πTr(α̂⊥µα̂

µ
⊥) + a f 2

πTr(α̂∥µα̂
µ
∥ ) −

1
2g2 Tr(VµνVµν), (8)

where fπ is the pion decay constant, a is the parameter of
the HLS, g is the coupling constant of the hidden local gauge
field—the vector meson field. For the O(p4) Lagrangian, we
only considered the terms having one trace since the terms in-
cluding two traces are suppressed by 1/Nc. Then, the O(p4)
Lagrangian was used as given by

L(4) = L(4)y +L(4)z, (9)

where

L(4)y =y1Tr
[
α̂⊥µα̂

µ
⊥α̂⊥να̂

ν
⊥
]
+ y2Tr

[
α̂⊥µα̂⊥να̂

µ
⊥α̂
ν
⊥
]

+ y3Tr
[
α̂∥µα̂

µ
∥ α̂∥να̂

ν
∥
]
+ y4Tr

[
α̂∥µα̂∥να̂

µ
∥ α̂
ν
∥
]

+ y5Tr
[
α̂⊥µα̂

µ
⊥α̂∥να̂

ν
∥
]
+ y6Tr

[
α̂⊥µα̂⊥να̂

µ
∥ α̂
ν
∥
]

+ y7Tr
[
α̂⊥µα̂⊥να̂

ν
∥ α̂
µ
∥

]
+ y8

{
Tr

[
α̂⊥µα̂

µ
∥ α̂⊥να̂

ν
∥
]
+ Tr

[
α̂⊥µα̂∥να̂

ν
⊥α̂
µ
∥

]}
+ y9Tr

[
α̂⊥µα̂∥να̂

µ
⊥α̂
ν
∥
]
, (10)

L(4)z =iz4Tr
[
Vµνα̂

µ
⊥α̂
ν
⊥
]
+ iz5Tr

[
Vµνα̂ν∥ α̂

ν
∥
]
. (11)

For the anomalous parity part, the Lagrangian Lanom has ex-
pression

Lanom =
Nc

16π2

3∑
i=1

CiLi, (12)

where

L1 =iTr
[
α̂3

Lα̂R − α̂3
Rα̂L

]
, (13a)

L2 =iTr
[
α̂Lα̂Rα̂Lα̂R

]
, (13b)

L3 =Tr
[
FV (α̂Lα̂R − α̂Rα̂L)

]
, (13c)

with the 1-form and 2-form fields

α̂L = α̂∥ − α̂⊥, α̂R = α̂∥ + α̂⊥, FV = dV − iV2. (14)

To study the properties of the multi-Skyrmion states using
the Lagrangian (7) from the rational map ansatz, we parame-
terized the chiral field as [30]:

ξ(r) = exp
[
iτ · n̂F(r)

2

]
, (15)

where

n̂ =
1

1 + |R|2
(
2Re(R), 2Im(R), 1 − |R|2

)
, (16)

R represents the rational map, a function of the complex coor-
dinate z on a Riemann unit two-sphere, and r is the distance
from the origin. For a baryon number B state, the rational
map R(z) = p/q has p and q that are polynomial in z such
that max[deg(p), deg(q)] = N and p and q have no common
factors. Explicitly, for B = 1, 2, · · · , 8, R(z) has the following
form [30]:

N = 1 R(z) = z, the hadgehog map.

N = 2 R(z) = z2−a
−az2+1 , with a being a real parameter and

−1 ≤ a ≤ 1.

N = 3 R(z) =
√

3az2−1
z(z2−

√
3a)

, with a being a complex parameter.

N = 4 R(z) = c z4+2
√

3iz2+1
z4−2

√
3iz2+1

, with c being a real parameter.

N = 5 R(z) = z(z4+bz2+a)
az4−bz2+1 , with a and b as real parameters.

N = 6 R(z) = z4+ia
z2(iaz4+1) , with a being a real parameter.

N = 7 R(z) = bz6−7z4−bz2−1
z(z6+bz4+7z2−b) , with b being a complex parame-

ter.

N = 8 R(z) = z6−a
z2(az6+1) , with a being a real parameter.

For the vector mesons ρ and ω, we applied the following con-
figurations [41, 42]:

ωµ = W(r)δ0µ, ρ0 = 0, ρi = −
G(r)

g
τ · (n̂× ∂i n̂). (17)

The profiles of the meson fields satisfied the following
boundary conditions:

F(0) = π, F(∞) = 0,
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G(0) = 2, G(∞) = 0, (18)

W′(0) = 0, W(∞) = 0.

Using the effective Lagrangian (7) and the antsatz (16) and
(17), one can easily derive the expression for the mass of the
multi-Skyrmion state. The explicit formula is given in Ap-
pendix. By minimizing the mass of the multi-Skyrmion state
subject to the boundary conditions (19) one can obtain the
profiles of F(r),G(r) and W(r) and consequently, the mass of
the multi-Skyrmion states once the LECs are given.

3 Numerical results for the multi-Skyrmion
states

3.1 The model and low-energy constants

To calculate the properties of the multi-Skyrmion states
described in Appendix, we first need to know the val-
ues of the LECs. Lagrangian (7) contains 18 parameters,
fπ, a, g, y1, y2, · · · , y9, z4, z5, c1, c2, c3 and the vector meson
mass mV = mρ ≃ mω. As the vector meson mass satisfies
the relation

m2
V = ag2 f 2

π (19)

and the empirical values of fπ and mV = mρ ≃ mω are well
known; 15 parameters remain, and we have not been able to
estimate the values of these parameters thus far.

Therefore, to finalize the numerical calculation, we esti-
mated the LECs from the dual models of QCD in five dimen-
sions, explicitly, the holographic model of QCD from the
top-down approach—the Sakai-Sugimoto (SS) model [21].
For comparative purposes, we also estimated the LECs using
the Bogomol’nyi-Prasad-Sommerfield (BPS) model [43]—
the Yang-Mills theory in five dimensions to show the effect of
geometry. We denoted the HLS with parameters determined
from the SS model as HLSSS and that from the BPS model as
HLSBPS. Due to the special structure of the 5D Dirac-Born-
Infeld part of the SS model and the gauge invariance of the
(4+1)-dimensional Yang-Mills theory, the LECs in HLS have
the following relations:

y1 = − y2, y3 = − y4,

y5 = 2y8 = − y9, y6 = − (y5 + y7). (20)

Moreover, the omega meson effect only enters through the
hWZ terms. In the five-dimensional models, the parame-
ter a is related to the normalization of the eigenfunction of
the vector mode; however, the physical quantities calculated
with the HLS induced from the five-dimensional models are
independent of the parameter a, although the values of the
LECs depend on it [20]. With the choice a = 2, which re-
produces the Kawarabayashi-Suzuki-Riazzudin-Fayyazudin
relation and the rho meson dominance in the pion electro-
magnetic form factor, we present the values of the LECs esti-
mated from the SS model and the BPS model in Table 1 [20].

To investigate the resonance effects on the multi-Skyrmion
states, we considered three versions of HLS in the following.

(1) HLS(π, ρ, ω) The HLS with all the π, ρ and ω fields.
(2) HLS(π, ρ) The HLS with π and ρ fields, which is ob-

tained by integrating out ω field from, or equivalently drop-
ping the hWZ terms in, the Lagrangian (7).

(3) HLS(π) The HLS with only π, which is ob-
tained from HLS(π, ρ, ω) by integerating out both ρ and ω
fields [25]. In this scenario, the Skyrmion parameter was af-
fected by the y1, y2, and z4 terms in addition to the kinetic
term of the vector mesons [20]. In this case, the Skyrme pa-
rameter e = 7.31 in HLSSS(π) and e = 10.02 in HLSBPS(π).

3.2 Numerical results

With the above-estimated LECs, the multi-Skyrmion states
can be calculated. To obtain the profile functions, we used
the finite element method [44] to minimize the total static
energy of the system described in Appendix concerning the
boundary conditions (19). The advantage of the finite ele-
ment method is that only the first-order ordinary differential
equations (ODEs) must be handled. If additional resonances
are desired, it is not necessary to derive the tedious equation
of motion (second-order ODEs) again.

3.2.1 Effects from the hadron resonances

To investigate the resonance effects, we first considered the
properties of the multi-Skyrmion states using the HLS with
the LECs determined from the SS model. Table 2 depicts
the masses of the multi-Skyrmion states for baryon numbers
B = 1, 2, · · · , 8.

Table 1 Low energy constants of the HLS Lagrangian at O(p4) with a = 2

Model y1 y3 y5 y6 z4 z5 c1 c2 c3

SS model −0.001096 −0.002830 −0.015917 +0.013712 0.010795 −0.007325 +0.381653 −0.129602 0.767374

BPS model −0.071910 −0.153511 −0.012286 −0.196545 0.090338 −0.130778 −0.206992 +3.031734 1.470210
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Table 2 Masses of the multi-Skyrmion states in HLSSS (in unit of
4π f 2

π /mρ). Only the hadron degrees of freedom are explicitly written for
simplicity

Model
B

1 2 3 4 5 6 7 8

(π, ρ, ω) 8.59 16.90 24.94 32.44 40.58 48.37 55.56 63.71

(π, ρ) 6.04 12.37 18.44 23.65 30.04 35.83 40.64 47.07

(π) 6.67 13.08 19.23 24.59 31.03 36.92 41.93 48.39

Comparing the results from HLSSS(π) and HLSSS(π, ρ)
shows that the attractive force from the rho meson decreases
the masses of the multi-Skyrmion states. This is consistent
with the knowledge gained from understanding the nuclear
force and calculating the Skyrmion spectrum [19, 20]. How-
ever, the comparison of the results from HLSSS(π, ρ) and
HLSSS(π, ρ, ω) tells us that, similar to what happens in the
Skyrmion case [19, 20], due to the repulsive force arising
from the omega meson, the masses of the multi-Skyrmion
states are increased.

It is interesting to note that, in contrast to ref. [30], in
HLSSS(π) all the states are bound ones owing to the contribu-
tion from the higher order terms of HLS. When ρ is included
as an explicit degree of freedom in HLSSS(π, ρ) the B = 2
and 3 states are unbound because their masses are larger than
twice and three times of that of the single Skyrmion state,
respectively. This is because, when only the π and ρ mesons
are included in HLS, the model is very close to the Bogo-
mol’nyi bound, and the force is very weak, as shown in Ta-
ble 2. This is more evident in the Skyrmion crystal approach
to nuclear matter [45] and the HLSBPS(π, ρ) results that will
be presented later. However, when the omega meson, the

flavor partner of the rho meson, is considered, all the multi-
Skyrmion states for B ≥ 2 are bound, and the binding ener-
gies are greater than those in HLSSS(π, ρ). This again shows
the significance of the omega force in nuclear physics.

To understand the effects of the hadron resonances, we
plotted the contour surfaces of the multi-Skyrmion states
with baryon number density B0 = 0.01 in Figure 1. Compar-
ing the contours from HLSSS(π) and that from HLSSS(π, ρ),
the force from rho meson attracts the constituents of the
multi-Skyrmion states closer, although the difference is tiny.
However, due to the repulsive force from omega meson, the
overlap among the constituents in a multi-Skyrmion state
from HLSSS(π, ρ, ω) is much smaller than others, thereby the
omega meson effect is more significant.

Figure 2 depicts the plot of the profile function F(r) in
the multi-Skyrmion states. Compared with HLSSS(π), F(r)
shrinks in HLSSS(π, ρ) a little bit due to the attraction from
the rho meson, as shown in Figure 3 for typical values
of B. In contrast to the rho meson, the omega force in
HLSSS(π, ρ, ω) clearly expands the distribution of F(r). The
same situation occurs in the profile function G(r) shown
in Figure 4. From the expansions of the profile functions,
we conclude that the size of the multi-Skyrmion state from
HLSSS(π, ρ, ω) is bigger than the corresponding ones from
HLSSS(π, ρ) and HLSSS(π) and the corresponding state from
HLSSS(π, ρ) has the smallest size.

3.2.2 Effect from the warping factor

Next, we studied the effects of the warping factor by compar-
ing the results calculated from HLSSS and HLSBPS.

(a)

(b)

(c)

Figure 1 (Color online) Contour surface with B0 = 0.01 in the HLSSS(π, ρ, ω) (a), HLSSS(π, ρ) (b), and HLSSS(π) (c) models for B = 1, 2, · · · , 8 (from left
to right).



J.-S. Wang, et al. Sci. China-Phys. Mech. Astron. November (2023) Vol. 66 No. 11 112011-6

0 10 12

r

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
(r
)

B=1

B=2

B=3

B=4

B=5

B=6

B=7

B=8

B=1

B=2

B=3

B=4

B=5

B=6

B=7

B=8

B=1

B=2

B=3

B=4

B=5

B=6

B=7

B=8

2 4 6 8

0 10 12

r

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
(r
)

2 4 6 8 0 10 12

r

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
(r
)

2 4 6 8

(a)

(b) (c)

Figure 2 (Color online) Profile function F(r) in HLSSS(π, ρ, ω) (a), HLSSS(π, ρ) (b), and HLSSS(π) (c) models.
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Figure 3 (Color online) Profile function F(r) in HLSSS(π, ρ) and HLSSS(π)
with B = 1, 4, 8.

We first listed the masses of the multi-Skyrmion states in
Table 3 for the baryon numbers B = 1, 2, · · · , 8 using the
LECs calculated from the BPS model. Similar to the HLSSS,
the results showed that, due to the attractive force from

rho meson, the masses of the multi-Skyrmion states from
HLSBPS(π, ρ) are less than those from HLSBPS(π). However,
the repulsive force from omega meson significantly increases
the masses. Similar to HLSSS, all the states in HLSBPS(π) and
HLSBPS(π, ρ, ω) are bound ones, whereas all the states from
HLSBPS(π, ρ) listed here are not bound.

Comparing the results from HLSSS and HLSBPS, we
showed that due to the warping factor in the SS model, the
masses of the multi-Skyrmion states calculated in the former
are greater than those in the latter. In the HLSBPS(π, ρ), the
binding energy is very small because the BPS model is close
to the BPS limit [43]; thus, it is extremely challenging to
form bound states.

Table 4 compares the mass ratio EB/E1 of the multi-
skyrmions state with baryon number B calculated from dif-
ferent models and empirical values. The results showed that,
compared with the truncated BPS(π, ρ) model, the inclusion
of the ω meson in HLSBPS pushes the ratio closer to the
empirical values and, even more, better than that from the
truncated BPS(π, ρ, a1) model. This again indicates the in-
dispensability of the ω meson.
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Figure 4 (Color online) Profile function G(r) in HLSSS(π, ρ, ω) (a) and HLSSS(π, ρ) (b) models.

Table 3 Masses of the multi-Skyrmion states in HLSBPS (in unit of
4π f 2

π /mρ). Only the hadron degrees of freedom are explicitly written for
simplicity

Model
B

1 2 3 4 5 6 7 8

(π, ρ, ω) 8.40 16.74 24.86 32.64 40.73 48.61 56.17 64.25

(π, ρ) 4.17 8.75 13.16 16.93 21.58 25.79 29.25 33.94

(π) 4.87 9.54 14.03 17.94 22.64 26.94 30.59 35.30

Table 4 The ratio of EB/E1 in HLSSS(π, ρ, ω) and HLSBPS(π, ρ, ω). The
results from the truncated BPS [27] and experimental data are included for
comparison

Model
B

1 2 3 4

HLSSS(π, ρ, ω) 1 1.967 2.903 3.776

HLSBPS(π, ρ, ω) 1 1.993 2.960 3.886

Truncated BPS(π, ρ) 1 1.961 2.908 3.843

Truncated BPS(π, ρ, a1) 1 1.968 2.926 3.886

Experimental data 1 1.998 2.991 3.969

To further understand the effect of the warping factor, we
compared the contour surface of the baryon number den-
sity. Here, we considered the results from HLSSS(π, ρ) and
HLSBPS(π, ρ) as examples and plotted the results for the
baryon number density B0 = 0.01 in Figure 5. This figure
explicitly shows that the constituents of the multi-Skyrmion
states are far away from each other due to the warping factor
in the SS model. Since the constituents are further, the distri-
butions of the profile functions are more expanded in HLSSS

as shown in Figure 6.

4 Summary and discussion

Using the HLS approach, we introduced the vector mesons
ρ and ω into the Skyrme model and calculated the effect
of vector mesons on the multi-Skyrmion states with baryon

numbers from B = 1 to 8. With the help of the holographic
models, all the LECs can be self-consistently calculated us-
ing two inputs fπ and mρ. In this sense, we explicitly studied
the effects of the vector mesons and the warping factor on the
properties of multi-Skyrmion states.

The main conclusions of this work can be summarized as
follows: compared with the model with only pion, the ρ me-
son slightly reduces the mass of the multi-Skyrmion states as
well as the size of the profile function F(r). The effect of
the ω meson on multi-Skyrmion states is obvious, not only
on increases in the masses of the multi-Skyrmion states but
also on expansions of the sizes of the states. The contribution
from the warping factor cannot be ignored when estimating
the LECs of the HLS using the holographic models of QCD.

Given the above qualitative conclusions, several exten-
sions of this work can be expected.

In this research, we calculated the LECs using the SS and
the BPS models. It is well known that the hadron spectrum,
including that of the skyrmions, does not agree with the em-
pirical values. In avoiding this defect, it is interesting to re-
sort to certain holographic models that yield hadron prop-
erties consistent with nature. A possible approach is to use
the holographic model from the bottom-up approach, for ex-
ample, the soft-wall model developed in refs. [46, 47], using
the approach developed in ref. [48]. Furthermore, in this ap-
proach, the explicit chiral symmetry-breaking effect, which is
ignored in this research but is found significant for the spec-
trum and shapes of the multi-Skyrmion states, can be self-
consistently considered.

A generic problem in the Skyrmion approach to nuclear
physics is that both the masses of the baryons and binding en-
ergies between skyrmions are too large to confront the empir-
ical values. Some modified Skyrme models, such as the BPS
Skyrme model [49] and the false vacuum model [50], showed
promise for overcoming these issues. Consequently, it is
interesting to examine the properties of the multi-Skyrmion
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Figure 5 (Color online) Contour surface with B0 = 0.01 in the HLSSS(π, ρ) model (a) and HLSBPS(π, ρ) model (b) for B = 1, 2, · · · , 8 (from left to right).
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Figure 6 (Color online) Profile functions F(r) in HLSSS(π, ρ) model (a) and HLSBPS(π, ρ) model (b).

states using these models.

In general, the isospin unit vector n̂ in the parametriza-
tion of the rho meson (17) should differ from that in the
parametrization of the pion field (16). Conversely, there
should be two different vectors, n̂ρ for the rho field and n̂π

for the pion field; since they are independent fields, similar
to the Skyrmion crystal approach to nuclear matter [51, 52].
We checked such a senario that n̂π and n̂ρ are differently pa-
rameterized. The minimal mass of the multi-Skyrmion state
can only be obtained using the same form of parameteriza-
tion previously used.

To see the effects of the vector mesons and warping fac-
tor, we focused on the rational map ansatz here, which works
well in the absence of pion mass [30, 39]—a situation also
considered in this research. The rational map ansatz does
not always yield the global minima for some specific models
and multi-Skyrmion states. For example, the instanton ap-
proximation [26] and the ADHM skyrmions [53, 54] could
reduce the binding energy about 2%. When a big pion mass
is considered, soliton solutions with lower symmetry play an
important role in the cluster structure of the nucleus; how-
ever, these solutions cannot be described by rational map

simplely [34,55], but a product ansatz is preferred. Thus, the
rational map ansatz and other approaches should be equally
checked to confirm the real structure of the multi-Skyrmion
states.
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Appendix Mass of the multi-Skyrmion state in
the hidden local symmetry

In this appendix, we provide the expression of the mass of
the multi-Skyrmion state using the Lagrangian (7). In accor-
dance with this Lagrangian, we decompose the mass as:

M =M(2) +

9∑
i=1

yi
1
2

ag2Myi + z4ag2mz4 + z5ag2Mz5

+

3∑
i=1

ci
ag3Nc

16π2 Mci . (1)

In unit of the scale factor 4π f 2
π

mρ
, we explicitly have

M(2) =

∫
dr

{
1
2

r2F′2 + n sin2 F − ag2

2
r2W2 − ag2

2
r2W′2 + an(G − 1 + cos F)2 + anG′2 +
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}
,

My1 = −
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dr
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1
4
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I
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)
,
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dr
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1
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My3 =
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dr
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4
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r2 (G − 1 + cos F)4
)
,

My4 =
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,
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where baryon number n and function I are defined as:
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1

4π
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